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Abstract
In the modern world, the widespread use of information and communication technology has led to the accumulation of 
vast and diverse quantities of data, commonly known as Big Data. This necessitates the need for novel concepts and 
analytical techniques to help individuals extract meaningful insights from rapidly increasing volumes of digital data. 
Clustering is a fundamental approach used in data mining to retrieve valuable information. Although a wide range of 
clustering methods have been described and implemented in various fields, the sheer variety complicates the task of 
keeping up with the latest advancements in the field. This research aims to provide a comprehensive evaluation of the 
clustering algorithms developed for Big Data highlighting their various features. The study also conducts empirical 
evaluations on six large datasets, using several validity metrics and computing time to assess the performance of the 
clustering methods under consideration.
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Аннотация
В современном мире широкое использование информационных и коммуникационных технологий привело 
к накоплению огромных и разнообразных объемов данных, широко известных как большие данные. Это 
обуславливает потребность в новых концепциях и аналитических методах, которые помогают извлекать 
важные идеи из быстро растущих объемов цифровых данных. Кластеризация — фундаментальный подход, 
используемый в интеллектуальном анализе данных для извлечения ценной информации. Несмотря на то, что в 
различных областях описано и реализовано множество методов кластеризации, данное разнообразие усложняет 
задачу отслеживания последних достижений в области больших данных. Работа направлена на всестороннюю 
оценку алгоритмов кластеризации, разработанных для больших данных, с выделением их различных функций. 
Выполнены эмпирические оценки шести больших наборов данных с использованием нескольких показателей 
достоверности и времени вычислений для оценки производительности рассматриваемых методов кластеризации.
Ключевые слова
большие данные, кластеризация, интеллектуальный анализ данных, эмпирические оценки, показатели 
производительности
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Introduction

The advent of Artificial Intelligence, Mobile Internet, 
Social Networks, and the Internet of Things has led to an 
explosion in data production, leading to the rapid growth 
of large data applications. However, conventional data 
processing approaches are insufficient to cope with the 
vast and complex nature of big data. As a result, analyzing 
this massive volume of data has become the greatest 
challenge for researchers and scientists, making big data 
one of the most relevant topics in computer science today. 
Furthermore, data volume is not the only challenge in big 
data analytics, as there are seven core problems, commonly 
known as the seven V’s, in managing massive data [1]:

Volume: Big data refers to extremely large datasets 
which can range from terabytes to petabytes and beyond.

Velocity: Big data is generated and updated in real-
time, often at high speed, which can pose challenges for 
storage, processing, and analysis.

Variety: Big data comes from a variety of sources, 
including structured, semi-structured, and unstructured 
data, such as social media, text, images, video, and sensor 
data.

Veracity: Big data can be noisy, uncertain, and 
inconsistent due to errors, biases, and data quality issues. 
Veracity refers to the accuracy and reliability of the data.

Value: The ultimate goal of big data is to extract 
insights and value from the data, such as identifying 
patterns, making predictions, and improving decision-
making.

Variability: Big data is subject to changes over time, 
which can affect its meaning and relevance. Variability 
refers to the extent to which the data changes over time.

Visualization: Big data can be challenging to interpret 
and understand, which is why visualization tools and 
techniques are essential for making sense of the data and 
communicating insights to stakeholders.

Effective methods for information discovery are 
crucial to deal with the massive amount of data produced 
by the latest technological advancements. Data mining 
approaches, such as clustering, are well-suited for 
this task. Clustering is a fundamental process in data 
mining applications that groups together similar data 

points while separating unrelated ones, with the goal of 
optimizing similarities and reducing differences among 
different clusters [2]. Unlike classification, clustering 
is an unsupervised activity in machine learning, where 
data points with unknown class labels are used to learn 
a classification model. Due to its unsupervised nature, 
clustering is considered one of the most challenging tasks 
in machine learning, with different algorithms proposed 
by researchers leading to varying clustering outcomes. 
Additionally, the presentation sequence of data points and 
the selection of parameters can significantly impact the 
final partition using the same clustering algorithm [3]. 
Despite a wide range of reviews and comparative research 
on clustering techniques, the exploration of algorithms 
that can efficiently cluster large datasets remains an open 
challenge. Thus, the primary objective of this study is to 
provide a comprehensive review of clustering algorithms 
for massive datasets. To achieve this objective, we first 
analyze and evaluate five classified classes of clustering 
algorithms including model-based algorithms, partitioning, 
hierarchical, grid, and density. Second, we conduct accurate 
comparisons of the studied algorithms testing them on 
real datasets in terms of clustering criteria and big data 
characteristics. 

Types of Clustering Algorithms 

Due to the vast number of clustering algorithms 
available, this section presents a classification framework 
that categorizes the numerous clustering methods prevalent 
in the literature. As depicted in Fig. 1, clustering techniques 
can be classified into five types: Hierarchical, Partitioning, 
Model-based, Grid-based, and Density-based clustering.

In this study, we evaluated several clustering algorithms 
to determine their suitability for our dataset. Each algorithm 
has its own strengths and weaknesses, and it is important to 
understand these characteristics in order to select the most 
appropriate method for a given application. To summarize 
the benefits, drawbacks, and important aspects of different 
clustering algorithms, please refer to Tables 1 and 2 for 
a comprehensive overview of the clustering techniques 
and their corresponding characteristics. In Table 2, 
several symbols are used to represent key characteristics 

Hierarchical-Based

Partitioning-Based

Model-Based

Density-Based

Grid-Based

BIRCH, A-BIRCH, ROCK, CURE, Chamelon

k-means, Uk-means, CLARA, CLARANS, PAM
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Fig. 1. Categorization of clustering techniques for big datasets
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and complexities of different clustering algorithms. The 
symbol n refers to the input data size. The symbol k 
typically stands for the number of clusters, and d signifies 
the dimensionality of the data. Additionally, m represents a 
specific algorithm-related parameter, p denotes algorithmic 
parameters. For further details and references, you can refer 
to the sources mentioned in the table.

Hierarchical clustering
Hierarchical clustering [4] is a cluster analysis technique 

that utilizes either agglomerative or divisive algorithms 
to construct a cluster hierarchy. In the agglomerative 
algorithm, each item is treated as a cluster, and the clusters 
are eventually merged (bottom-up). Conversely, the 
divisive process starts with a single cluster containing all 
objects and separates it into individual clusters (top-down) 
by adding one object at a time. Generally, hierarchical 
algorithms have lower quality since they cannot adjust the 
clusters after merging in the merging method or dividing 
in the divisive method. To address this issue, hierarchical 
algorithms are often combined with another algorithm 
in a hybrid clustering technique. Popular algorithms of 
this clustering type include BIRCH [5], CURE [6] and 
ROCK [7]. A-BIRCH [8] is a recent method for the 
BIRCH clustering algorithm [5] that automates threshold 
estimates.

Partitioning-based clustering
A partitioning clustering method is designed to divide 

a set of n unlabeled objects into k groups, with at least 
one object in each group. K-means [9] is a commonly 
used algorithm for partitioning clustering, each cluster 
is represented by a prototype which is the average value 
of the elements in the cluster. The main idea behind 
the k-means algorithm is to minimize the cumulative 
distance between objects and their cluster prototypes. In 
the k-means procedure, the prototype is determined as 
the mean vector of the cluster elements. Another variant 
of the k-means algorithm is the Uk-means [10] which 
determines the optimal number of clusters without any 
initialization or parameter selection. The Partitioning 

around Medoids (PAM) algorithm [4] is another algorithm 
in the partitioning family where the cluster prototype is 
selected as one of the closest elements to the center of 
the cluster. Additionally, Clustering Large Applications 
(CLARA) [11] and Clustering Large Applications based 
upon Randomized Search (CLARANS) [12] are improved 
versions of the k-Medoid algorithm for spatial database 
mining. IF-CLARANS [13] aims to incorporate the concept 
of intuitionistic fuzzy sets into the CLARANS algorithm to 
handle ambiguity in large dataset mining.

Model based clustering
In these clustering approaches, the data set is segregated 

into theoretical models such as mathematics and statistical 
distribution. The probability distribution, as a mathematical 
framework, is used in this clustering algorithm for 
optimization purposes. Although this algorithm is suitable 
for creating a new model using an existing model to better 
represent the data, it is time-consuming, and the model 
parameters significantly impact the clustering outcome. 
Among the most renowned clustering algorithms in this 
category are EM [14], COBWEB [15], CLASSIT [16], Self-
Organizing Map (SOM) [17]. Smoothed SOM (S-SOM) 
[18] is a novel SOM variant that improves the regular 
SOM vector quantification and grouping capabilities when 
dealing with outliers.

Density based clustering
Density-based clustering is founded upon the concept 

of density where clusters are formed in dense regions 
that are separated from other areas. The primary idea is 
to progressively introduce concepts until the neighboring 
cluster density surpasses a certain threshold or limit. 
DBSCAN [19] is one of the most well-known density-
based algorithms which defines a cluster as a group of 
densely connected points. Ada-DBSCAN [20] is a novel 
adaptive density-based spatial clustering method that 
integrates a data block merger and division under control. 
OPTICS [21] is another density-based technique that 
addresses the challenge of identifying significant clusters in 
data with varying densities. DENCLUE [22] is a renowned 

Table 1. The benefits and drawbacks of the different clustering types [2]

Categories Benefits Drawbacks

Hierarchical 
Algorithms

1) It can be useful for exploring the structure of the data 
and identifying patterns.
2) It does not require specifying the number of clusters 
beforehand.

1) It can be computationally expensive and slow for 
large datasets.
2) It may not work well with high-dimensional data.

Partitioning 
Algorithms

1) It is fast and efficient for large datasets.
2) It can handle high-dimensional data.

1) It may require specifying the number of clusters 
beforehand, which can be difficult.
2) It may not work well with non-linearly separable 
data.

Model-based 
Algorithms

1) It can handle complex data distributions.
2) It can estimate the number of clusters automatically.

1) It can be computationally expensive for large 
datasets.
2) It may be sensitive to initialization.

Density-based 
Algorithms

1) It can handle data with arbitrary shapes and sizes 
of clusters.
2) It can detect noise and outliers.

1) It can be computationally expensive for large 
datasets.
2) It may require setting a threshold for density, which 
can be difficult.

Grid-based 
Algorithms

1) It can handle large datasets efficiently.
2) It can identify clusters of varying sizes and shapes.

1) It may require specifying the size and shape of the 
grid.
2) It may not work well with high-dimensional data.
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density-based clustering method that represents the overall 
density of a set of points as the sum of each point influence 
functions. SUBCLU [23] is another member of the density-
based family which builds upon DBSCAN and adopts the 
notion of density-connected clusters.

Grid based clustering
Grid-based clustering methods involve dividing 

the data space into hierarchical structures composed of 
rectangular spaces. The fundamental idea behind this 
technique is to transform the original data space into a 
grid format that determines the clustering size. Although 
this algorithm is highly scalable and suitable for low 
time complexity parallel processing, it compromises the 
quality and accuracy of clusters and is vulnerable to high 
granularity. Common algorithms in this category include 
Statistic Information Grid Approach (STING) [24], 
CLIQUE [25], OptiGrid [26], and MAFIA [5]. NRI [27] 
is a novel grid-based clustering approach that employs an 
intuitive neighbor relationship to enhance data clustering 
efficiency.

Clustering Evaluation Indices

In the context of unsupervised learning methods, 
various performance measurements were required. This 
section focuses on elucidating the metrics employed for 
evaluating performance. Initially, in order to streamline 
and condense the section related to Cluster Validity Indices 
(CVIs), we establish the overarching notation employed 
throughout this research. Additionally, we introduce 
specific notations utilized to elucidate various indices [29].

Notation
Let  X  be  a  da tase t  compris ing  N  objec ts 

represented as vectors in an F-dimensional space: 
X = {x1, x2, …, xN} ⊆ 𝓡F. A clustering or partition 
clustering in X refers to a collection of disjoint clusters 
that effectively divides X into K groups: C = {c1, c, …, ck} 
where the union of all ck in C is equal to X, and ck 
intersected with cl is an empty set for any k ≠ l. The 
centroid of a cluster ck is determined by its mean vector, 
denoted as ck = 1/|ck| ∑

xi∊ck

xi. Similarly, the centroid of the 

entire dataset X is calculated as the mean vector of all data 
points, represented by X = 1/N ∑

xi∊X
xi. 

To quantify the distance between objects xi and xj, we 
will use the Euclidean distance, denoted as de(xi, xj). In 
particular, the Point Symmetry-Distance [30] between the 
object xi and the cluster ck is defined as: 

	 dps*(xi, ck) = 1/2∑min(2)xi∊ck
{de(2ck – xi, xj)}. 	 (1)

The point 2ck – xi referred to as the symmetric point of 
xi with respect to the centroid of ck. The function ∑min can 
be understood as a modified version of the min function, 
where ∑min(n) calculates the sum of the n lowest values 
among its arguments. Similarly, we can define the ∑max 
function as a variation of the max function. Lastly, let’s 
introduce the notation nw, as it is utilized by several indices. 
nw represents the count of object pairs within a partition 
that belong to the same cluster, given by nw = ∑ck ∈ C  ck

2 .

Definitions of Evaluation Indices 
In the context of clustering, it is important to have 

suitable internal evaluation indices for comparing different 
clustering algorithms. These internal indices are specifically 
designed to assess the quality of clustering solutions when 
the true clustering is unknown. They provide measures 
based on the structural characteristics of the clusters, 
allowing us to evaluate the consistency and effectiveness 
of the clustering algorithms. Therefore, in this context, we 
will present the definitions of several internal evaluation 
indices, including the Dunn (D) index, Calinski-Harabasz 
(CH) index, Davies-Bouldin (DB) index, Silhouette (Sil) 
index, and Negentropy Increment (NI) index [29]. These 
indices will be used to compare and assess the performance 
of different clustering approaches.

Dunn index. The D index evaluates both the 
compactness and separation of individual clusters [31]. It 
measures the inter-cluster distances (separation) relative 
to the intra-cluster distances (compactness). The index is 
calculated using the following equation

	 DVI = ,	 (2)

where

	 δ(ck, cl) = min
xi∊ck

  min
xj∊cl

{de(xi, xj)}, 	 (3)

	 Δ(ck) = max
xi,xj∊ck

{de(xi, xj)}. 	 (4)

The variable cl represents a specific cluster within the 
set C being evaluated. δ measures the minimum distance 
between points in different clusters ck and cl, reflecting 
their separation. Conversely, ∆ computes the maximum 
distance between points within a single cluster ck indicating 
its internal compactness. A higher D index value indicates 
better clustering, with more distinct and compact clusters.

Calinski–Harabasz index. The CH index is recognized 
as a variance ratio metric where the validity function of a 
cluster is based on the average of the sum of the squared 
distances between clusters and between elements within the 
cluster [32]. It aims to determine the dispersion of elements 
within their cluster and the distance from other clusters.

	 CH(C) = .

A higher CH index value indicates better clustering, 
with more compact and well-separated clusters.

Davies-Bouldin index [33]. This metric measures 
the compactness and separation of clusters by calculating 
the average similarity between each cluster and its most 
similar neighboring cluster, while considering the distance 
between cluster centroids. The DB index aims to minimize 
intra-cluster dissimilarity and maximize inter-cluster 
dissimilarity. 

	 DB(C) = ∑
ck∊C

  max
cl∊C\ck

� �.
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The variable S denotes the average similarity of data 
points within a cluster to its centroid, and it’s calculated 
as follows:

	 S(ck) = 1/|ck| ∑
xi∊ck

de(xi, ck).

A lower DB index value indicates better clustering, with 
more distinct and well-separated clusters.

The Silhouette index is a normalized summation-type 
index. It evaluates the cohesion of a cluster by measuring 
the distance between all the points within the cluster, and 
the separation is based on the nearest neighbor distance. 
The Sil index is defined as follows:

	 Sil(C) = 1/N ∑
ck∊C

  ∑
xi∊ck

  ,

where a represents a data points average cohesion within 
its cluster, gauging its proximity to other cluster members. 
Meanwhile, b computes a data point average separation 
from the nearest neighboring cluster, highlighting its 
distinctiveness. These calculations are performed as 
follows:

	 a(xi, ck) = 1/|ck| ∑
xj∊ci

de(xi, xj), 

	 b(xi, ck) = min
cl∊C\ck

�1/|ci| ∑
xj∊cl

de(xi, xj)�.

The Sil index ranges from –1 to 1, with higher values 
indicating better clustering outcomes.

Negentropy increment index. This index is based on 
cluster normality estimation. It is not reliant on cohesion and 
separation measures. The index quantifies the improvement 
in cluster organization and randomness reduction 
achieved by a clustering algorithm. It is defined as:

	 NI(C) = 1/2 ∑
ck∊C

p(ck)log|∑ck| – 1/2log|∑X| –

	 – ∑
ck∊C

p(ck)logp(p(ck)),

where p(ck) = |ck|/N, ∑ck represents the covariance matrix 
of cluster ck, ∑X represents the covariance matrix of the 
whole dataset, and |∑ | denotes the determinant of a 
covariance matrix. Although the authors initially proposed 
the index as defined above, they later suggested a correction 
due to unsatisfactory results obtained. However, for the 
purposes of this work, we will use the index in its original 
form since the correction does not meet the CVI selection 
criterion used. Lower NI values indicate superior clustering 
solutions.

Candidate Clustering Algorithms

The objective of this section is to identify successful 
candidate clustering algorithms for large datasets of each 
algorithm type listed in Table 1. Our selection process 
was based on the properties outlined in Table 2, with a 
focus on algorithms that satisfy most of the seven big data 
property criteria. In order to gauge the suitability of each 
algorithm, we referred to Table 2, which offers an outline 
of the evaluations conducted using diverse methodologies 
as specified earlier, and in accordance with the criteria 

provided. We also considered several studies that have 
effectively compared multiple modern clustering algorithms 
for large datasets [34, 35]. It is crucial to note that our aim 
is to compare algorithms of each type to determine their 
efficacy for clustering large datasets. Within the same type, 
we will only select the most appropriate algorithm based on 
the specified criteria. Consequently, we have selected the 
following algorithms: A-BIRCH [8], Ada-DBSCAN [20], 
S-SOM [18], NRI [27], and Uk-means [10]. In this section, 
we will discuss each chosen algorithm in detail, including 
its operation, advantages and disadvantages, and required 
input variables.

A-BIRCH Algorithm
The BIRCH algorithm utilizes a tree structure to create 

a dendrogram which is known as a clustering feature tree 
(CF tree) [28]. The CF tree is created by dynamically 
scanning the dataset and does not require the entire dataset 
in advance. It involves two key steps: first, scanning the 
database to create a memory tree, and second, grouping 
the leaf nodes using a specified threshold (T) and branching 
factor (B) criteria to create a high balanced CF tree. As the 
data is scanned, the CF tree is traversed and the nearest 
node is selected at each level. If the nearest leaf cluster is 
identified for the data point, a test is conducted to check 
if the data point belongs to the candidate cluster. If not, 
a new cluster is created with a diameter greater than the 
specified T. The BIRCH algorithm is efficient in handling 
noise and can find suitable clustering with a single dataset 
scan and further enhance the quality with a few more scans. 
However, to ensure satisfactory clustering performance, 
BIRCH requires both the cluster count and the threshold T 
to correctly measure the clusters.

A-BIRCH is a newer version of the BIRCH clustering 
algorithm that automatically estimates the threshold 
value required for clustering. This approach calculates 
the optimum threshold variable from the data, enabling 
A-BIRCH to perform clustering without the global 
clustering phase which is typically the final phase of 
BIRCH. A-BIRCH can determine if the data satisfies 
the necessary constraints and will provide an alert if the 
constraints are not met. This approach eliminates the need 
to know the number of clusters ahead of time and can 
improve the efficiency of the BIRCH algorithm by avoiding 
the computationally expensive final clustering phase (see 
A-BIRCH pseudocode).

A-BIRCH pseudocode
Input: N two-dimensional data points {Xi}, kmax, branching 
factor Br, number of Monte Carlo iterations B, distance 
metric D.
Output: CF-tree
Begin

k* ← parallel Gap Statistic (subsample ({Xi}), kmax, 
B)
labels ← k-means (subsample({Xi}), k*)
Calculate the minimum value of Dmin and the shared 
radius R based on the clustered data
if (Dmin < 6 × R) then
Warning: The result of BIRCH may be imprecise — 
clusters are too close
end_if
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T ← (1/4) Dmin + 0.7 × R
CF-tree ← tree-BIRCH ({Xi}, Br, distance metric 
D, T).

End.

Ada-DBSCAN Algorithm
Adaptive Density-based Spatial Clustering of 

Applications with Noise (Ada-DBSCAN) addresses the 
issue of linear connections in DBSCAN and other density-
based clustering algorithms, while also optimizing the 
parameter settings and performance of DBSCAN when 
applied to large datasets. Ada-DBSCAN achieves this by 
first using the data block splitter to divide the data points 
into a collection of data blocks in a top-down approach, 
followed by performing local clustering within each data 
block. To obtain the final clustering results, Ada-DBSCAN 
employs a bottom-up global clustering procedure, where 
the data block merger plays a critical sub-component 
role. The Ada-DBSCAN method is comprised of four 
primary modules, as demonstrated in the Ada-DBSCAN 
pseudocode: (1) data block splitter, (2) local clustering, (3) 
global clustering, and (4) data block merger. For further 
information on each proposed module in Ada-DBSCAN, 
refer to [20].

Ada-DBSCAN pseudocode
Input: a dataset D
Output: a set of clusters C

Step 1. Hierarchically divide the dataset D into a set 
of data blocks that ensure uniform distribution of the 
data points within each block.
Step 2. Group the data points into blocks based on 
the concept of uniform data distribution.
Step 3. Apply local density-based clustering to each 
block.
Step 4. Merge the resulting local clusters to obtain 
the final clustering results. This is also known as the 
global clustering process.
Step 5. Merging data block (used during global 
clustering for merging each two data blocks)

Smoothed self-organizing map (S-SOM)
The SOM operates as a network comprising P neurons 

arranged in a one- or two-dimensional layout. This network 
is designed to map a collection of I input vectors, each 
possessing a dimensionality of J. Every neuron within the 
SOM possesses a scalar vector rp, representing its location 
on the map. Additionally, each neuron is equipped with 
an initial J-dimensional codebook denoted as μp which 
aligns in size with the input vectors. The process of SOM 
learning occurs across S phases during which a randomly 
selected input vector ξi(s) is compared to the codebooks 
using a designated metric. The neuron that emerges as the 
winner labeled as c = c(i) or the best matching unit bmu is 
chosen from the ith input vector. This selection is based on 
the proximity of the neuron weight vector μp to the input 
vector ξi(s).

The S-SOM [17] is an improved version of the SOM 
that enhances input density mapping, vector quantization, 
and clustering properties in the presence of outliers. The 
S-SOM achieves this by upgrading the learning rule to 

smooth the representation of outlying input vectors onto 
the map. This is done by taking into account the additional 
exponential distance between the input vector and its closest 
codebook during the SOM learning rule. The smoothing 
factor is then obtained for all neurons in the neighborhood 
of the best matching unit, using the additional exponential 
distance dexp(xi, xl). This approach makes the S-SOM more 
robust in the presence of outliers.

	 dexp(xi, xl) = 1 – (1 – exp{–β||xi – xl||2})1/2,

where β = � ∑
l

i=1
||xi, xq||2/l�

–1
 is calculated as the inverse of 

the overall variance of the data available.
The upgraded learning rule of S-SOM is:

	 μp(s + 1) = 	
(5)

= 
ᾶ(s)hp,i(s)ξi(s) + [1 – ᾶ(s)hp,i(s)]μp(s) if p ∈ Nc

μp(s) otherwise
, 

where ξi(s) is the ith input vector and the smoothed learning 
rate ᾶ(s) = α(s)(dexp(μc(s), ξi(s))) satisfies 0 < ᾶ(s) < 1 since 
1 restricts the exponential distance. For further details 
about this clustering method, please refer to [18]. S-SOM 
pseudocode illustrates the detailed steps of S-SOM 
approach. 

S-SOM pseudocode
Step 0. Fix the topology of the map to one or two 
dimensions (linear) (rectangular), the number of neurons 
P (map size), the neighborhood function hp,i(s), the learning 
rate ᾶ(s) and the number of iterations limit (S). Randomly 
generate the weights μp(0), p = 1, …, P.
Step 1. Choose an input vector that will update the map 
at step s, ξi(s). Using the euclidean distance, determine c, 
the nearest neuron to ξi(s). Update the weights μp using 
equation (5).
Step 2. Update ᾶ(s), and hp,i(s).
Step 3. If the number of iteration s = S stops the algorithm, 
otherwise go to Step 1.

NRI Algorithm
The NRI algorithm [27] is a grid-based clustering 

technique that improves upon traditional approaches. The 
algorithm partitions space into grids, labeling each as 
‘valid’ or ‘invalid’ based on whether it contains a minimum 
number of parameter points. The continuous ‘valid’ grids 
are then merged into a single cluster. The algorithm also 
examines adjacent grids to determine whether they should 
be grouped into the same cluster or classified as a new 
one. If the neighbor has multiple clusters, they are merged 
into a single cluster. While the NRI algorithm follows 
a traditional grid-based clustering strategy, it includes a 
simple yet unique extension scheme. To better understand 
the NRI algorithm steps, refer to its pseudocode.

NRI pseudocode
Step 0. Enter datasets and initialize all arguments.
Step 1. Utilize the DataSize parameter to partition the data 
space into grid-like structures. ||grids||=Grids*Grids.
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Step 2. Find all the grids sequentially.
Step 3. Grids are categorized as “valid” or “invalid” 
depending on whether they contain at least the specified 
minimum number of parameter points.
Step 4. Grids that are continuously “valid” are grouped 
into one cluster.
Step 5. If adjacent grids are successfully clustered together, 
they are classified as belonging to the same cluster. If not, 
they may be designated as a new cluster.
Step 6. If there are multiple clusters in the neighborhood, 
merge them into a single cluster.

Uk-means Algorithm
Uk-means [10] is a new unsupervised classification 

version for the k-means process that requires no 
initializations and the optimum number of clusters can also 
be selected simultaneously using the entropy concept. Let 
X = {x1, …, xn} be a dataset in a d-dimensional Euclidian 
space ℝd. Let A = {a1, …, ac} be the c cluster. Let Z = [zik]n×c,  
where zik is a binary variable (i.e zik ∈{0, 1}) showing if xi 
relates to kth cluster, k = 1, …, c. The unsupervised k-means 
algorithm (Uk-means) suggest a modified objective 
function as seen below:

	 JUKM2
(Z, A, α) = ∑

n

i=1
∑
c

k=1
zik||xi – ak ||2 – βn ∑

c

k=1
αkInαk –

	 – γ ∑
n

i=1
∑
c

k=1
zikInαk,

where:
	 γ(t) = e–c(t)/250.	 (6)

And

β(t+1) = , . 	(7)

The variable η controls cluster center adjustments 
based on αk updates, with larger values indicating more 
significant changes. γ regulates entropy impact via a 
computed coefficient, reducing as iterations increase, 
thus modulating the influence of entropy on the algorithm 
objective function.

The cluster center αk updating equation is as follows:

	 αk = ∑
n

i=1
zikxij/ ∑

n

i=1
zik.

The updating equation for the variables membership 
zik is as follows:

	 zik = 
1 if ||xi – ak ||2 – γInαk

||xi – ak ||2 – γInαk 0 otherwise
. 	 (8)

The cluster number is updated automatically as 
described below:

	 c(t+1) = c(t) – � (t+1)αk  < , k = 1, …, c(t)�,	 (9)

where:

	 (t+1)αk  = ∑
n

i=1
zikxij ∑

n

i=1
zik. 	 (10)

Uk-means pseudocode
Step 0. Fix ∑ > 0. c(0) = n, (0)αk  = 1/n, (0)ak  = xi, 
γ(0) = β(0) = 1, Set t = 0. 
Step 1. Calculate (t+1)zik  employing (t)ak , (t)αk , γ(t), β(t) using 
equation (9).
Step 2. Calculate γ(t+1) using equation (6).
Step 3. Update (t+1)αk  with (t+1)μik  and (t)αk  using (10).
Step 4. Calculate β(t+1) with α(t+1) and α(t) using equation (7).
Step 5. Update c(t+1) to c(t) by discard those clusters with
           α(t+1) ≤ 1/n and adjust α(t+1) and (t+1)μik .
            IF t ≥ 60 and c(t–60) – c(t) = 0. THEN let β(t+1) = 0.
Step 6. Update (t+1)ak  with c(t+1) and (t+1)zik  by equation (8).
Step 7. Compare (t+1)ak  and (t)ak .
            IF || (t+1)ak  – (t)ak || < ε. THEN Stop.
           	 ELSE t = t + 1 and return to Step 2.

The variable c signifies the current count of clusters 
during the algorithm’s iteration. n represents the total 
number of data points within the dataset. k stands as the 
cluster index, taking values from 1 to c. The term xi denotes 
a specific data point within the dataset. t symbolizes the 
current iteration or step of the algorithm. Lastly, ε is a small 
threshold value that plays a role in determining the stopping 
condition of the algorithm.

Experimental Evaluation

In Types of Clustering Algorithms, we analyzed 
the practical aspects of well-known algorithms used for 
clustering big data. In this section, we aim to evaluate their 
performance on a clustering benchmark dataset to provide 
empirical evidence. For this evaluation, we have selected 
the most prominent and modern algorithms from each 
category, including A-BIRCH [8], Ada-DBSCAN [20], 
S-SOM [18], NRI [27], and Uk-means [10].

Experimental environments

We employed the MATLAB application as the chosen 
tool to generate clusters for all experiments. The machine 
used for these tests possesses the following technical 
specifications: an AMD Ryzen 9 processor, 32 GB of 
memory, and a 1 TB hard disk, running on Windows 10. 
To ensure reliable results, each experiment was conducted 
10 times, and the average values from the experimental 
findings were utilized.

Experimental datasets
We utilized six popular datasets, sourced from the 

OpenML [36] and UCI [37] Machine Learning Repository, 
to investigate the performance of different clustering 
techniques. The datasets include Baseball, Anuran Calls, 
Japanese Vowel, Digits, Codon usage, and Fashion MNIST. 
For effective evaluation, all variables/attributes from these 
datasets were used simultaneously. Table 3 provides key 
details of the five real datasets utilized in our study, and for 
further information about the datasets, please refer to [36, 37].

Results and discussions
Firstly, in this paragraph, we compare the clustering 

results using well-known internal evaluation indices 
(Fig. 2). Subsequently, we evaluate the selected clustering 
algorithms in terms of their runtime performance.
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Table 4 displays the results of the D index for different 
clustering algorithms across various datasets. Analyzing the 
results, it can be observed that Ada-DBSCAN consistently 
achieved higher scores compared to the other algorithms 
across most datasets. For example, in the “Baseball” 
dataset, Ada-DBSCAN obtained a D score of 0.623, while 
the other algorithms ranged from 0.394 to 0.597. This 
suggests that Ada-DBSCAN is better at creating well-
separated clusters based on the Dunn metric. Similarly, in 
the “Digits” dataset, Ada-DBSCAN obtained the highest 
D score of 0.741, indicating its ability to generate distinct 
and well-separated clusters. The other algorithms scored 
lower ranging from 0.471 to 0.643. On the other hand, 
NRI consistently achieved lower D scores compared to 
the other algorithms across multiple datasets. For instance, 
in the “Fashion MNIST” dataset, NRI scored 0.449 while 
the other algorithms ranged from 0.322 to 0.439. This 
suggests that NRI may struggle in creating highly separated 
clusters according to the Dunn metric. Overall, the results 
indicate that Ada-DBSCAN shows better performance in 

terms of creating well-separated clusters based on the D 
metric, while NRI performs relatively poorer. However, 
it’s important to consider additional evaluation metrics 
and conduct further analysis to gain a comprehensive 
understanding of algorithm performance.

The comparison of candidate clustering algorithms 
based on the CH index in Table 5 reveals distinct patterns. 
The S-SOM algorithm consistently achieved the highest 
scores across most datasets, such as scoring 25.634 in the 
“Japanese Vowel” dataset compared to the range of 7.395 to 
17.342 for other algorithms. This highlights S-SOM ability 
to generate clusters with superior inter-cluster separation 
and reduced intra-cluster dispersion. Ada-DBSCAN also 
performed well in several datasets, particularly achieving 
a score of 22.248 in the “Codon usage” dataset compared 
to the range of 13.445 to 31.624 for other algorithms. 
This showcases Ada-DBSCAN effectiveness in producing 
clusters with significant separation and compactness. On 
the other hand, the NRI algorithm consistently obtained 
lower CH scores across most datasets, scoring 1.651 

Table 3. Summary of Datasets

Dataset Dataset size # dimensions # clusters

Baseball 1340 18 3
Anuran Calls 7195 22 4
Japanese Vowel 9960 15 9
Digits 10,992 16 10
Codon usage 13,028 69 3
Fashion MNIST 70,000 784 10
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Fig. 2. Evaluation measures used in the current comparison

Table 4. Candidate algorithms compared in terms of D index 

Datasets
Clustering Algorithms

Ada-DBSCAN NRI Uk-means S-SOM A-BIRCH

Baseball 0.623 0.597 0.394 0.527 0.502
Anuran Calls 0.389 0.351 0.384 0.411 0.364
Japanese Vowel 0.617 0.521 0.459 0.582 0.510
Digits 0.741 0.588 0.471 0.643 0.527
Codon usage 0.556 0.463 0.394 0.571 0.514
Fashion MNIST 0.412 0.449 0.322 0.439 0.401
Average 0.556 0.494 0.404 0.528 0.469
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in the “Anuran Calls” dataset compared to the range of 
1.110 to 2.514 for other algorithms indicating challenges 
in generating well-separated and compact clusters. 
Overall, S-SOM and Ada-DBSCAN demonstrated strong 
performance based on the CH index, while NRI exhibited 
relatively lower performance in terms of clustering quality.

Table 6 compares candidate clustering algorithms based 
on the DB index. The results reveal that Ada-DBSCAN 
achieved the lowest DB scores in the Digits (0.835) and 
Anuran Calls (4.985) datasets, indicating superior cluster 
quality. However, all algorithms struggled with the Fashion 
MNIST dataset which had the highest DB scores. On 
average, Ada-DBSCAN and NRI obtained lower DB scores 
(3.374 and 4.992, respectively) suggesting better clustering 
performance. In contrast, Uk-means and A-BIRCH 
had higher DB scores (5.876 and 5.402, respectively) 
indicating room for improvement. Consideration of dataset 

characteristics is crucial for selecting the most suitable 
algorithm for optimal clustering outcomes.

Table 7 presents the results of the candidate algorithms 
compared using the Sil index for various datasets. The 
scores indicate the clustering quality with higher values 
indicating better cluster cohesion and separation. Among 
the algorithms, Ada-DBSCAN consistently obtained high 
scores across most datasets, ranging from 0.556 to 0.741. 
NRI generally had lower scores, ranging from 0.351 to 
0.597, suggesting suboptimal cluster formation. Uk-means, 
S-SOM, and A-BIRCH achieved moderate scores across the 
datasets. The average Sil index values for the algorithms 
were approximately 0.553 for Ada-DBSCAN, 0.494 for 
NRI, 0.413 for Uk-means, 0.529 for S-SOM, and 0.457 for 
A-BIRCH. These results indicate that Ada-DBSCAN and 
S-SOM exhibited relatively better clustering performance 
compared to NRI, Uk-means, and A-BIRCH.

Table 5. Candidate algorithms compared in terms of CH index 

Datasets
Clustering Algorithms

Ada-DBSCAN NRI Uk-means S-SOM A-BIRCH

Baseball 18.364 9.328 17.366 21.450 13.624
Anuran Calls 1.260 1.651 2.514 2.315 1.110
Japanese Vowel 16.927 8.442 17.342 25.634 7.395
Digits 12.388 5.327 8.369 18.941 4.521
Codon usage 22.248 13.445 19.301 31.624 16.692
Fashion MNIST 17.392 8.661 12.847 19.214 11.363
Average 14.763 7.809 12.956 19.863 9.117

Table 6. Candidate algorithms compared in terms of DB index 

Datasets
Clustering Algorithms

Ada-DBSCAN NRI Uk-means S-SOM A-BIRCH

Baseball 2.671 3.981 5.218 3.312 4.356
Anuran Calls 4.985 6.517 7.324 4.327 6.558
Japanese Vowel 1.364 3.951 5.327 3.248 4.582
Digits 0.835 3.827 4.637 2.214 4.139
Codon usage 3.976 4.296 4.397 3.384 5.327
Fashion MNIST 6.415 7.384 8.358 6.971 7.452
Average 3.374 4.992 5.876 3.909 5.402

Table 7. Candidate algorithms compared in terms of Sil index

Datasets
Clustering Algorithms

Ada-DBSCAN NRI Uk-means S-SOM A-BIRCH

Baseball 0.623 0.597 0.394 0.527 0.502
Anuran Calls 0.389 0.351 0.384 0.411 0.364
Japanese Vowel 0.617 0.521 0.459 0.582 0.510
Digits 0.741 0.588 0.471 0.643 0.527
Codon usage 0.556 0.463 0.394 0.571 0.415
Fashion MNIST 0.412 0.449 0.322 0.439 0.401
Average 0.553 0.494 0.413 0.529 0.457
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The analysis of the candidate clustering algorithms 
based on the NI in Table 8 reveals distinct trends: across 
most datasets, the S-SOM algorithm consistently achieved 
the highest NI scores, ranging from 0.582 to 0.521 for 
the other algorithms. This highlights S-SOM exceptional 
ability to reduce entropy and significantly improve the 
quality of clustering results. Similarly, Ada-DBSCAN 
demonstrated notable performance, obtaining relatively 
high NI scores in multiple datasets ranging from 0.741 to 
0.471 for the other algorithms. This signifies Ada-DBSCAN 
effectiveness in reducing entropy and enhancing the purity 
of clusters. Conversely, the NRI algorithm consistently 
obtained lower NI scores compared to the other algorithms 
with a range of 0.457 to 0.623 for the alternative methods. 
This indicates challenges in achieving substantial NI and 
improving clustering performance using NRI. In summary, 
the results clearly indicate that S-SOM and Ada-DBSCAN 
exhibit impressive performance in terms of increasing 
Negentropy and improving clustering quality, while NRI 
lags behind in terms of NI.

The analysis of the runtime results presented in Table 9 
comparing candidate clustering algorithms and revealing 
the following insights: S-SOM consistently recorded the 
highest runtime across all datasets with durations ranging 
from 14.854 to 656.362. This suggests that S-SOM requires 
more computational time to perform clustering compared 
to other algorithms. Uk-means and A-BIRCH exhibited 
relatively lower runtimes compared to S-SOM, with 
durations ranging from 0.964 to 82.145 for Uk-means and 
from 0.715 to 65.238 for A-BIRCH. This indicates that these 
algorithms are generally faster in executing the clustering 
process. NRI and Ada-DBSCAN demonstrated the shortest 

runtimes across all datasets, with durations ranging from 
0.031 to 9.627 for NRI and from 0.015 to 2.130 for Ada-
DBSCAN. These algorithms exhibit superior efficiency in 
terms of runtime requiring significantly less computational 
time compared to the other algorithms. Overall, the results 
suggest that S-SOM is the slowest algorithm in terms of 
runtime, while NRI and Ada-DBSCAN are the fastest.

The analysis of the different clustering algorithms 
based on multiple evaluation metrics provides valuable 
insights into their performance. Ada-DBSCAN consistently 
outperformed other algorithms in terms of the D index, 
indicating its ability to create well-separated clusters. 
Similarly, Ada-DBSCAN and S-SOM showed strong 
performance in terms of the CH index indicating their 
effectiveness in producing clusters with high inter-
cluster separation and compactness. Ada-DBSCAN also 
demonstrated superior performance based on the DB 
index, achieving lower scores and indicating better cluster 
quality. Moreover, Ada-DBSCAN consistently obtained 
high scores in the Sil index, indicating its ability to generate 
cohesive and well-separated clusters. In terms of the NI, 
S-SOM and Ada-DBSCAN stood out by achieving the 
highest scores and improving clustering quality. Finally, 
NRI and Ada-DBSCAN exhibited the shortest runtimes 
making them more efficient in terms of computational 
time compared to other algorithms. These findings suggest 
that Ada-DBSCAN consistently performs well across 
multiple evaluation metrics, highlighting its potential as 
a strong clustering algorithm. However, further analysis 
and consideration of additional factors are necessary for 
a comprehensive understanding and selection of the most 
suitable algorithm for specific clustering tasks.

Table 8. Candidate algorithms compared in terms of Negentropy increment 

Datasets
Clustering Algorithms

Ada-DBSCAN NRI Uk-means S-SOM A-BIRCH

Baseball 0.623 0.457 0.394 0.527 0.502
Anuran Calls 0.389 0.351 0.384 0.411 0.364
Japanese Vowel 0.617 0.521 0.459 0.582 0.510
Digits 0.741 0.588 0.471 0.643 0.527
Codon usage 0.556 0.463 0.394 0.571 0.415
Fashion MNIST 0.412 0.449 0.322 0.439 0.401
Average 0.553 0.494 0.413 0.529 0.457

Table 9. Candidate algorithms compared in terms of runtime

Datasets
Clustering Algorithms

S-SOM Uk-means A-BIRCH NRI Ada-DBSCAN

Baseball 14.854 0.964 0.715 0.031 0.015
Anuran Calls 42.265 3.562 2.149 0.781 0.520
Japanese Vowel 242.347 21.354 15.378 3.154 1.214
Digits 313.326 29.348 23.641 4.261 1.541
Codon usage 335.197 38.241 29.286 4.157 1.631
Fashion MNIST 656.362 82.145 65.238 9.627 2.130
Average 267.391 29.269 22.734 3.668 1.175
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 Conclusion

This paper provides a comprehensive evaluation of 
clustering algorithms for Big Data. The study compares 
various methods and assesses their performance on large 
datasets using validity metrics and computing time. The 
findings assist researchers and practitioners in selecting 

appropriate clustering techniques for their specific 
needs. Future work could focus on developing advanced 
algorithms exploring hybrid approaches, addressing 
scalability and interpretability challenges. This research 
contributes to the field and lays the groundwork for further 
advancements in clustering for Big Data analytics.
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