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Abstract

The loss of the regulatory function of tumor suppression genes and mutations in Proto-oncogene are the common
underlying mechanisms for uncontrolled tumor growth in the varied complex of disorders known as cancer. Oncogene
can be curable by means of diagnosing and treating the possibilities of Proto-oncogene at earlier stages. Recently,
machine learning approaches helps to focus and provide information about the possibilities of Proto-oncogene that may
change into oncogene in different cancer types. This study helps to diagnose the possibilities of Proto-oncogene which
are possible to change oncogenes at earlier stage. Thus, this present study proposed an efficient unique predictor of Proto-
oncogene with the help of Bi-Directional Long Short Term Memory added with attention concept. This approach also
find the probability of Proto-oncogene to oncogene using statistical moments, position based amino-acid composition
representation and deep features extracted from the sequence. Consequently, this study suggests that using a K-Nearest
Neighbor classifier it is possible to find probability of changing from Proto-oncogene to cancerous oncogene.
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AHHOTAIUA

VYTpara perynsTopHOi (yHKINH T€HOB, MMOAABIISIOIINX OMYXO0Jb, U MyTallUH B MPOTOOHKOTCHAX SIBISIOTCS OOIIUMHU
MEXaHU3MaMH, JISKAIMMHU B OCHOBE HEKOHTPOJIMPYEMOI0 POCTa OIyXOJIel NpH pa3HOOOPa3HOM KOMILIEKCE 300 IeBaHHIA,
H3BECTHBIX Kak pak. OHKOT€H MOXHO M3JIEUUTh ITyT€M JUATHOCTUKU H JIEYEHUS BO3MOXHOCTEH MPOTOOHKOTE€HA
Ha paHHHX CTaausAX. B mocrmennee BpeMst MOAXOABI MAITMHHOTO OO0yYEHHsI MOMOTAIOT COCPEJOTOYNTh BHUMAaHHE
1 TIPEJOCTAaBUTh MH(OPMANNIO O BO3MOKHOCTSIX IPOTOOHKOTEHA, KOTOPBIH MOXKET MPEBPAIIATHCSI B OHKOTEH MpU
Pa3IMYHBIX THIIAX paKa WM U3MEHSTH €T0 Ha PAaHHUX cTagusX. [IpemnoxeH 23 GeKTHBHEIN 1 YHUKAIEHBIH ITPEIUKTOP
MIPOTOOHKOTEHA C TIOMOIIbI0 HelipoHHO# cetn Bi-Directional Long Short Term Memory (BiLSTM), nononneHHbII
KOHLIETIIIHEeH yXo/1a 3a OOIBHBIMU. DTOT MOJIXO/] TAK)KE TI03BOJISICT ONPEIEIUTh BEPOSITHOCTH TIEPEX0/ia OT IIPOTOOHKOTeHA
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Deep attention based Proto-oncogene prediction and Oncogene transition possibility detection...

K OHKOTEHY C HCIIOJb30BAHUEM CTAaTUCTUYECKUX MOMEHTOB, IPE/ICTABICHHs aMHHOKHCIOTHOTO COCTaBa Ha OCHOBE
MOJIOKEHHUS M TITyOOKHX 0COOSHHOCTEH, M3BIICUSHHBIX U3 MMOCIIENA0BaTeNbHOCTH. B paboTe npumeHeH kiaccupukarop
K-Nearest Neighbor ¢ HOMOIIIbIO, KOTOPOTO MOJKHO ONPEJIETNTh BEPOATHOCTD MIEPEX0/ia OT MPOTOOHKOTEHA K PAKOBOMY
OHKOTEHY.

KnroueBsbie ci10Ba
npoTooHKOTeHBl, PseAAC, mporHo3upoBaHue, TeHBl OMyXo0JieBOi cympeccuu, TSG, mammHHOEe 00y4yeHHe,
JIBYHAIIpaBJICHHAS JOJITOBPEMEHHAsI KPaTKOCpOYHas mamMsiTh, BILSTM
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Introduction

A series of nucleotide bases that make up each gene are
responsible for carrying information about the development
and operation of cells. This essentially happens when
the cells transform the genetic code into proteins. In
the human body, every protein has a particular purpose.
Proto-oncogenes are common cellular genes that control
cell division and development in humans [1]. It has been
known for a long time that cancer is a result of loss of cell
cycle control. The loss of control is a result of series of
genetic mutations involving activation of Proto-oncogene
to oncogenes and inactivation of tumour-suppressing genes.

The process of activation, which includes insertion
mutations, point mutations, protein-protein interactions,
retroviral transduction, gene amplification, chromosomal
translocation, and transposon integration, can turn Proto-
oncogene into oncogenes. Proto-oncogenes are frequently
classed according to how closely their sequences resemble
those of known proteins or according to how they
typically behave inside cells [2]. Oncogenomics is the
study of the genes linked to the development of cancer. By
point mutations or gene amplification, Proto-oncogenes
are frequently activated in transformed cells [3]. These
genes may have a role in the genesis of cancer, and their
identification may offer fresh perspectives on cancer
treatment and diagnosis [4]. Oncogenes are thought to
be distinguishable from other genes by identifying their
unique mutation profile since the effects of mutations on
genes activities are related to those effects [5]. Due to the
significant heterogeneity of mutations across individuals
and various cancer types, it is challenging to identify
novel oncogenes aside from those that are often mutated
[6]. Consequently, it is essential to create computational
techniques for the finding.

Automatic protein functional observations have
gained more interest lately because they narrow the search
space for effective experimental annotation [7]. Various
techniques, including prediction by sequence [8], protein-
protein interactions [9], evolutionary relationships [10],
protein structures and structure prediction algorithms [11],
microarrays [12], and integration of data kinds [13], have
enhanced tools for finding protein functional annotations.
Additionally, a number of algorithms have been created to
identify functional proteins from an amino acid sequence
[14]. In general, protein functional detection research

focuses on all types of functions, whether cancer-related or
not. However, the subcategory of cancer-related functional
detection is particularly helpful in cancer treatment. Hence,
the present study has focused on which type of cancer is
most possible along with protein functional detection for
the given Proto-oncogene.

Related Reviews

The personalized therapy of cancer is a current
research focus. This comprises a wide range of research
projects centered on Proto-oncogene, oncogenes, DNA
repair genes, DNA methylation, and tumour suppressor
genes. For the purpose of identifying tumor suppressor
genes in silico, several computational methods have been
developed. Computer-based tools are capable of classifying
complete protein functional detection as well as classifying
various cancer types using clinical data, SNPs, and gene
expressions in combination with conventional machine
learning algorithms [15-20].

A given original protein sequence was utilized by
Khan et al. [21] to extract location relative features for
the identification of S-nitrosocystiene sites, which is the
most common posttranslational modifications of proteins.
In order to forecast Proto-oncogene, Malebary et al.
[22] suggested statistical moments and position-based
characteristics that were merged into Pseudo Amino-Acid
Composition (PseAAC) based on Chou’s 5-step rules and
Random Forest (RF) classifier. A strategy for locating
hydroxylysine sites was put out by Mahmood et al. [23]
and it is based on a potent statistical and mathematical
methodology that takes into account the sequence-order
impact and the makeup of each item inside protein
sequences. To ascertain if an amino acid substitution
(AAS) affects protein function, the “Sorting Tolerant from
Intolerant” (SIFT) method was employed in [24, 25]. Yang
et al. [26] employed the word segmentation strategy to
extract characteristics from the protein sequence. The
characteristics were then classified using the Support
Vector Machine (SVM).

Ali et al. [27] created a promising classification model
with good membrane protein type discrimination. PseAAC
is used to extract the silent characteristics of protein
sequences. SVM, Nave Bayes, K-Nearest Neighbor, Voting
Feature Interval, and Probabilistic Neural Network were
used as classification techniques. A categorization system
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for angiogenesis and cancer angiogenesis was put up by
Allehaibi et al. [28]. Using a position- and composition-
based method, variable-length proteome sequences were
converted into fixed-length feature vectors. Utilizing
statistical moments, position related information was
further transformed into a condensed form. The best
outcomes were determined using the three classifiers RF,
Artificial Neural Network (ANN), and SVM. In order to
detect TSGs and OGs by fusing extensive genetic and
epigenetic data, Lyu et al. [29] created the algorithm
Discovery of Oncogenes and Tumour SupressoR genes
using Genetic and Epigenetic characteristics (DORGE). By
incorporating nucleotide physicochemical characteristics
into pseudo K-tuple nucleotide composition (PseKNC),
Feng et al. [30] created a brand-new predictor known as
iDNA6mA-PseKNC.

Huang et al. [31] established a technique to predict
cancer proteins and used domain information to initially
annotate protein interaction. Rahman et al. [32] introduced
a system that directly extracts significant characteristics
from protein sequences without relying on functional
domain or structural information. They used the RF
approach to rank the features after feature extraction and
did the prediction scheme with SVM.

In order to determine a protein DNA-binding activity,
Chowdhury et al. [33] created iDNAProt-ES, which makes
use of both the evolutionary profile and structural data of
proteins. They derived characteristics, such as amino acid
composition, bigram, Dubchak features, auto-covariance, and
segmentation distribution, from the Position-Specific Scoring
Matrix (PSSM) profile. Ideal set of features are extracted
using recursive feature elimination with the help of SPIDER2,
the model was learned using SVM with a linear kernel.

Kumar et al. [34] exploit patient bias to find oncogenes
far more effectively than current techniques by identifying
it as a unique signal for cancer gene identification using
RF classifier with relative/absolute position-based
characteristics on Chou’s PseAAC. Akmal et al. [35]
suggested a unique predictor called iGlycoS-PsecAAC.

Proto-oncogene to Oncogene Probability Score
Detection Methodology (PSD,_, _, 4)

The proposed framework designed to find the
probability of oncogene transformation from the given
Proto-oncogene amino acid sequence; progress is clearly
described in the following Fig. 1. This model provides
relevant score for the chance of transforming Proto-
oncogene into oncogene sequence in the type of breast,
lung, kidney and collateral cancers or when the Proto-
oncogene is stable as normal sequence. This approach
extracts statistical moments and frequency and position
based features [22] along with deep recurrent neural
network of Bi-directional Long Short Term Memory
(BiLSTM) features to find the chance of particular type
of cancerous sequence formation or not with the help of
traditional machine learning K-Nearest Neighbor classifier
algorithm. This approach initially predicts whether a
given sequence is Proto-oncogene or not with the help of
BiLSTM network. Once it is identified as Proto-oncogene,
it will check is there any possibility to be changed into
oncogene.

Feature Extraction

This study utilized a variety of feature extraction
strategies, such as Statistical Moments Calculation (raw,
central, and Hahn), Position Relative Incidence Matrix
(PRIM), Frequency Vector Determination, Absolute
Position Incidence Vector (AAPIV) and Deep learning
based feature with the help of BILSTM.

Let peptide sample within the dataset be expressed as

PS[ (Z) =S0, Sl, ey Sl’

where PS is Peptide Sample, Z contains the positive and
negative samples, S, S;... are the individual samples
and / is non-uniform index indicating that the length of
a sequence may vary. In other words, / represents the
arbitrary length of the primary sequence which in this case
is variable for each sample.

Breast Cancer

Lung cancer

Oncogene.

Features of
7’ Kidney ' Kidney Cancer
[ Oncogene ) )
L3 aahures o
B TrpR. Colateral Cancer
g et Oncogene
0.4 0.14 0
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Fig. 1. The Architecture of PSD,, _, o) Model
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Statistical Moments Calculation

The statistical moments are typically employed to
extract particular qualities from data. Various moment
sequences were employed to depict distinct attributes
within the data. While some of these moments are useful
for evaluating the direction and eccentricity of the data,
others are useful for evaluating the magnitude of the data.
There are several moment-defining polynomials depending
on certain distributions have been proven by statisticians
and mathematicians [36—40]. The suggested predictor
raw moments, central moments, and Hahn moments were
estimated up to order three. Ordering up to 3 generates
enough information about the nature of data in numeric
form [41].

Raw moments have location and scale variation
features. Consequently, central moments are scale variant
and location or position invariant. Orders up to three
provide enough details on the type of data in numerical
form. Additionally, the Hahn coefficient was determined
using the Hahn polynomial which produces yet a different
set of moments representing the initial data. The orthogonal
features of these statistical moments led to their selection.
The fact that orthogonal moments display a variety of
features and may be utilized to recreate the original data
means that they inherently include important properties
that allow for exact categorization [42]. In general, these
moments sufficiently transform information regarding the
positioning and composition of residues in the primary
structure.

The two-dimensional matrix PS’ of size n x n, which is
a sequential transformation of all the amino acid residues
of protein covered by PS, is the source of these moments
computation (n is the order of the moment).

acll aclz acln
PS’ = acyy acy acyy,
acn1 acnz acnn

Using the function ® [43], PS is converted to PS’,
and each of its arbitrary components, ac;;, is an amino
acid residue that has been placed in a two-dimensional
setting. For all the moments up to degree 3, specific ordinal
values of PS’ elements were used. The raw moments are
calculated by using equation:

n n
MT;= % Y uWac,,

u=1 v=1

where ac,, is an arbitrary component of matrix PS’,
and i +/ is the degree of the moments. Moreover, raw
moments were denoted as MT o, MTy, MTyy, MT 3, MT),,
MTy, MT,y, MT,,, MT,,, and MTj, for degree up to 3.
The following equation is then used to determine central
moments:

= 3 3 (- B —pyacy,

u=1v=1

PS was transformed into a square matrix PS’ as it offers
a substantial advantage for enumeration of Hahn moments.
Discrete orthogonal moments in two dimensions require a
square matrix as input. This orthogonal feature of Hahn
moments suggests that they may be reversed using an
inverse function. This reversible quality makes it easier to
rebuild the data, which essentially means that it maintains
the original data relative location, and sequence structure
contained these moments.

For a one-dimensional matrix of size N, the Hahn
polynomials of order n are calculated using the equation
below.

BP9 Ny = (N+ V= D(N— 1), x ¥ (1) x
=0

MU +ptg-n-D 1
(N+g-DyN-1)y k!

where N is the size of the data array, V' represents feature
vector length 7 is the order of the moment; p and ¢ are
predefined constants. Additionally, the Pochhammer
symbol ¢, which in turn employs the gamma operator
as indicated in [41], is used in the equation. The two-
dimensional Hahn moments are calculated using this Hahn
coefficient as follows:

N-1 N-1

Hij = Z Z acuvhlp,q(ur N)

v=0 u=0

The order of the moment is pointed out by the addition
of 7 and j, that is, i + j; p, ¢ are predefined constants; and
ac,, refers to any member in the square matrix PS’.

PRIM

To quantify the relative locations of amino acids and
learn more about the relative positions of amino acid
residues in the protein, a PRIM in the form of a 20 x 20
matrix was created. It is given as

Seqi_1 Seqi_;... Se‘h—gj...se%_ao
Seqr 1 Seqy .o Seqy,;.  Seqy

PSpriv =

Seqi,1  Seqi_,y. . Se‘IHj... Seqi_0

| Seqro1 Seqro—a.. Seqro—;. Seqro—20 |

The sum of the positions of the j theresidue and the i*
residue initial occurrence for each element of this matrix is
represented by the symbol Seg; ;. As a result, this matrix
has 400 coefficients, which is a very large number. The
opportunity to condense this information into a concise
form is made possible by statistical moments. There are 30
coefficients total for degrees up to 3 after computing the
PRIM raw, central, and Hahn moments. In the same way,
the Reverse Position Relative Incidence Matrix (RPRIM)
was created using a basic protein sequence.

_ MTy _ My . .
wherex=—"— /andy = which denotes the centroid The PRIM can be denoted as:
of data. Too 00
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Seq 1 Seqi_,. . Seqi_,;  Seqi_

Seqy 1 Seqy ;... Se‘h—y‘... Seqs 50

PSgpriv = : . ' . (D
Seqi,1  Seqi_. . Seq;_,; . Seqi

| Seqr0—1 Seqro-2.. Seqro—;. Seqro—20 |

Statistical moments were used to decrease the
dimensionality of RPRIM, resulting in the construction
of a set of 30 elements. The PRIM describes the relative
positions of amino acid residues in a polypeptide chain.
This information is augmented by the RPRIM in (1), which
reveals even more hidden information by repeating the
operation on the opposite side of the primary sequence.

Frequency Vector Determination

Simple counting of each amino acid residue inside the
main sequence yields the frequency vector. The frequency
of each amino acid residue in the supplied sequence is
represented by an element in the frequency vector. As a
result, the frequency vector has 20 coefficients.

Absolute Position Incidence Vector

The frequency matrix significantly provides information
on how amino acid residues are composed. The AAPIV
gives a summary of the residue location. It had a length of
20 elements and was composed of a single coefficient for
each amino acid residue. The sum of the positions of every
natural amino acid in the fundamental structure is included
in elements of the AAPIV, which is given as equation:

PO = {posy, pos,, poss, ..., posy} .

Equation below made it possible to calculate any it
element of the AAPIV.

n
pos;= 3. posy,
PO=1
where pos;, represents the location of the i amino acid
residue. Consequently, the Reverse Accumulative Absolute
Position Vector (RAAPIV) assessed additional specific data
based on the absolute positions of amino acids in peptide
samples. RAAPIV was produced by reversing the basic
sequence and calculating AAPIV. That can be denoted as

o 7\‘20}’

where A; is the total number of positions in the main
structure; then the i## amino acid residue can be found.

BiLSTM

The architecture of BILSTM is depicted in Fig. 2. The
input sequences will be routed into the BILSTM with size
128 filter. The outcome of BiLSTM is sent into maxpooling
layer MP1 with size 2. Then, the Relu Layer will be applied
to the output. The output of the Relu layer is then fed into
the attention layer. The dropout layer will be given the
results of the attention layer. The output of the BiLSTM
layers is fed into the maxpooling layer MP2 with size 2.
The outcome will then be applied to the Relu layer and

RAAPIV = {}\,1, 7\2, 7\,3, ..

then into the dense layer with size 128. The SoftMax
classification will be used in the dense output to predict
whether a given sequence is Proto-oncogene or not at the
end of the architecture shown in the Fig. 2. The same layer
model is used for extracting deep features as well as for the
prediction of Proto-oncogene.

Feature Vector Description

The final step in processing primary sequences (PS’)
through all of the aforementioned phases is combining
them to create an accumulative feature vector. Two
dimensional representation of the major sequence matrices
PRIM, PS’, and RPRIM are changed into a concise form
through calculating their statistical moments (raw, central,
and Hahn). Thus, it produces 90 coefficients. Another
60 coefficients are included to the vector by pooling
the frequency vector (fv), AAPIV (PO), and RAAPIV
(RAAPIV). The deep features extracted by the final dense
layer of the model with size of 128. Hence the final feature
vector of the size 278 is used to find whether the given
Proto-oncogene will change into oncogene or not.

Probability Score Detection using ML Algorithm

After features were extracted using the feature
extraction approaches, a fixed-sized feature vector with 278
coefficients was created to be used for further processing
in the machine learning algorithm for computing the
possibilities of oncogene prediction. The features of Proto-
oncogene sequences were extracted by utilizing certain

BIiLSTM 128

| BILSTM l | BILSTM ' I BiLSTM
' au.sm' | BILSTM I | BiLSTM
Maxpool
| l Relu
£ Attention
ﬁ Layer
Dropout
BILSTM 64
| BILSTM ' ] BILSTM 1 | BILSTM
| BILSTM ' l BILSTM | | sisne |
|
: Maxpool
I___] Relu
Dense
Layer

Fig. 2. BILSTM Architecture
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feature extraction strategies like Statistical Moments
Calculation (raw, central, and Hahn), PRIM, Frequency
Vector Determination, AAPIV, and they are fed into the
K-Nearest Neighbor classifier Machine learning model
which predicts the probability of the formation of Oncogene
that causes cancer. Furthermore, the different categories of
oncogene sequences, like breast cancer oncogene, lung
cancer oncogene, kidney cancer oncogene, collateral
oncogene and stable Proto-oncogene, were extracted by
the same feature extraction strategies. All the above feature
vectors are fed into the proposed oncogene probability
prediction machine learning model. This proposed model
compares the available features to identify the probability
score of the Proto-oncogene to mutate into different types
of oncogene. It also predicts the probability score of Proto-
oncogene sample tested is a stable Proto-oncogene, which
means it does not mutates into an oncogene.

Experimental Results

Dataset Description

The UniProt website consists of different kind
resources, such as UniProt Knowledge Base (UniProtKB),
UniProt Reference (UniRef), UniProt Archives (UniParc),
and Protein Sets (Proteomes) of Fully Sequenced Genomes.
Supporting datasets include protein information, such as
transcript, distribution, sub cellular location, keywords,
cross reference datasets, and disease, currently available
in the UniProtKB protein entry. With the help of UniProt’s
“Search/ID Mapping” tool, different described in UniProt
[43]. The following Fig. 3 shows the UniProt search and
downloading section for genomic data. In this work, the 630
negative samples and 252 positive samples from the dataset
provided by the ProtoPred [22] are used to train the BILSTM
with attention model for Proto-oncogene prediction as
well as those 252 positive samples are used to find the
probability of its status from Proto-oncogene to oncogene
which causes different types of cancer. The following Table
1 shows the sample Proto-oncogene [22] and oncogenes
in different types of cancer from UniProtKB [43].

€ 3 C @ unprotaginipoit

2%
° .
Uanro‘t.: BLAST Align Peptide search ID mapping SPARQL  UniProtkB -

The benchmark data set is split into £ (10) disjoint
fold partitions for cross-validation. Table 2 displays the
findings of the KFold cross validations of the proposed
model and the following Table 3 shows the performance of
the Proto-oncogene prediction using the designed BiLSTM
with attention model compared with state art of works, as
an independent test, 30 % samples used for testing and
remaining 70 % of samples used for training.

From the Table 3 it is found that the proposed
BiLSTM_ATT model archives 97 % F1-Score, which is
significantly better compared to the existing approaches. In the
second phase of Proto-oncogene to oncogene transformation
probability finding process, we trained the KNN classifier
model with all the oncogene from different types of
disease features along with stable Proto-oncogene features.

In the evaluation progress, for all of the 252 Proto-
oncogene the same set of statistical moments, frequency
based features along with BiLSTM features are extracted
and score for each five classes, such as breast cancer, lung
cancer, kidney cancer, colorectal cancer and the Proto-
oncogene remains in the same state as denoted by stable, is
estimated. Among the five scores, the class belonging to the
maximum score is considered as the probability of changing
Proto-oncogene to that particular type of oncogene or
shows that there is no transition. The following Pie chart
in the Fig. 4 clearly describes that the percentage of Proto-
oncogene in the dataset has the probability of changing
into particular types of cancer disease or it won’t affect
anything. A Pie chart is drawn based on the probability
score attained by each Proto-oncogene sequence in the
benchmark dataset [22], and the highest score identifies the
type of oncogene that is most probable.

From the execution of the design, it is found that the up
to 43.3 % of sequence data has the probability of changing
into breast cancer oncogene. Similarly, 30 % related to
kidney cancer, 13.3 % possibility of colorectal cancer,
10.8 % of lung cancer and 3.6 % of no transition. In this
mode the probability of changes is estimated based on the
highest score among all 5 classes. The highest score may
be in any range from zero to one. In order to estimate the

ctapgx 200 :

& @ & Help

Status

5 Reviewed (Swiss-Prot)
(347)

UniProtKB 354 results

&, Dovmload View: Cards O Table @ £ Customize columns <§ Share ~
Unreviewed (TrEMBL) (7)
® Entry . Entry Name . Protein Names . Gene Names . Organism . Length .
Popular organisms P35916 5 VGFR3_HUMAN Vascular endothelial FLT4, VEGFR3 Homo 1,363 AA
Human (270) growth factor receptor 3[...] sapiens
(Human)
Mouse (65)
Rat (9 Q86YI8 & PHF13_ HUMAN PHD finger protein 13[..] PHF13 Homo 300 AA 5
at (9) sapiens g
Bovine (2) (Human) 5
) a8
Zebrafish (1) P17948 5 VGFR1_HUMAN Vascular endothelial FLT1, FLT, FRT, Homo 1,338 AA
growth factor receptor 1[..] VEGFR1 sapiens
Taxonomy (Human)
Filter by taxonomy "
Q6AYPS % CADM1_RAT Cell adhesion molecule 1 Cadm1, SynCam1 Rattus 476 AA

Fig. 3. UniProtKBSearch and its Result Page
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Table 1. Samples studied

Sample of Proto-oncogene sequence [22]

MECPSCQHVSKEETPKFCSQCGERLPPAAPIADSENNNSTMASA...

MAHSCRWRFPARPGTTGGGGGGGRRGLGGAPRQRVPALLLPPGP...

MKLNPQQAPLYGDCVVTVLLAEEDKAEDDVVFYLVFLGSTLRHC...

MDQTCELPRRNCLLPFSNPVNLDAPEDKDSPFGNGQSNFSEPLN...

MTSGGSASRSGHRGVPMTSRGFDGSRRGSLRRAGARETASEAAD...

Sample of the Kidney Cancer Sequence

MFASCHCVPRGRRTMKMIHFRSSSVKSLSQEMRCTIRLLDDSEISCHI...

MGQDAFMEPFGDTLGVFQCKIYLLLFGACSGLKVTVPSHTVHGVRG...

MRLEELKRLQNPLEQVNDGKYSFENHQLAMDAENNIEKYPLNLQPL...

MTVKTEAAKGTLTYSRMRGMVAILIAFMKQRRMGLNDFIQKIANN...

MAEQDVENDLLDYDEEEEPQAPQESTPAPPKKDIKGSY VSIHSSGFR...

Sample of the Lung Cancer Sequence

MENEKENLFCEPHKRGLMKTPLKESTTANIVLAEIQPDFGPLTTP...

MENFTALFGAQADPPPPPTALGFGPGKPPPPPPPPAGGGPGTA...

MKINLLGFLGATLSAPLIPQRLMSASNSNELLLNLNNGQLLPLQL...

MPVSTSLHQDGSQERPVSLTSTTSSSGSSCDSRSAMEEPSSSEA. ..

MAFSDLTSRTVHLYDNWIKDADPRVEDWLLMSSPLPQTILLGF...

Sample of the Breast Cancer Sequence

MGQDAFMEPFGDTLGVFQCKIYLLLFGACSGLKVTVPSHTVHG...

MVQYELWAALPGASGVALACCFVAAAVALRWSGRRTARGAV...

MNYSLHLAFVCLSLFTERMCIQGSQFNVEVGRSDKLSLPGFENL...

MAGFGAMEKFLVEYKSAVEKKLAEYKCNTNTAIELKLVRFPEDL...

MDRSKENCISGPVKATAPVGGPKRVLVTQQFPCQNPLPVNSG...

Sample of the Colorectal Cancer Sequence

MKIIILLGFLGATLSAPLIPQRLMSASNSNELLLNLNNGQLLPLQ...

MSEKPKVYQGVRVKITVKELLQQRRAHQAASGGTRSGGSSVH....

MELSGATMARGLAVLLVLFLHIKNLPAQAADTCPEVKVVGLEG...

MIPPADSLLKYDTPVLVSRNTEKRSPKARLLKVSPQQPGPSGSA...

MEGAALLRVSVLCIWMSALFLGVGVRAEEAGARVQQNVPSGT...

Table 2. Findings of the KFold testing for Accuracy

and F1-Score, %

chance of changing from Proto-oncogene to oncogene
in reliable form, a marginal threshold is fixed for the
maximum score checking. In this work the threshold is
fixed as 0.5. Here the chance of oncogene cancer type is
determined not only by its maximum score, it also checks

Fold# | Accuracy | Precision | Recall F1-Score if that maximum score is greater than the pre-defined
1 94 96 90 92 threshold. The probability of changes from Proto-oncogene
2 97 98 96 97 to particular four types of cancerous gene or stable in the
3 04 %6 9 0 current state is shown in the following Fig. 5 with the
threshold as 0.5. The predicted data whose highest score
4 96 96 95 95 below 0.5 means it is in unpredictable class. Whereas in
5 94 96 90 92 Fig. 4, the data is assigned to the class which has highest

6 97 97 97 97 predicted score among all trained five classes.
From the above Fig. 5, it is clear that the based on the
[ = 2 22 i threshold the probability of changing from Proto-oncogene
8 97 98 96 97 to breast cancer oncogene is reduced from 43.3 % without
9 98 99 98 98 threshold (Fig. 4) to 35.4 %. The following Fig. 6 shows
10 100 100 100 100 the probability score for chapging from Proto-oncogene to
oncogene for the given testing unknown Proto-oncogene

Average 96 96 94 95 sequence in the Table 4.
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Table 3. Results of Proto-oncogene prediction using BILSTM with Spatial Attention, %

Methods Accuracy F1-Score Precision Recall Specificity Mcce AUC
PSSM [44] 81 78 77 79 79 56 83
PseAAC [45] 85 82 81 83 83 64 89
ProtoPred RF [22] 97 96 94 98 98 92 97
BiLSTM_ATT Model 97 97 96 98 98 94 98

breast cancer

B kidney cancer

M lung cancer

W colorectal cancer

W Stable

Fig. 4. Percentage of Proto-oncogene has the possibility to change into particular type of oncogene or remains as it as Proto-

354 %

oncogene

breast cancer

18.6 %

Stable

Unpredictable

Fig. 5. Probability of Transition from Proto-oncogene to Oncogenes with Score Threshold

Oncogene Probability Score

0.6 A

0.4 1

0.2 4

0.0

Breast Kidney Colorectal Lung  Stable

Cancer-Oncogenes

Fig. 6. Predicted Probability Score for the Cancer Oncogene

kidney cancer

lung cancer

colorectal cancer
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Table 4. Unknown Proto-oncogene Sequence for Prediction

MEYMSTGSDEKEEIDLLIKHLNVSEVIDIMENLYASEEPGVYEPSLMTMYPDS
NQNEERSESLLRSGQEVPWLSSVRYGTVEDLLAFANHVSNMTKHFYGRRPQ
ECGILLNMVISPQNGRYQIDSDVLLVPWKLTYRNIGSGFVPRGAFGKVYLA
QDMKTKKRMACKLIPIDQFKPSDVEIQACFRHENIAELY GAVLWGDTVHLFM
EAGEGGSVLEKLESCGPMREFEIIWVTKHILKGLDFLHSKKVIHHDIKPSNIV
FMSTKAVLVDFGLSVKMTEDVYLPKDLRGTEIYMSPEVILCRGHSTKADIY
SLGATLIHMQTGTPPWVKRYPRSAYPSYLYITHKQAPPLEDIAGDCSPGMRELI
EAALERNPNHRPKAADLLKHEALNPPREDQPRCQSLDSALFERKRLLSRKEL
QLPENIADSSCTGSTEESEVLRRQRSLYIDLGALAGYFNIVRGPPTLEYG

Conclusion

Mutations in Proto-oncogene are the leading causes of
cancer because of exposure to a mutagen. Proto-oncogene
proteins are formed when Proto-oncogene are translated.
These proteins function as a biomarker for cancer
susceptibility. The proposed approach offers a reliable in-
silico method for detecting such proteins. The suggested
method incorporates all of the suggestions from the state
of the art to create a computationally intelligent predictor.
The features of a two-dimensional representation of the key
structure of proteins, such as Statistical Moment Calculation
(raw, central, and Hahn), Position Relative Incidence
Matrix, Frequency Vector Determination, Absolute Position
Incidence Vector and Deep RNN features, are gathered to
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