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Abstract

This article addresses the problem of constructing maps for 2D simulated environments. An algorithm based on
monocular depth estimation is proposed achieving comparable accuracy to methods utilizing expensive sensors such as
RGBD cameras and LIDARs. To solve the problem, we employ a multi-stage approach. First, a neural network predicts
a relative disparity map from an RGB flow provided by RGBD camera. Using depth measurements from the same
camera, two parameters are estimated that connect the relative and absolute displacement maps in the form of a linear
regression relation. Based on a simpler RGB camera, by applying a neural network and estimates of scaling parameters,
an estimate of the absolute displacement map is formed, which allows to obtain an estimate of the depth map. Thus, a
virtual scanner has been designed providing Cartographer SLAM with depth information for environment mapping. The
proposed algorithm was evaluated on a ROS 2.0 simulation of a simple mobile robot. It achieves faster depth prediction
compared to other depth estimation algorithms. Furthermore, maps generated by our approach demonstrated a high
overlap ratio with those obtained using an ideal RGBD camera. The proposed algorithm can find applicability in crucial
tasks for mobile robots, like obstacle avoidance, and path planning. Moreover, it can be used to generate accurate cost
maps, enhancing safety and adaptability in mobile robot navigation.
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AHHOTALUA

BBenenne. PaccmoTpeHa 3aaqa OCTPOEHUS KapThl ABYMEPHOH cpenbl. [IpemiokeH alropuT™ OIeHKH Ha OCHOBE
MOHOKYJIsipHOU onTuku 1 RGB-n3o00pakeHuii. ANTOPUTM TO3BOJISIET MONY4YaTh PE3yabTaThl, COMOCTABUMBIE C
MOJIX0/IaMU Ha OCHOBE JIOPOTOCTOSIINX AaTYMKOB, Takux kak RGBD-kameps! u nuaapel. Merton. Penienue 3anaun
BKJTFOYAET HECKOJIBKUX 3TarnoB. Ha HayampHOM 3Tare BBIMOIHICTCS 00yUeHe HEHPOHHOU ceTH, KoTopas Gopmupyet
OTHOCHUTEJIbHYIO KapTy HECOOTBETCTBUS (CMEIEHHH) Ha OCHOBE BXOAHOro notoka RGB-u3o06paxenuit or RGBD-
kamepsl. C HCIIONb30BaHUEM HM3MEPEHUI MIyOMH OT TOW K€ KaMephl BBIMOJHIETCS OIlEHKa JIBYX MapaMeTpoB,
CBSI3BIBAIOIINX OTHOCHTEIBHYIO U a0COMIOTHYIO KAPTHl CMELICHHH B BUE JIMHEHHOTO PETPEeCCHOHHOTO COOTHOIIEeH!. Ha
ocHoBe Oonee npocToit RGB-kaMepsl, myTeM NpUMeHeHUsT HEHPOHHOI CETH M OI[EHOK MacIITaOUPYOIINX MTapaMeTPpOB
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M. Barhoum, A.A. Pyrkin

(dopmupyeTcst orieHKa aOCOIFOTHON KapThl CMEIICHHI, TO3BOJISIOIICH MONTYYNTh OLICHKY KapThl TyOnH. Takum oOpasom,
CHHTE3MPOBaH BUPTYaJbHBII CKaHEpP, KOTOPbIN (OPMHUPYET aHHBIE O IIyOUHE /Il MOCTPOSHHUS KapThl OKPYIKaroLIeit
cpensl. OcHOBHBIE pe3yabTarThl. [IpeacTaBiaeHHbIN aNrOpuT™M anpoOUPOBaH MPU MOJAEIHPOBAHUH JBUKECHHS
MobunpHOTrO podora B cpexe ROS 2.0. Ynanock moctuub 6osee OBICTPOTro MPOTHO3WPOBAHUS ITyOMHBI 00BEKTOB
110 CPaBHEHUIO C APYTHMH alTOPUTMAMHM OIEHKH ITyOnHBI. KapThl, CreHepHpOBaHHBEIE COTTACHO pa3paboTaHHOMY
QITOPUTMY, TIPOJIEMOHCTPHPOBATIH BHICOKYIO CTETICHb COBIIA/ICHUS C KAPTAMH, MOTYyYESHHBIMHU C TIOMOIIBIO M/IeaTbHOI
RGBD-kamepsl. Obcyxaenue. IIpennoxkeHHbId aIrOpUTM MOXKET HAHTU NPUMEHEHUE B KIIOYEBBIX 3ajadax
YIpaBJICHNS] MOOMIBHBIMH POOOTAMH, TAKMMH KaK M30eraHue MPersTCTBUI 1 IITAaHUPOBAHKE ITyTH. AJITOPUTM MOXKET
OBITH MCIIOJIB30BaH MPU pa3MeTKe KapT Mo 00JaCTsIM C Pa3IMYHON CTENEHBIO CIOXKHOCTH MPOXOXK/ICHUS, TIOBBIIIAs
6€301MacHOCTh U a/IalITHBHOCTH HABUTAIIMH MOOMIIBHBIX POOOTOB.
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Introduction

In the realm of robotics, an accurate map plays a pivotal
role in the robot’s interaction with the surrounding world,
granting the robot the ability to navigate seamlessly through
obstacle filled environments. To that end, Simultaneous
Localization and Mapping (SLAM) algorithms are used
to enable robots to keep track of their own position and
the position of all obstacles around them utilizing the
robot’s on-board sensors. Visual SLAM algorithms build
3D maps of the environment using multiple cameras or
specialized depth sensors. However, considering compact
robotic systems used in cost-constrained applications
such algorithms may not be practical. On the other hand,
Monocular visual SLAM algorithms rely on a single
camera to build 3D maps of the environment. Nevertheless,
they suffer from scale ambiguity since only a single
image with little to no depth information is used for both
mapping and localization. 2D SLAM algorithms require
less computational demand making them a convenient
alternative to visual SLAM, provided a 2D map is
sufficient for the problem at hand. But they still require
depth information in the form of laser scans to build the
surrounding map. Monocular Depth Estimation (MDE)
offers the means to retrieve depth information without the
dependence on sensors like LIDARS, or RGBD cameras.
In the heart of it, the problem of MDE arises from the lack
of depth cues in single images rendering conventional
estimation approaches useless, but due to the importance
of the problem recent advances showed the formidability of
neural networks in predicting near perfect depth maps. The
problem of MDE can be broken down into two separate
sub-problems, namely relative depth estimation and metric
depth estimation, the most common segment is the metric
one, where the neural network trains to predict a depth
map in metric space for situations similar to the datasets it
trained on [1-5]. The other segment addresses the problem
from a different angle, where instead of direct depth maps,
disparity being the inverse depth is predicted, and the
disparity of each pixel is only consistent relative to each
other. This is achieved by training on a mixture of datasets

with different camera models to increase the generalization
of the model [6-8].

Integrating MDE with SLAM is an attempt to meet the
surging demand for autonomous systems. That combines
the power of artificial intelligence and conventional bundle
adjustment techniques to improve the visual mapping
process. The authors of [9] implemented a pseudo-RGBD
SLAM system which used a Convolutional neural network
to predict depth maps, and those depth maps are used to
improve the accuracy of monocular SLAM. While the
authors of [10] implement an unsupervised MDE pipeline
that improves the accuracy of monocular SLAM and
provides a fail-proof method for when ORB-SLAM does
not match enough features, and significantly decreases the
initialization time of the SLAM system. In this work, we
tackle the integration of MDE as a sensor for 2D mapping
using Cartographer SLAM, aiming at the balance between
real-time mapping and accuracy we propose a simple yet
effective algorithm to map simulated environments.

Monocular Depth Estimation

When choosing a neural network to perform the task of
MDE, one needs to take into account the delicate balance
between speed and accuracy by testing multiple networks
and evaluating the trade-off between frames per second
and performance, we reached the conclusion of working
with a network with a low parameter count and good
performance, even if the accuracy is lower than its peers.
In our algorithm we chose one of the networks proposed by
the authors of [6] where they trained multiple networks on
a mixture of datasets with different input-output resolutions
and showed how the improvement varies depending on the
model trained and input image resolution. The Swin2-T
network they trained can promise near real-time operation
with acceptable accuracy provided a GPU with adequate
capabilities is used when running the network. In their
work, the architecture of the network has a smaller image
size input 256 % 256 making the network more efficient to
deploy. The architecture uses the pre-trained Swin2-T as
an encoder where the transformer progresses through four
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Residual Connections

Input RGB SWINin_Vti Decoder Disparity

Image

Fig. 1. Architecture of the network with Swin2-T transformer
encoder and a decoder that uses the residual connection coming
from the encoder stages to decode depth

stages each of which has a number Swin2 blocks, the total
number of these blocks is 12, divided as 2 in each stage
except in the third one where there are 6 of them. The
output of each stage is passed to the next stage and also
hooked to the decoder which consists of 4 convolutional
layers to map the encoded data into a depth map similar
to input in size except that it has only one channel. The
architecture is depicted in Fig. 1.

Relative to Metric Depth Maps

In their work, the authors of [8] propose a loss function
to facilitate training on a mix of multiple datasets in
disparity space, instead of the usual depth ground truth
in online datasets. The loss function used to produce a
prediction of relative disparity which is scale and shift-
invariant, where, if d is the predicted disparity and d* is
the ground truth disparity, they define:

d=sd+¢,d*=d*, (1)

where, s, ¢ from (1) can be determined as a least-squares
problem for each pixel i from M as:

M
(s, ) = argming ;¥ (sd; + £ — d;*)2. 2)
i=1
And the loss for one image using (i, d* from (1)
becomes:

A A 1 M A
L(d, d*) = —> mae(d, — d;*). 3
(d, d*) 5 Mz;l (d; —d;*) A3)
They add to it the gradient loss to capture edges of
objects in the image with the term proposed by [11] as:

A 1 KM
Lreg(ds d*) = Z Z('valk| + |vyRik‘s (4)

Mi=1i=1
where k refers to the index of scale level (they use 4), V,, V.,
are the gradients on x-axis and y-axis respectively, and R; =
=d,; — d;*. To adapt these losses to multiple datasets, they
combine (3) and (4) to get the final loss function applied
to the experiments.

) /AN A oa
Ly=——3 L(d", d*") + aLg(d", d*7),
Nln:1

where N, is the size of the mixture of datasets in the training
experiment, and o is 0.5.

Notation. Let vectors D = col(c;’:, c/l;, ey d;[) be the
predicted disparity map by the network, and D = col(d;, d>,
..., dyy) be the inverse of the ground truth depth obtained
from the RGBD camera (images reshaped as vectors of the
same length), b € R, W € R is the shift between maps, and
the scale respectively as an argument of (2), then we can
define W=y, b =1 as average values of the scale and shift
in our simulation, E is a vector column of ones of length M.

Retrieving the scale and shift of the disparity map can
align it with the metric one as:

D=[D E][ZV]. (5)

Equation (5) can be treated as a least squares problem
then, there exist optimal values for W, b as:

[W, b]T = ([D E)[D E])"! ([D E]D). ()

Then we reason that we can solve this problem using
a linear regression model minimizing the square errors as:

L= ,g (Di ~[D; Ej] [‘%’])2

Leaving the metric predicted depth to be denoted using
the optimal values from (6) as:

1
(WD + by

ES

Pseudo Laser Scanner

From the pinhole camera model with no distortion, the
invertible projection equation can be written as follows:

u | X
Vo2 y

||~ KR Y. )
1/z 1

where u, v are the pixel indices in the image, x, y, z are the
3D coordinates of the point, and K[R|t] are the intrinsic
and extrinsic parameters of the camera. Using equation
(7) and the estimated depth, we can re-project the pixels in
the image onto a 3D point cloud, but for 2D mapping only
one row of the image is sufficient, thus we re-project all
the pixels of the middle row of the image onto a 3D line;
that mimics the work of a laser scanner as was done by
the authors of [12]. We also introduce a limit on the range
of the point cloud re-projected, since we compromised
accuracy for speed when choosing the network. Not to
mention that a smaller range corresponding to a smaller
search window can prove to be easier to handle when

mapping.
Zz{D*, if0<D*<15
D, otherwise

Cartographer SLAM

Cartographer is a popular SLAM system designed to
create highly accurate 2D and 3D maps of environments
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while localizing a robot within those maps. Cartographer
SLAM uses the concept of drawing multiple sub-maps
and then stitching them together to form the entire map of
the environment, it draws the map as a grid and estimates
the pose of the robot using a graph optimization algorithm
called the CERES scan matching. The main Steps in this
Graph-based SLAM system are the following:

1. Transform points from the scan frame which is the

sensor frame into the sub-map frame.

[ nole s (o

where the pose is described by the position x, y and the
orientation 0.

2. Then a hit or miss VOXEL probabilistic filter is used to
find the probability of a cell in the grid of the sub-map
being occupied or not, based on the observed points
using the laser scan. If a point was already observed its

odds odds(p) = IL are updated as:
4

M = odds(odds(M,;g)odds(py;))-

3. CERES scan matching: before adding a scan to a sub-
map, the pose of the scan, denoted as &, is optimized
in relation to the current local sub-map using a scan
matcher based on the Ceres library. The scan matcher
finds the scan pose that maximizes the probabilities
associated with the scan points within the sub-map.

K
argmin Z (1 - Msmooth(Téhk));

& k=1
4. Loop closure: it is formulated as a nonlinear least
squares problem that allows adding residuals to take
additional data into account. Every few seconds the
CERES scan matching is applied to compute the

nonlinear optimization problem.

argmin 123 p(E2(E™, & 2, &),

=m =S s e P
=0, ij ij

where the sub-map poses Z” and the scan poses E are
optimized according to constraints [13].

Results and Discussion

Experiment. The simulation features a simple
differential drive robot. The simulation process passes
two stages as depicted in Fig. 2. First, the linear regression
model is trained on relative depth estimated as an input,
and the target will be the ground truth depth from an RGBD
camera. When triggered (after linear regression finishes
training), the second stage starts, the robot is loaded into a
new environment where the trained linear regression model
rescales and shifts the relative disparity transforming it to a
metric one which is then inversed to achieve metric depth.
From this metric depth only the middle row is projected
as a 3D point cloud forming a pseudo laser scanner that is
used as an input to Cartographer SLAM.

Metric Depth Results. We first present the
performance of the aligned metric depth of our algorithm.
In the process of evaluating the MDE performance, the

testing prediction and ground truth are masked according
to cropping criteria corresponding to a specific region
of interest in the images of the testing dataset, like the
Eigen-crop proposed by [14], or the Garg-crop proposed
by [15]. These criteria are typically used to ensure that
the evaluation metrics reflect the performance of the
model in areas that are most relevant to the task. In our
work, the alignment procedure aims to render pre-trained
work applicable in an environment of choice; hence, we
evaluate the entire image (no cropping) pursuing a better
comprehensive assessment of the performance across the
entire field of view as shown in Fig. 3. MDE is treated as
a regression problem and is evaluated using the following
metrics, where M is the number of pixels d,, d;*, are ground
truth and predicted depth:

— Root Mean Squared Error (RMSE):

1 M
RMSE = A_4 lz:‘d, - di*|2 .

— Mean Relative Error (REL):

| ytld,— d
M7 d
— Threshold accuracy (9): ratio of predicted pixels having
relative errors within a threshold.

d* d ‘
max| —, — | <§;, §; = 1.25%
d d*

We compare the metric depth performance with the
ground truth by evaluating multiple metrics, and the results
are shown in Table.

Better performance is highlighted and made bold. Note
that the maximum depth in our testing environment is 22 m.

It is worth mentioning that these results are lacking in
terms of accuracy, but when projecting to 3D point clouds,
we can see that the nearest object seen by the camera is
aligned almost perfectly with the ground truth. We figure
that limiting the range of the projected depth on the

Training Simulation Testing Simulation

/_L Initialize new
NN | WO Simulation

y B
4 N
< Start
A / world

Initialize- RGBD
camera

Trained Model

il Initialize- RGB
camera
Trigger Flag ! m

+
Trained Model

Inverse

Inverse

Swin2_T_NN

Projection to 3D

Linear
Regression

[ Cartographer
~ SLAM
Reached =
minima

Fig. 2. Simulation algorithm

pseudo laser
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a b c
20
15 £
=
10 &
@]
0

(93]

Fig. 3. Input RGB image (@), ground truth depth (), aligned predicted depth (c), maximum width and height seen in the scene is
12x6.5m

Table. Metric Depth results. Downward arrows | mean the lower the value the better, upward T mean higher is better

. Image dimension, Frames per

MDE algorithm o1 5,1 531 REL|, m RMSE|, m pixel second, Hz
Ada bins [1] 0.438 0.588 0.760 1.158 3.886 640 x 480 8.5
Proposed algorithm 0.454 0.499 0.587 1.759 4.452 256 x 256 28.2

synthetic 2D laser scanner proves to be useful in solving
depth accuracy problems.

Mapping. In this section, we present the results of
mapping using our algorithm in comparison to the map
generated by using the RGBD camera. The objective is
to assess the accuracy of our approach in simulating the
performance of real-world RGBD sensors. To that end, we
run two consecutive simulations in the same world where
in the first one we drive the robot equipped with the RGBD
camera to map the environment, saving the trajectory
the robot traversed while mapping as a file containing
the action commands (linear, and angular velocities).
When done, the map is saved as an image. In the second
simulation we let the robot equipped with only an RGB
camera use the same saved action commands to traverse
the environment again following the same trajectory and
mapping using our approach, since Cartographer SLAM is
a pose graph optimization algorithm; making the robot pass
through the same poses will produce similar grid maps that

=

Fig. 4. Mapping results using the ideal RGBD camera (a),
mapping using our algorithm (b)

can be compared. This is done to ensure that acquired maps
are aligned and variations between sub-maps are minimal.
It is worth mentioning that the robot starts from the same
position in the two simulations (near the bottom right wall),
the trajectory of choice followed by the robot is a non-
complete clockwise lap along the wall. When it reaches
the center cylinders, it makes full rotation around its z-axis.

To evaluate, we first address the accuracy of the
mapping in terms of spatial fidelity and spatial consistency
where we examine the alignment of key landmarks. To that
end, we calculate the overlap between the map generated
using our approach and the map saved using the RGBD
which amounts to 88.17 %, indicating a high degree
of correspondence between the two maps. We address
obstacle recognition where it can be seen from Fig. 4 that
in certain areas our algorithm fails to recognize the entirety
of the object. This is due to the uncertainty in mapping
generated by Frame-to-Frame variability since the network
is designed to predict the depth in each frame. In some
cases, the prediction may exhibit small variations due to the
network sensitivity to visual changes and the rabid change
between consecutive frames.

Conclusion

In conclusion, our approach showcases significant
promise in mapping simulated environments. In terms
of metric depth estimation, it falls short when compared
to other algorithms trained to directly produce metric
depth on certain datasets, which is reasonable since
we traded the accuracy of the depth map with a faster
inference rate. However, this low-accuracy depth map
does not hinder the algorithm where in terms of mapping
simulated environments, the high map overlap presented
in the experimental results reinforces its effectiveness and
potential for various robotics and simulation applications,
emphasizing the balance between accuracy and real-time
performance. It is paramount moving forward to boost
the algorithm ability to handle dynamic scenes as well
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as enhance depth estimation and improve its accuracy.
Conducting real-world testing and further optimizing, the
algorithm are also venues that should be addressed in the
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