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Abstract

In the modern world, the widespread use of information and communication technology has led to the accumulation of
vast and diverse quantities of data, commonly known as Big Data. This necessitates the need for novel concepts and
analytical techniques to help individuals extract meaningful insights from rapidly increasing volumes of digital data.
Clustering is a fundamental approach used in data mining to retrieve valuable information. Although a wide range of
clustering methods have been described and implemented in various fields, the sheer variety complicates the task of
keeping up with the latest advancements in the field. This research aims to provide a comprehensive evaluation of the
clustering algorithms developed for Big Data highlighting their various features. The study also conducts empirical
evaluations on six large datasets, using several validity metrics and computing time to assess the performance of the
clustering methods under consideration.
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AHHOTALUA

B coBpeMeHHOM MHUpe MIHUPOKOE UCIIONB30BaHUE HHPOPMAIMOHHBIX 1 KOMMYHUKAIIMOHHBIX TEXHOJIOTUH MPUBEIO
K HaKOIUICHUIO OTPOMHBIX H Pa3HOOOpa3HBIX 00BEMOB JAHHBIX, IIMPOKO U3BECTHBIX KaK OOJNBIINE JaHHBIE. DTO
00yclaBIuBaeT MOTPEOHOCTh B HOBBIX KOHIICHIIMSAX W aHAJIUTUYCCKUX METOAaX, KOTOPhIC MOMOTAIOT U3BJICKATh
Ba)KHBIC HJICH U3 OBICTPO pacTymux 00beMOB MUMPOBHIX MaHHBIX. Kimactepuzanus — GyHIaMEHTAIbHBIN MOAXO,
UCIIONB3yeMbIi B MHTEIJUICKTYaJIbHOM aHaJIM3€ JaHHBIX JUIs M3BJICUeHUs! IeHHO# uHpopmanun. HecMoTpst Ha TO, 4TO B
Pa3IUYHBIX 00MACTSAX OMHCAHO U PEATM30BaHO MHOXKECTBO METO/IOB KIIaCTEPU3AINH, JaHHOE PasHOO0pasue yCIoKHIET
3a[a4y OTCIICKUBAHUS MMOCIETHIX TOCTIKEHUI B 00macT O0NbIInX AJaHHBIX. PaboTa HampaBieHa Ha BCECTOPOHHIOO
OLIEHKY aJITOPUTMOB KJIACTEPHU3AINH, Pa3paO0oTaHHbBIX I OONBIINX TAHHBIX, C BEIACICHAEM UX PA3IMIHBIX (QYHKIUHA.
BrImonHe bl SMIIHpHYECKHE OLIEHKH MIECTH OONBIINX HAOOPOB JaHHBIX C UCIIOIB30BAaHHEM HECKOJBKHX IOKa3aTeNeit
JIOCTOBEPHOCTHU U BPEMEHU BBIUMCIICHUH JUIsl OLIEHKU IMPOU3BOAUTENILHOCTH PACCMaTPUBAEMBIX METOJIOB KJIACTEPU3ALIIH.

KiioueBrble c10Ba
OonpIue JAaHHBIC, KIACTCPHU3alUsl, HHTCIUICKTYAIbHBI aHAIN3 JaHHBIX, SMIUPUUYCCKUE OICHKHU, MOKA3aTeIIH
TPOU3BOAUTEIBHOCTH
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Introduction

The advent of Artificial Intelligence, Mobile Internet,
Social Networks, and the Internet of Things has led to an
explosion in data production, leading to the rapid growth
of large data applications. However, conventional data
processing approaches are insufficient to cope with the
vast and complex nature of big data. As a result, analyzing
this massive volume of data has become the greatest
challenge for researchers and scientists, making big data
one of the most relevant topics in computer science today.
Furthermore, data volume is not the only challenge in big
data analytics, as there are seven core problems, commonly
known as the seven V’s, in managing massive data [1]:

Volume: Big data refers to extremely large datasets
which can range from terabytes to petabytes and beyond.

Velocity: Big data is generated and updated in real-
time, often at high speed, which can pose challenges for
storage, processing, and analysis.

Variety: Big data comes from a variety of sources,
including structured, semi-structured, and unstructured
data, such as social media, text, images, video, and sensor
data.

Veracity: Big data can be noisy, uncertain, and
inconsistent due to errors, biases, and data quality issues.
Veracity refers to the accuracy and reliability of the data.

Value: The ultimate goal of big data is to extract
insights and value from the data, such as identifying
patterns, making predictions, and improving decision-
making.

Variability: Big data is subject to changes over time,
which can affect its meaning and relevance. Variability
refers to the extent to which the data changes over time.

Visualization: Big data can be challenging to interpret
and understand, which is why visualization tools and
techniques are essential for making sense of the data and
communicating insights to stakeholders.

Effective methods for information discovery are
crucial to deal with the massive amount of data produced
by the latest technological advancements. Data mining
approaches, such as clustering, are well-suited for
this task. Clustering is a fundamental process in data
mining applications that groups together similar data

points while separating unrelated ones, with the goal of
optimizing similarities and reducing differences among
different clusters [2]. Unlike classification, clustering
is an unsupervised activity in machine learning, where
data points with unknown class labels are used to learn
a classification model. Due to its unsupervised nature,
clustering is considered one of the most challenging tasks
in machine learning, with different algorithms proposed
by researchers leading to varying clustering outcomes.
Additionally, the presentation sequence of data points and
the selection of parameters can significantly impact the
final partition using the same clustering algorithm [3].
Despite a wide range of reviews and comparative research
on clustering techniques, the exploration of algorithms
that can efficiently cluster large datasets remains an open
challenge. Thus, the primary objective of this study is to
provide a comprehensive review of clustering algorithms
for massive datasets. To achieve this objective, we first
analyze and evaluate five classified classes of clustering
algorithms including model-based algorithms, partitioning,
hierarchical, grid, and density. Second, we conduct accurate
comparisons of the studied algorithms testing them on
real datasets in terms of clustering criteria and big data
characteristics.

Types of Clustering Algorithms

Due to the vast number of clustering algorithms
available, this section presents a classification framework
that categorizes the numerous clustering methods prevalent
in the literature. As depicted in Fig. 1, clustering techniques
can be classified into five types: Hierarchical, Partitioning,
Model-based, Grid-based, and Density-based clustering.

In this study, we evaluated several clustering algorithms
to determine their suitability for our dataset. Each algorithm
has its own strengths and weaknesses, and it is important to
understand these characteristics in order to select the most
appropriate method for a given application. To summarize
the benefits, drawbacks, and important aspects of different
clustering algorithms, please refer to Tables 1 and 2 for
a comprehensive overview of the clustering techniques
and their corresponding characteristics. In Table 2,
several symbols are used to represent key characteristics

Hierarchical-Based |—|

BIRCH, A-BIRCH, ROCK, CURE, Chamelon

Partitioning-Based |—|

k-means, Uk-means, CLARA, CLARANS, PAM

Model-Based |—|

SOM, S-SOM, EM, COBWEB, CLASSIT

Density-Based

|—| SCAN, Ada-DBSCAN, DENCLUE, OPTICS, SUBCLU

Custering Categories
B N IR IR R

Grid-Based |—|

CLIQUE, OptiGrid, MAFIA, STING, NRI |

Fig. 1. Categorization of clustering techniques for big datasets
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Table 1. The benefits and drawbacks of the different clustering types [2]

Categories Benefits Drawbacks
Hierarchical 1) It can be useful for exploring the structure of the data | 1) It can be computationally expensive and slow for
Algorithms and identifying patterns. large datasets.

beforehand.

2) It does not require specifying the number of clusters

2) It may not work well with high-dimensional data.

Partitioning
Algorithms

1) It is fast and efficient for large datasets.
2) It can handle high-dimensional data.

1) It may require specifying the number of clusters
beforehand, which can be difficult.

2) It may not work well with non-linearly separable
data.

Model-based
Algorithms

1) It can handle complex data distributions.

2) It can estimate the number of clusters automatically.

1) It can be computationally expensive for large
datasets.
2) It may be sensitive to initialization.

Density-based

1) It can handle data with arbitrary shapes and sizes

1) It can be computationally expensive for large

Algorithms of clusters. datasets.
2) It can detect noise and outliers. 2) It may require setting a threshold for density, which
can be difficult.
Grid-based 1) It can handle large datasets efficiently. 1) It may require specifying the size and shape of the
Algorithms 2) It can identify clusters of varying sizes and shapes. | grid.

2) It may not work well with high-dimensional data.

and complexities of different clustering algorithms. The
symbol n refers to the input data size. The symbol &
typically stands for the number of clusters, and d signifies
the dimensionality of the data. Additionally, m represents a
specific algorithm-related parameter, p denotes algorithmic
parameters. For further details and references, you can refer
to the sources mentioned in the table.

Hierarchical clustering

Hierarchical clustering [4] is a cluster analysis technique
that utilizes either agglomerative or divisive algorithms
to construct a cluster hierarchy. In the agglomerative
algorithm, each item is treated as a cluster, and the clusters
are eventually merged (bottom-up). Conversely, the
divisive process starts with a single cluster containing all
objects and separates it into individual clusters (top-down)
by adding one object at a time. Generally, hierarchical
algorithms have lower quality since they cannot adjust the
clusters after merging in the merging method or dividing
in the divisive method. To address this issue, hierarchical
algorithms are often combined with another algorithm
in a hybrid clustering technique. Popular algorithms of
this clustering type include BIRCH [5], CURE [6] and
ROCK [7]. A-BIRCH [8] is a recent method for the
BIRCH clustering algorithm [5] that automates threshold
estimates.

Partitioning-based clustering

A partitioning clustering method is designed to divide
a set of n unlabeled objects into k& groups, with at least
one object in each group. K-means [9] is a commonly
used algorithm for partitioning clustering, each cluster
is represented by a prototype which is the average value
of the elements in the cluster. The main idea behind
the k-means algorithm is to minimize the cumulative
distance between objects and their cluster prototypes. In
the k-means procedure, the prototype is determined as
the mean vector of the cluster elements. Another variant
of the k-means algorithm is the Uk-means [10] which
determines the optimal number of clusters without any
initialization or parameter selection. The Partitioning

around Medoids (PAM) algorithm [4] is another algorithm
in the partitioning family where the cluster prototype is
selected as one of the closest elements to the center of
the cluster. Additionally, Clustering Large Applications
(CLARA) [11] and Clustering Large Applications based
upon Randomized Search (CLARANS) [12] are improved
versions of the k-Medoid algorithm for spatial database
mining. [F-CLARANS [13] aims to incorporate the concept
of intuitionistic fuzzy sets into the CLARANS algorithm to
handle ambiguity in large dataset mining.

Model based clustering

In these clustering approaches, the data set is segregated
into theoretical models such as mathematics and statistical
distribution. The probability distribution, as a mathematical
framework, is used in this clustering algorithm for
optimization purposes. Although this algorithm is suitable
for creating a new model using an existing model to better
represent the data, it is time-consuming, and the model
parameters significantly impact the clustering outcome.
Among the most renowned clustering algorithms in this
category are EM [14], COBWEB [15], CLASSIT [16], Self-
Organizing Map (SOM) [17]. Smoothed SOM (S-SOM)
[18] is a novel SOM variant that improves the regular
SOM vector quantification and grouping capabilities when
dealing with outliers.

Density based clustering

Density-based clustering is founded upon the concept
of density where clusters are formed in dense regions
that are separated from other areas. The primary idea is
to progressively introduce concepts until the neighboring
cluster density surpasses a certain threshold or limit.
DBSCAN [19] is one of the most well-known density-
based algorithms which defines a cluster as a group of
densely connected points. Ada-DBSCAN [20] is a novel
adaptive density-based spatial clustering method that
integrates a data block merger and division under control.
OPTICS [21] is another density-based technique that
addresses the challenge of identifying significant clusters in
data with varying densities. DENCLUE [22] is a renowned
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density-based clustering method that represents the overall
density of a set of points as the sum of each point influence
functions. SUBCLU [23] is another member of the density-
based family which builds upon DBSCAN and adopts the
notion of density-connected clusters.

Grid based clustering

Grid-based clustering methods involve dividing
the data space into hierarchical structures composed of
rectangular spaces. The fundamental idea behind this
technique is to transform the original data space into a
grid format that determines the clustering size. Although
this algorithm is highly scalable and suitable for low
time complexity parallel processing, it compromises the
quality and accuracy of clusters and is vulnerable to high
granularity. Common algorithms in this category include
Statistic Information Grid Approach (STING) [24],
CLIQUE [25], OptiGrid [26], and MAFIA [5]. NRI [27]
is a novel grid-based clustering approach that employs an
intuitive neighbor relationship to enhance data clustering
efficiency.

Clustering Evaluation Indices

In the context of unsupervised learning methods,
various performance measurements were required. This
section focuses on elucidating the metrics employed for
evaluating performance. Initially, in order to streamline
and condense the section related to Cluster Validity Indices
(CVlIs), we establish the overarching notation employed
throughout this research. Additionally, we introduce
specific notations utilized to elucidate various indices [29].

Notation

Let X be a dataset comprising N objects
represented as vectors in an F-dimensional space:
X={x|, X5, ..., x5} € RF. A clustering or partition
clustering in X refers to a collection of disjoint clusters
that effectively divides X into K groups: C= {cy, c, ..., ¢}
where the union of all ¢, in C is equal to X, and ¢,
intersected with ¢; is an empty set for any k # /. The
centroid of a cluster ¢ is determined by its mean vector,
denoted as ¢; = 1/|c;] 2 x;. Similarly, the centroid of the

X;€Cl
entire dataset X is calculated as the mean vector of all data
points, represented by X=1/N 2. x;.
x;€X

To quantify the distance between objects x; and x;, we
will use the Euclidean distance, denoted as d,(x;, x;). In
particular, the Point Symmetry-Distance [30] between the
object x; and the cluster ¢, is defined as:

dp(xi, €) = 123 min(2)y e {d(20,— x5 ). (1)

The point 2¢;, — x; referred to as the symmetric point of
x; with respect to the centroid of ¢;. The function ) min can
be understood as a modified version of the min function,
where Y min(#n) calculates the sum of the n lowest values
among its arguments. Similarly, we can define the ) max
function as a variation of the max function. Lastly, let’s
introduce the notation n,,, as it is utilized by several indices.
n,, represents the count of object pairs within a partition

that belong to the same cluster, given by n,,=>¢c;, € C g" .

Definitions of Evaluation Indices

In the context of clustering, it is important to have
suitable internal evaluation indices for comparing different
clustering algorithms. These internal indices are specifically
designed to assess the quality of clustering solutions when
the true clustering is unknown. They provide measures
based on the structural characteristics of the clusters,
allowing us to evaluate the consistency and effectiveness
of the clustering algorithms. Therefore, in this context, we
will present the definitions of several internal evaluation
indices, including the Dunn (D) index, Calinski-Harabasz
(CH) index, Davies-Bouldin (DB) index, Silhouette (Sil)
index, and Negentropy Increment (NI) index [29]. These
indices will be used to compare and assess the performance
of different clustering approaches.

Dunn index. The D index evaluates both the
compactness and separation of individual clusters [31]. It
measures the inter-cluster distances (separation) relative
to the intra-cluster distances (compactness). The index is
calculated using the following equation

min {min {8(cs c,)}}

ceC | ceCley
D= ek (A} @
creC
where
d(cy, €)= min min {d (x;, x;)}, 3)
X;€ck x€C)
Alcp) = max {d,(x; x)}. 4)
xi,xj Cl

The variable c; represents a specific cluster within the
set C being evaluated. 6 measures the minimum distance
between points in different clusters ¢, and ¢, reflecting
their separation. Conversely, A computes the maximum
distance between points within a single cluster ¢, indicating
its internal compactness. A higher D index value indicates
better clustering, with more distinct and compact clusters.

Calinski-Harabasz index. The CH index is recognized
as a variance ratio metric where the validity function of a
cluster is based on the average of the sum of the squared
distances between clusters and between elements within the
cluster [32]. It aims to determine the dispersion of elements
within their cluster and the distance from other clusters.

(N=K) 2 |eddd(ci, X)

ceC

CHO=&K"1) 3 ¥ diwma)

ceC x€cy

A higher CH index value indicates better clustering,
with more compact and well-separated clusters.

Davies-Bouldin index [33]. This metric measures
the compactness and separation of clusters by calculating
the average similarity between each cluster and its most
similar neighboring cluster, while considering the distance
between cluster centroids. The DB index aims to minimize
intra-cluster dissimilarity and maximize inter-cluster
dissimilarity.

1
DB(C)=—> max
cx€C cieCey,

S(er) + 8(e)
dfci, ¢) )
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The variable S denotes the average similarity of data
points within a cluster to its centroid, and it’s calculated
as follows:

S(ep) = Ve X do(x;, )
Xi€Ck
A lower DB index value indicates better clustering, with
more distinct and well-separated clusters.
The Silhouette index is a normalized summation-type
index. It evaluates the cohesion of a cluster by measuring
the distance between all the points within the cluster, and

the separation is based on the nearest neighbor distance.
The Sil index is defined as follows:

b(x;, c) — a(x;, cx)

Sil(C)=1/N ,
© ckZE:C xlgck max{a(x; c),b(x;, cx)}
where a represents a data points average cohesion within
its cluster, gauging its proximity to other cluster members.
Meanwhile, b computes a data point average separation
from the nearest neighboring cluster, highlighting its
distinctiveness. These calculations are performed as
follows:
a(xﬁ Ck) = 1/|ck| Z de(xi’ xj)’
Xj€c;
b(x;, ¢;) = min {1/|ci| > d(x;, xj)}.
cieC\ey Xi€cy

The Sil index ranges from —1 to 1, with higher values
indicating better clustering outcomes.

Negentropy increment index. This index is based on
cluster normality estimation. It is not reliant on cohesion and
separation measures. The index quantifies the improvement
in cluster organization and randomness reduction
achieved by a clustering algorithm. It is defined as:

NIC) =172 ¥, pleploglSeyl — 1/2logTX] -

CkGC

- 2 p(cplogp(p(cy)),

CkEC

where p(c;) = |cil/N, Y.c; represents the covariance matrix
of cluster ¢, Y’ X represents the covariance matrix of the
whole dataset, and [} denotes the determinant of a
covariance matrix. Although the authors initially proposed
the index as defined above, they later suggested a correction
due to unsatisfactory results obtained. However, for the
purposes of this work, we will use the index in its original
form since the correction does not meet the CVI selection
criterion used. Lower NI values indicate superior clustering
solutions.

Candidate Clustering Algorithms

The objective of this section is to identify successful
candidate clustering algorithms for large datasets of each
algorithm type listed in Table 1. Our selection process
was based on the properties outlined in Table 2, with a
focus on algorithms that satisfy most of the seven big data
property criteria. In order to gauge the suitability of each
algorithm, we referred to Table 2, which offers an outline
of the evaluations conducted using diverse methodologies
as specified earlier, and in accordance with the criteria

provided. We also considered several studies that have
effectively compared multiple modern clustering algorithms
for large datasets [34, 35]. It is crucial to note that our aim
is to compare algorithms of each type to determine their
efficacy for clustering large datasets. Within the same type,
we will only select the most appropriate algorithm based on
the specified criteria. Consequently, we have selected the
following algorithms: A-BIRCH [8], Ada-DBSCAN [20],
S-SOM [18], NRI [27], and Uk-means [10]. In this section,
we will discuss each chosen algorithm in detail, including
its operation, advantages and disadvantages, and required
input variables.

A-BIRCH Algorithm

The BIRCH algorithm utilizes a tree structure to create
a dendrogram which is known as a clustering feature tree
(CF tree) [28]. The CF tree is created by dynamically
scanning the dataset and does not require the entire dataset
in advance. It involves two key steps: first, scanning the
database to create a memory tree, and second, grouping
the leaf nodes using a specified threshold (7)) and branching
factor (B) criteria to create a high balanced CF tree. As the
data is scanned, the CF tree is traversed and the nearest
node is selected at each level. If the nearest leaf cluster is
identified for the data point, a test is conducted to check
if the data point belongs to the candidate cluster. If not,
a new cluster is created with a diameter greater than the
specified 7. The BIRCH algorithm is efficient in handling
noise and can find suitable clustering with a single dataset
scan and further enhance the quality with a few more scans.
However, to ensure satisfactory clustering performance,
BIRCH requires both the cluster count and the threshold T
to correctly measure the clusters.

A-BIRCH is a newer version of the BIRCH clustering
algorithm that automatically estimates the threshold
value required for clustering. This approach calculates
the optimum threshold variable from the data, enabling
A-BIRCH to perform clustering without the global
clustering phase which is typically the final phase of
BIRCH. A-BIRCH can determine if the data satisfies
the necessary constraints and will provide an alert if the
constraints are not met. This approach eliminates the need
to know the number of clusters ahead of time and can
improve the efficiency of the BIRCH algorithm by avoiding
the computationally expensive final clustering phase (see
A-BIRCH pseudocode).

A-BIRCH pseudocode
Input: N two-dimensional data points {X;}, k..., branching

factor Br, number of Monte Carlo iterations B, distance
metric D.
Output: CF-tree
Begin
k* < parallel Gap Statistic (subsample ({X;}), &,
B)
labels «<— k-means (subsample({X;}), £*)
Calculate the minimum value of D,;,, and the shared
radius R based on the clustered data
if (Dppin < 6 X R) then
Warning: The result of BIRCH may be imprecise —
clusters are too close
end if

ax?
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T+ (1/4) Dy, + 0.7 X R
CF-tree «— tree-BIRCH ({X;}, Br, distance metric
D, 7).

End.

Ada-DBSCAN Algorithm

Adaptive Density-based Spatial Clustering of
Applications with Noise (Ada-DBSCAN) addresses the
issue of linear connections in DBSCAN and other density-
based clustering algorithms, while also optimizing the
parameter settings and performance of DBSCAN when
applied to large datasets. Ada-DBSCAN achieves this by
first using the data block splitter to divide the data points
into a collection of data blocks in a top-down approach,
followed by performing local clustering within each data
block. To obtain the final clustering results, Ada-DBSCAN
employs a bottom-up global clustering procedure, where
the data block merger plays a critical sub-component
role. The Ada-DBSCAN method is comprised of four
primary modules, as demonstrated in the Ada-DBSCAN
pseudocode: (1) data block splitter, (2) local clustering, (3)
global clustering, and (4) data block merger. For further
information on each proposed module in Ada-DBSCAN,
refer to [20].

Ada-DBSCAN pseudocode
Input: a dataset D

Output: a set of clusters C
Step 1. Hierarchically divide the dataset D into a set
of data blocks that ensure uniform distribution of the
data points within each block.
Step 2. Group the data points into blocks based on
the concept of uniform data distribution.
Step 3. Apply local density-based clustering to each
block.
Step 4. Merge the resulting local clusters to obtain
the final clustering results. This is also known as the
global clustering process.
Step 5. Merging data block (used during global
clustering for merging each two data blocks)

Smoothed self-organizing map (S-SOM)

The SOM operates as a network comprising P neurons
arranged in a one- or two-dimensional layout. This network
is designed to map a collection of 7 input vectors, each
possessing a dimensionality of J. Every neuron within the
SOM possesses a scalar vector r, representing its location
on the map. Additionally, each neuron is equipped with
an initial J-dimensional codebook denoted as p, which
aligns in size with the input vectors. The process of SOM
learning occurs across S phases during which a randomly
selected input vector £,(s) is compared to the codebooks
using a designated metric. The neuron that emerges as the
winner labeled as ¢ = c(i) or the best matching unit bmu is
chosen from the i input vector. This selection is based on
the proximity of the neuron weight vector p, to the input
vector &,(s).

The S-SOM [17] is an improved version of the SOM
that enhances input density mapping, vector quantization,
and clustering properties in the presence of outliers. The
S-SOM achieves this by upgrading the learning rule to

smooth the representation of outlying input vectors onto
the map. This is done by taking into account the additional
exponential distance between the input vector and its closest
codebook during the SOM learning rule. The smoothing
factor is then obtained for all neurons in the neighborhood
of the best matching unit, using the additional exponential
distance d,(x;, x;). This approach makes the S-SOM more
robust in the presence of outliers.

exp(xi X)) = 1 = (1 = exp{-Pllx; - x][*}) 2,

i -1
where p = (Z 15 )_Cq||2/l) is calculated as the inverse of
i=1

the overall variance of the data available.
The upgraded learning rule of S-SOM is:

w(s +1)=
_ { A(s)h, (5)E(s) + [1 = a(s)h, ($)lw,(s) if p €N,

W,(s) otherwise

)

>

where &,(s) is the i*" input vector and the smoothed learning
rate (s) = ol(s)(dexp (1), E(5))) satisfies 0 < a(s) < 1 since
1 restricts the exponential distance. For further details
about this clustering method, please refer to [18]. S-SOM
pseudocode illustrates the detailed steps of S-SOM
approach.

S-SOM pseudocode
Step 0. Fix the topology of the map to one or two

dimensions (linear) (rectangular), the number of neurons
P (map size), the neighborhood function 4, (s), the learning
rate d(s) and the number of iterations limit (S). Randomly
generate the weights p,(0),p=1, ..., P.

Step 1. Choose an input vector that will update the map
at step s, &(s). Using the euclidean distance, determine c,
the nearest neuron to §(s). Update the weights p, using
equation (5).

Step 2. Update a(s), and A, (s).

Step 3. If the number of iteration s = S stops the algorithm,
otherwise go to Step 1.

NRI Algorithm

The NRI algorithm [27] is a grid-based clustering
technique that improves upon traditional approaches. The
algorithm partitions space into grids, labeling each as
‘valid’ or ‘invalid’ based on whether it contains a minimum
number of parameter points. The continuous ‘valid’ grids
are then merged into a single cluster. The algorithm also
examines adjacent grids to determine whether they should
be grouped into the same cluster or classified as a new
one. If the neighbor has multiple clusters, they are merged
into a single cluster. While the NRI algorithm follows
a traditional grid-based clustering strategy, it includes a
simple yet unique extension scheme. To better understand
the NRI algorithm steps, refer to its pseudocode.

NRI pseudocode
Step 0. Enter datasets and initialize all arguments.

Step 1. Utilize the DataSize parameter to partition the data
space into grid-like structures. ||grids||=Grids*Grids.
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Step 2. Find all the grids sequentially.

Step 3. Grids are categorized as “valid” or “invalid”
depending on whether they contain at least the specified
minimum number of parameter points.

Step 4. Grids that are continuously “valid” are grouped
into one cluster.

Step 5. If adjacent grids are successfully clustered together,
they are classified as belonging to the same cluster. If not,
they may be designated as a new cluster.

Step 6. If there are multiple clusters in the neighborhood,
merge them into a single cluster.

Uk-means Algorithm

Uk-means [10] is a new unsupervised classification
version for the k-means process that requires no
initializations and the optimum number of clusters can also
be selected simultaneously using the entropy concept. Let
X={xj, ..., x,} be a dataset in a d-dimensional Euclidian
space RY. Let A= {ay, ..., a,} be the ¢ cluster. Let Z=[z;],,xc»
where z;; is a binary variable (i.e z;; €{0, 1}) showing if x;
relates to k% cluster, k=1, ..., c. The unsupervised k-means
algorithm (Uk-means) suggest a modified objective
function as seen below:
n c
> Yzl - ag P
i=1k=1

n C
-y X zylnoy,
=1 k=1

c
Jukmy(Z; 4, 0) = =B, 2 oyInoy —
k=1

where:
Y = <1250 (6)
And
14 1 n
Y exp(-naldf - af’) 1-max (— > z,-A>
k=1 I<k<e \ M i=1
B(I-H) = . (7)

— maxay’ ( > Ino (t))

1<k=c k=1

The variable 1 controls cluster center adjustments
based on a; updates, with larger values indicating more
significant changes. y regulates entropy impact via a
computed coefficient, reducing as iterations increase,
thus modulating the influence of entropy on the algorithm
objective function.

The cluster center o, updating equation is as follows:

n n
Oy = zzikxij/zzik'
i=1 i=1

The updating equation for the variables membership
zy. is as follows:

(1 il ag P~ vine ©
i Ix; — a; ||> — yIno, 0 otherwise”

The cluster number is updated automatically as
described below:

Uk-means pseudocode

Step 0. Fix ¥ > 0. ¢(0) = n, o

n, (xk) = 1/n, a(o) = X

Y(0)=B(0) = 1, Set = 0.
Step 1. Calculate zl(,tC ) employing agc), ), YO, B using
equation (9).

Step 2. Calculate y(fﬂ) usm% e(;uatlon (6).
Step 3. Update ak ) with Wi and ak using (10).
Step 4. Calculate D with a1 and o using equation (7).
Step 5. Update c(*D to ¢ by discard those clusters with

atD) < 1/n and adjust o¢*D and p;; 1

IF > 60 and ¢(-00) — (0 = 0. THEN let B+D =
Step 6. Update agc D , with ¢t and 2! k by equation (8)
Step 7. Com are ak and kt

IF ||a —ak || <¢. THEN Stop.

ELSE t=t+ 1 and return to Step 2.

The variable ¢ signifies the current count of clusters
during the algorithm’s iteration. n represents the total
number of data points within the dataset. £ stands as the
cluster index, taking values from 1 to c. The term x; denotes
a specific data point within the dataset. # symbolizes the
current iteration or step of the algorithm. Lastly, € is a small
threshold value that plays a role in determining the stopping
condition of the algorithm.

Experimental Evaluation

In Types of Clustering Algorithms, we analyzed
the practical aspects of well-known algorithms used for
clustering big data. In this section, we aim to evaluate their
performance on a clustering benchmark dataset to provide
empirical evidence. For this evaluation, we have selected
the most prominent and modern algorithms from each
category, including A-BIRCH [8], Ada-DBSCAN [20],
S-SOM [18], NRI [27], and Uk-means [10].

Experimental environments

We employed the MATLAB application as the chosen
tool to generate clusters for all experiments. The machine
used for these tests possesses the following technical
specifications: an AMD Ryzen 9 processor, 32 GB of
memory, and a 1 TB hard disk, running on Windows 10.
To ensure reliable results, each experiment was conducted
10 times, and the average values from the experimental
findings were utilized.

Experimental datasets

We utilized six popular datasets, sourced from the
OpenML [36] and UCI [37] Machine Learning Repository,
to investigate the performance of different clustering
techniques. The datasets include Baseball, Anuran Calls,
Japanese Vowel, Digits, Codon usage, and Fashion MNIST.
For effective evaluation, all variables/attributes from these
datasets were used simultaneously. Table 3 provides key
details of the five real datasets utilized in our study, and for
further information about the datasets, please refer to [36, 37].

) = (o) _‘{agﬂ) < l’ k=1,.. c(f)}, ) Results .and Qiscussions .
n Firstly, in this paragraph, we compare the clustering
where: results using well-known internal evaluation indices
(t+1) n n (Fig. 2). Subsequently, we evaluate the selected clustering
; lkxijgi Zike (10) algorithms in terms of their runtime performance.
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Table 3. Summary of Datasets

Dataset Dataset size # dimensions # clusters
Baseball 1340 18 3
Anuran Calls 7195 22 4
Japanese Vowel 9960 15 9
Digits 10,992 16 10
Codon usage 13,028 69 3
Fashion MNIST 70,000 784 10

Dunn index |

Calinski-Harabasz index

Internal indices

|_

Evaluation measures

Davies-Bouldin index

Silhouette index

Negentropy increment

L1

Run-time

_|

Fig. 2. Evaluation measures used in the current comparison

Table 4 displays the results of the D index for different
clustering algorithms across various datasets. Analyzing the
results, it can be observed that Ada-DBSCAN consistently
achieved higher scores compared to the other algorithms
across most datasets. For example, in the “Baseball”
dataset, Ada-DBSCAN obtained a D score of 0.623, while
the other algorithms ranged from 0.394 to 0.597. This
suggests that Ada-DBSCAN is better at creating well-
separated clusters based on the Dunn metric. Similarly, in
the “Digits” dataset, Ada-DBSCAN obtained the highest
D score of 0.741, indicating its ability to generate distinct
and well-separated clusters. The other algorithms scored
lower ranging from 0.471 to 0.643. On the other hand,
NRI consistently achieved lower D scores compared to
the other algorithms across multiple datasets. For instance,
in the “Fashion MNIST” dataset, NRI scored 0.449 while
the other algorithms ranged from 0.322 to 0.439. This
suggests that NRI may struggle in creating highly separated
clusters according to the Dunn metric. Overall, the results
indicate that Ada-DBSCAN shows better performance in

terms of creating well-separated clusters based on the D
metric, while NRI performs relatively poorer. However,
it’s important to consider additional evaluation metrics
and conduct further analysis to gain a comprehensive
understanding of algorithm performance.

The comparison of candidate clustering algorithms
based on the CH index in Table 5 reveals distinct patterns.
The S-SOM algorithm consistently achieved the highest
scores across most datasets, such as scoring 25.634 in the
“Japanese Vowel” dataset compared to the range of 7.395 to
17.342 for other algorithms. This highlights S-SOM ability
to generate clusters with superior inter-cluster separation
and reduced intra-cluster dispersion. Ada-DBSCAN also
performed well in several datasets, particularly achieving
a score of 22.248 in the “Codon usage” dataset compared
to the range of 13.445 to 31.624 for other algorithms.
This showcases Ada-DBSCAN effectiveness in producing
clusters with significant separation and compactness. On
the other hand, the NRI algorithm consistently obtained
lower CH scores across most datasets, scoring 1.651

Table 4. Candidate algorithms compared in terms of D index

Datasets Clustering Algorithms
Ada-DBSCAN NRI Uk-means S-SOM A-BIRCH

Baseball 0.623 0.597 0.394 0.527 0.502
Anuran Calls 0.389 0.351 0.384 0.411 0.364
Japanese Vowel 0.617 0.521 0.459 0.582 0.510

Digits 0.741 0.588 0.471 0.643 0.527
Codon usage 0.556 0.463 0.394 0.571 0.514
Fashion MNIST 0.412 0.449 0.322 0.439 0.401
Average 0.556 0.494 0.404 0.528 0.469
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Table 5. Candidate algorithms compared in terms of CH index

Datasets Clustering Algorithms
Ada-DBSCAN NRI Uk-means S-SOM A-BIRCH
Baseball 18.364 9.328 17.366 21.450 13.624
Anuran Calls 1.260 1.651 2.514 2.315 1.110
Japanese Vowel 16.927 8.442 17.342 25.634 7.395
Digits 12.388 5.327 8.369 18.941 4.521
Codon usage 22.248 13.445 19.301 31.624 16.692
Fashion MNIST 17.392 8.661 12.847 19.214 11.363
Average 14.763 7.809 12.956 19.863 9.117

in the “Anuran Calls” dataset compared to the range of
1.110 to 2.514 for other algorithms indicating challenges
in generating well-separated and compact clusters.
Overall, S-SOM and Ada-DBSCAN demonstrated strong
performance based on the CH index, while NRI exhibited
relatively lower performance in terms of clustering quality.

Table 6 compares candidate clustering algorithms based
on the DB index. The results reveal that Ada-DBSCAN
achieved the lowest DB scores in the Digits (0.835) and
Anuran Calls (4.985) datasets, indicating superior cluster
quality. However, all algorithms struggled with the Fashion
MNIST dataset which had the highest DB scores. On
average, Ada-DBSCAN and NRI obtained lower DB scores
(3.374 and 4.992, respectively) suggesting better clustering
performance. In contrast, Uk-means and A-BIRCH
had higher DB scores (5.876 and 5.402, respectively)
indicating room for improvement. Consideration of dataset

characteristics is crucial for selecting the most suitable
algorithm for optimal clustering outcomes.

Table 7 presents the results of the candidate algorithms
compared using the Sil index for various datasets. The
scores indicate the clustering quality with higher values
indicating better cluster cohesion and separation. Among
the algorithms, Ada-DBSCAN consistently obtained high
scores across most datasets, ranging from 0.556 to 0.741.
NRI generally had lower scores, ranging from 0.351 to
0.597, suggesting suboptimal cluster formation. Uk-means,
S-SOM, and A-BIRCH achieved moderate scores across the
datasets. The average Sil index values for the algorithms
were approximately 0.553 for Ada-DBSCAN, 0.494 for
NRI, 0.413 for Uk-means, 0.529 for S-SOM, and 0.457 for
A-BIRCH. These results indicate that Ada-DBSCAN and
S-SOM exhibited relatively better clustering performance
compared to NRI, Uk-means, and A-BIRCH.

Table 6. Candidate algorithms compared in terms of DB index

Datasets Clustering Algorithms
Ada-DBSCAN NRI Uk-means S-SOM A-BIRCH
Baseball 2.671 3.981 5.218 3312 4.356
Anuran Calls 4.985 6.517 7.324 4.327 6.558
Japanese Vowel 1.364 3.951 5.327 3.248 4.582
Digits 0.835 3.827 4.637 2.214 4.139
Codon usage 3.976 4.296 4.397 3.384 5.327
Fashion MNIST 6.415 7.384 8.358 6.971 7.452
Average 3.374 4.992 5.876 3.909 5.402
Table 7. Candidate algorithms compared in terms of Sil index
Datasets Clustering Algorithms
Ada-DBSCAN NRI Uk-means S-SOM A-BIRCH
Baseball 0.623 0.597 0.394 0.527 0.502
Anuran Calls 0.389 0.351 0.384 0.411 0.364
Japanese Vowel 0.617 0.521 0.459 0.582 0.510
Digits 0.741 0.588 0.471 0.643 0.527
Codon usage 0.556 0.463 0.394 0.571 0.415
Fashion MNIST 0.412 0.449 0.322 0.439 0.401
Average 0.553 0.494 0.413 0.529 0.457
976 Hay4HO-TeXHNYeCKNin BECTHUK MHPOPMALMOHHbBIX TEXHOOMMIA, MEXaHWKKN 1 onTukn, 2023, Tom 23, N2 5

Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 5



H. Shili

The analysis of the candidate clustering algorithms
based on the NI in Table 8 reveals distinct trends: across
most datasets, the S-SOM algorithm consistently achieved
the highest NI scores, ranging from 0.582 to 0.521 for
the other algorithms. This highlights S-SOM exceptional
ability to reduce entropy and significantly improve the
quality of clustering results. Similarly, Ada-DBSCAN
demonstrated notable performance, obtaining relatively
high NI scores in multiple datasets ranging from 0.741 to
0.471 for the other algorithms. This signifies Ada-DBSCAN
effectiveness in reducing entropy and enhancing the purity
of clusters. Conversely, the NRI algorithm consistently
obtained lower NI scores compared to the other algorithms
with a range of 0.457 to 0.623 for the alternative methods.
This indicates challenges in achieving substantial NI and
improving clustering performance using NRI. In summary,
the results clearly indicate that S-SOM and Ada-DBSCAN
exhibit impressive performance in terms of increasing
Negentropy and improving clustering quality, while NRI
lags behind in terms of NI.

The analysis of the runtime results presented in Table 9
comparing candidate clustering algorithms and revealing
the following insights: S-SOM consistently recorded the
highest runtime across all datasets with durations ranging
from 14.854 to 656.362. This suggests that S-SOM requires
more computational time to perform clustering compared
to other algorithms. Uk-means and A-BIRCH exhibited
relatively lower runtimes compared to S-SOM, with
durations ranging from 0.964 to 82.145 for Uk-means and
from 0.715 to 65.238 for A-BIRCH. This indicates that these
algorithms are generally faster in executing the clustering
process. NRI and Ada-DBSCAN demonstrated the shortest

runtimes across all datasets, with durations ranging from
0.031 to 9.627 for NRI and from 0.015 to 2.130 for Ada-
DBSCAN. These algorithms exhibit superior efficiency in
terms of runtime requiring significantly less computational
time compared to the other algorithms. Overall, the results
suggest that S-SOM is the slowest algorithm in terms of
runtime, while NRI and Ada-DBSCAN are the fastest.

The analysis of the different clustering algorithms
based on multiple evaluation metrics provides valuable
insights into their performance. Ada-DBSCAN consistently
outperformed other algorithms in terms of the D index,
indicating its ability to create well-separated clusters.
Similarly, Ada-DBSCAN and S-SOM showed strong
performance in terms of the CH index indicating their
effectiveness in producing clusters with high inter-
cluster separation and compactness. Ada-DBSCAN also
demonstrated superior performance based on the DB
index, achieving lower scores and indicating better cluster
quality. Moreover, Ada-DBSCAN consistently obtained
high scores in the Sil index, indicating its ability to generate
cohesive and well-separated clusters. In terms of the NI,
S-SOM and Ada-DBSCAN stood out by achieving the
highest scores and improving clustering quality. Finally,
NRI and Ada-DBSCAN exhibited the shortest runtimes
making them more efficient in terms of computational
time compared to other algorithms. These findings suggest
that Ada-DBSCAN consistently performs well across
multiple evaluation metrics, highlighting its potential as
a strong clustering algorithm. However, further analysis
and consideration of additional factors are necessary for
a comprehensive understanding and selection of the most
suitable algorithm for specific clustering tasks.

Table 8. Candidate algorithms compared in terms of Negentropy increment

Datasets Clustering Algorithms
Ada-DBSCAN NRI Uk-means S-SOM A-BIRCH
Baseball 0.623 0.457 0.394 0.527 0.502
Anuran Calls 0.389 0.351 0.384 0.411 0.364
Japanese Vowel 0.617 0.521 0.459 0.582 0.510
Digits 0.741 0.588 0.471 0.643 0.527
Codon usage 0.556 0.463 0.394 0.571 0.415
Fashion MNIST 0.412 0.449 0.322 0.439 0.401
Average 0.553 0.494 0.413 0.529 0.457
Table 9. Candidate algorithms compared in terms of runtime
Datasets Clustering Algorithms
S-SOM Uk-means A-BIRCH NRI Ada-DBSCAN
Baseball 14.854 0.964 0.715 0.031 0.015
Anuran Calls 42.265 3.562 2.149 0.781 0.520
Japanese Vowel 242 .347 21.354 15.378 3.154 1.214
Digits 313.326 29.348 23.641 4.261 1.541
Codon usage 335.197 38.241 29.286 4.157 1.631
Fashion MNIST 656.362 82.145 65.238 9.627 2.130
Average 267.391 29.269 22.734 3.668 1.175
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Conclusion

This paper provides a comprehensive evaluation of

clustering algorithms for Big Data. The study compares
various methods and assesses their performance on large
datasets using validity metrics and computing time. The
findings assist researchers and practitioners in selecting
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