

НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

май-июнь 2024

May-June 2024

ISSN 2226-1494 (print)

Том 24 № 3

http://ntv.ifmo.ru/ SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS

> Vol. 24 No 3 http://ntv.ifmo.ru/en/ ISSN 2500-0373 (online)

ОПТИЧЕСКИЕ СИСТЕМЫ И ТЕХНОЛОГИИ OPTICAL ENGINEERING

doi: 10.17586/2226-1494-2024-24-3-339-347

УДК 535.016

Оптические свойства границы раздела тонких пленок оксидов индия и олова с лазерно-осажденными одностенными углеродными нанотрубками

Андрей Сергеевич Тойкка⊠, Наталия Владимировна Каманина

- 1.2 Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина), Санкт-Петербург, 197022, Российская Федерация
- 1,2 Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра «Курчатовский институт», Гатчина, 188300, Российская Федерация
- ² НПО «Государственный оптический институт им. С.И. Вавилова», Санкт-Петербург, 192171, Российская
- ¹ astoikka.nano@gmail.com[™], https://orcid.org/0000-0002-8694-8497
- ² nvkamanina@mail.ru, https://orcid.org/0000-0002-2903-2685

Введение. Представлены результаты исследования оптических свойств тонких пленок на основе оксидов индия и олова (Indium Tin Oxide, ITO) с одностенными углеродными нанотрубками. Метод. Тонкие пленки ІТО напылялись на подложки стекла К8 методом лазерно-ориентированного осаждения. Этим же методом на поверхность ITO наносились одностенные углеродные нанотрубки. Для варьирования параметров границы раздела применялась перестройка средней напряженности электрического поля в процессе осаждения в диапазоне 100-600 В/см. Идентификация структур производилась методом эллипсометрии в спектральном диапазоне 200-800 нм. Для интерпретации результатов эллипсометрии тонких пленок ІТО на стеклянных подложках К8 применялись совместно модели Коши (для подложек) и Лоренца (для ІТО). Анализ границы раздела ІТО с углеродными нанотрубками проводился методом аппроксимации сплошной среды и с использованием модели Лоренца с несколькими осцилляторами. Основные результаты. Показано, что при лазерно-ориентированном осаждении углеродных нанотрубок на поверхность тонких пленок ІТО, согласно методу аппроксимации сплошной среды, толщина границы раздела ІТО-углеродные нанотрубки варьируется в диапазоне 23-36 нм при содержании углеродных нанотрубок в диапазоне 30-64 % на границе раздела. Рост данных параметров коррелирует с увеличением средней напряженности электрического поля в процессе осаждения углеродных нанотрубок. В соответствии с моделью Лоренца наблюдается длинноволновый сдвиг пиков коэффициентов экстинкции и снижение показателя преломления границы раздела в видимой области. Данный эффект можно объяснить имплантацией углеродных нанотрубок в ІТО. При увеличении напряженности электрического поля повышается вклад лазерно-осажденных углеродных нанотрубок в границу раздела ІТО-углеродные нанотрубки, который сопровождается уменьшением показателя преломления в видимой области и длинноволновым сдвигом пиков коэффициентов экстинкции. Обсуждение. Полученные результаты свидетельствуют о формировании композитной структуры на основе ІТО с углеродными нанотрубками, оптическими свойствами которой можно управлять путем изменения средней напряженности электрического поля в процессе лазерно-ориентированного осаждения. Указанные структуры могут быть использованы при проектировании элементов оптической электроники в случаях необходимости оптического согласования с соседними функциональными слоями.

Ключевые слова

ІТО, оксиды индия и олова, одностенные углеродные нанотрубки, граница раздела, лазерный ориентированный метод осаждения, эллипсометрия, оптические свойства

Исследование частично поддержано грантом Российского научного фонда № 24-23-00021.

Ссылка для цитирования: Тойкка А.С., Каманина Н.В. Оптические свойства границы раздела тонких пленок оксидов индия и олова с лазерно-осажденными одностенными углеродными нанотрубками // Научнотехнический вестник информационных технологий, механики и оптики. 2024. Т. 24, № 3. С. 339–347. doi: 10.17586/2226-1494-2024-24-3-339-347

© Тойкка А.С., Каманина Н.В., 2024

Optical properties of the interface between indium tin oxides thin films and laserdeposited single-walled carbon nanotubes

Andrei S. Toikka^{1⊠}, Natalia V. Kamanina²

- 1,2 Saint Petersburg Electrotechnical University "LETI", Saint Petersburg, 197022, Russian Federation
- 1,2 Petersburg Nuclear Physics Institute National Research Center "Kurchatov Institute", Gatchina, 188300, Russian Federation
- ² Research and Production Association "Vavilov State Optical Institute", Saint Petersburg, 192171, Russian Federation
- ¹ astoikka.nano@gmail.com[⊠], https://orcid.org/0000-0002-8694-8497
- ² nvkamanina@mail.ru, https://orcid.org/0000-0002-2903-2685

Abstract

The results of a study of the optical properties of thin films based on indium tin oxides (ITO) with single-walled carbon nanotubes are presented. ITO thin films were deposited onto K8 crown glass substrates using laser-oriented deposition. Using the same method, single-walled carbon nanotubes were deposited onto the ITO surface. To vary the parameters of the interface, the average electric field strength in the range of 100-600 V/cm was adjusted during the deposition process. Identification of the structures was carried out by ellipsometry in the spectral range of 200-800 nm. To interpret the ellipsometry results of ITO thin films on K8 crown glass substrates, the Cauchy (for substrates) and Lorentz (for ITO) models were used together. The ITO-carbon nanotubes interface analysis was carried out by effective medium approximation and the Lorentz model using several oscillators. It has been shown, that in laser-oriented deposition of carbon nanotubes onto the surface of ITO thin films, according to the effective medium approximation, the thickness of the carbon nanotubes-ITO interface varies in the range of 23-36 nm with the percentage of carbon nanotubes in the range of 30-64 % at the interface. The increase in these parameters correlates with an increase in the average electric field strength during the deposition of carbon nanotubes. In accordance with the Lorentz model, a long-wavelength shift of the extinction coefficient peaks and a decrease in the refractive index of the interface in the visible region are observed. This phenomenon is caused by the implantation of carbon nanotubes into ITO. As the electric field strength increases, the contribution of laser-deposited carbon nanotubes to the ITO-carbon nanotubes interface increases, which is accompanied by a decrease in the refractive index in the visible region and a long-wavelength shift of the extinction coefficient peaks. The data obtained indicate the formation of a composite structure based on ITO with carbon nanotubes, the optical properties of which can be controlled by the average electric field strength during the laser-oriented deposition. These structures can be used in the design of optical electronics elements problems in cases where optical matching with adjacent functional layers is necessary.

Keywords

ITO, single-walled carbon nanotubes, interface, laser-oriented deposition method, ellipsometry, optical properties

Acknowledgements

Research was partially supported by the Russian Science Foundation, grant No. 24-23-00021.

For citation: Toikka A.S., Kamanina N.V. Optical properties of the interface between indium tin oxides thin films and laser-deposited single-walled carbon nanotubes. *Scientific and Technical Journal of Information Technologies, Mechanics and Optics*, 2024, vol. 24, no. 3, pp. 339–347 (in Russian). doi: 10.17586/2226-1494-2024-24-3-339-347

Введение

Оксиды индия и олова (Indium Tin Oxide, ITO) — прозрачный в видимой и ближней инфракрасной областях полупроводник с относительно низким удельным электрическим сопротивлением [1]. Благодаря возможности перестройки таких параметров, как концентрация и подвижность носителей заряда [2], свободная поверхностная энергия, сродство к электрону, тонкие пленки на основе ITO являются востребованным материалом для прозрачных электрических контактов в оптоэлектронных устройствах [3].

В контексте рассмотрения оптических свойств ITO, необходимо исследовать проблему согласования показателя преломления и коэффициента экстинкции ITO с граничащими слоями для уменьшения потерь на отражение [4]. Метод решения данной проблемы зависит от рабочей спектральной области. Так, например, при оптимизации вблизи края собственного поглощения, эффективным способом является перестройка оптической ширины запрещенной зоны при варьировании концентрации носителей. Поскольку ITO является вырожденным полупроводником *n*-типа, изменение оп-

тической ширины запрещенной зоны, при реализации эффекта Бурштейна-Мосса, может достигать долей электронвольт [5]. Варьирование оптических свойств в инфракрасной области спектра может осуществляться путем изменения параметров плазмонного резонанса, которые зависят от концентрации и подвижностей носителей заряда [6]. Существенных результатов в изменении физических свойств тонких пленок на основе ІТО удается получить при использовании наночастиц. В работе [7] улучшены частотные свойства при легировании ITO наночастицами оксида меди (CuO). При использовании оксида церия (СеО2) в качестве легирующего материала ITO увеличены оптическая ширина запрещенной зоны и пропускание в ультрафиолетовой и видимой областях спектра [8]. В работе [9] ITO структурированы углеродными нанотрубками (УНТ) золь-гель методом, в результате увеличены оптическая ширина запрещенной зоны и оптическое пропускание относительно чистого ITO.

Настоящая работа является продолжением цикла работ по исследованию лазерно-осажденных одностенных УНТ на свойства тонких пленок ІТО. Ранее [10] было показано увеличение механической и лазерной

прочности, уменьшение сопротивления, изменение механизмов смачивания, а также особенности применения тонких пленок на основе ITO с УНТ в жидкокристаллической оптике и микрофлюидных приложениях.

Цель работы — выявление оптических свойств и геометрических параметров систем: слоя УНТ, границы раздела УНТ с ITO, а также ITO, полученных методом лазерно-ориентированного осаждения. Мотивация проводимого исследования обусловлена необходимостью предварительного расчета оптических свойств оптоэлектронных устройств с использованием тонких пленок на основе ITO с УНТ.

Материалы и методы

Формирование тонких пленок ITO на стеклянных подложках K8 осуществлено методом лазерно-ориентированного осаждения (Laser oriented deposition, LOD) [11] с использованием CO_2 -лазера (λ = 10,6 мкм; непрерывный режим с мощностью 30 Вт и диаметром пучка 5 мм), который экспонировал осаждаемый материал.

Источником ITO являлись гранулы марки Cerac. Inc. с составом $(In_2O_3)_{0,9}$ – $(SnO_2)_{0,1}$. Затем на пленки ITO LOD-методом наносились одностенные УНТ марки Aldrich (No. 704121¹, преимущественная хиральность (7,6), средний диаметр 0,83 нм).

При этом в процессе осаждения УНТ использовано управляющее поле со значениями средней напряженности E равными 100, 200 и 600 B/cm, которое было направлено перпендикулярно плоскости образцов. Для сравнения морфологии поверхностей исследуемых структур использован сканирующий электронный микроскоп SU7000 (Hitachi) с детектором вторичных электронов. Исследование рефрактивных свойств выполнено на эллипсометре J.A. Woolam M-2000RCE. Для этого в диапазоне 200–800 нм и углах падения а, равных 65° , 70° , 75° относительно нормали к поверхности образцов, были измерены комплексные показатели отражения для s- и p-поляризованного излучения (r_p и $r_{\rm s}$) в 9 точках с отступом 5 мм относительно друг друга. Для интерпретации результатов эллипсометрии применен подход Джонса, где комплексные коэффициенты отражения r_p и r_s связаны с комплексными показателями преломления граничащих сред N и эллипсометрическими параметрами ψ и Δ [12]:

$$\begin{cases} N_i = n_i + ik_i \\ \frac{N_1 \cos \alpha - N_0 \cos \varphi}{N_1 \cos \alpha + N_0 \cos \varphi} \\ \frac{r_p}{r_s} = \frac{N_1 \cos \alpha + N_0 \cos \varphi}{N_0 \cos \alpha + N_1 \cos \varphi} = \tan \psi e^{i\Delta} \end{cases},$$

где n — показатель преломления; k — коэффициент экстинкции.

Излучение поступает из среды «0» под углом падения α, часть светового потока отражается с коэффициентами r_p и r_s , оставшаяся — преломляется в среду «1» под углом ϕ .

В настоящей работе задача эллипсометрии подложек К8 и тонких пленок ITO заключается в поиске таких значений оптических параметров и толщины, при которых эллипсометрические параметры ψ и Δ , предложенные в модели, будут наиболее сильно соответствовать экспериментальным значениям. Критерием соответствия является среднеквадратическая ошибка (MSE) [12]:

$$MSE = 1000 \sqrt{\frac{1}{3n - m} \sum_{i=1}^{l} \left[(\psi_i^{fit} - \psi_i^{exp})^2 + (\Delta_i^{fit} - \Delta_i^{exp})^2 \right]},$$

где l — количество итераций (в диапазоне 200–800 нм, n = 378); m — количество параметров заполнения (n, k, шероховатость, толщина); <math>i — номер итерации; «fit» и «exp» — данные на основе модели и эксперимента.

Выполним аппроксимацию оптических свойств подложки К8 с помощью модели Коши [12]:

$$\begin{cases} n(\lambda) = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4}, \\ k(\lambda) = k_{amp} \exp[g(\lambda - \lambda_{edge})] \end{cases}$$

где A,B,C,g — параметры заполнения; k_{amp} — амплитуда экстинкции; λ_{edge} — край поглощения; λ — длина волны.

Рассчитаем дисперсию k ITO, УНТ и их производных в соответствии с осцилляторной моделью Лоренца [12]:

$$\begin{cases} \dot{\varepsilon}(\hbar\omega) = \varepsilon_{\infty} + \sum_{j} \frac{Amp_{j}Br_{j}En_{j}}{En_{j} - (\hbar\omega)^{2} - iBr_{j}}, \\ \dot{n}(\hbar\omega) = \sqrt{\dot{\varepsilon}(\hbar\omega)} = n(\hbar\omega) + ik(\hbar\omega) \end{cases}$$

где $\dot{\epsilon}$ и \dot{n} — комплексные диэлектрическая проницаемость и показатель преломления; Amp и Br — амплитуда и уширение осциллятора; En — энергия, соответствующая резонансной частоте; $\hbar\omega$ — энергия кванта (переменная); i — мнимая единица; индекс j — порядковый номер осциллятора.

Для исследования границы раздела ITO—УНТ последовательно определим параметры для К8, слоя ITO, слоя УНТ на поверхности ITO. Для интерпретации эллипсометрии структур, содержащих УНТ, используем два независимых подхода: приближение сплошной среды (Effective Medium Approximation, EMA) Брюггемана [12], а также рассмотрение границы раздела УНТ—ITO с использованием суперпозиции осцилляторов в модели Лоренца.

Результаты и обсуждение

Наименьшему значению MSE=0,452 в спектральном диапазоне $\lambda=200$ –800 нм при аппроксимации Коши для подложек К8 соответствуют параметры $A=1,511,\ B=0,00385,\ C=7,4006\cdot 10^{-7},\ g=4,270$ и $\lambda_{edge}=1,4446$. Данные параметры подложки учитываются при дальнейших интерпретациях результатов эллипсометрии. Для системы «ITO/подложка» эллиптические параметры Ψ и Δ представлены на рис. 1.

¹ [Электронный ресурс]. Режим доступа: https://www.sigmaaldrich.com/RU/en/product/aldrich/704121 (дата обращения: 02.05.2024).

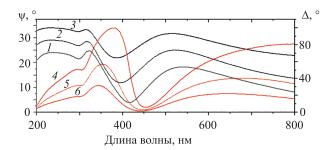
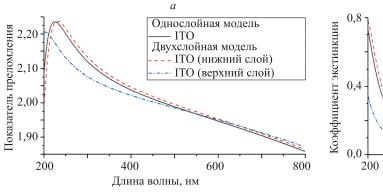
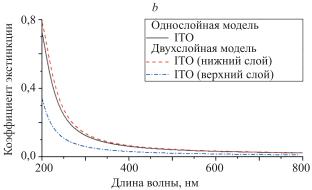


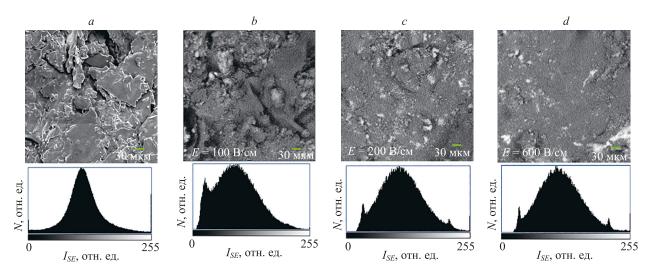
Рис. 1. Спектральные зависимости эллиптических параметров для системы «пленка оксидов индия и олова/ подложка» при разных углах падения: $\psi = 65^\circ$ (кривая 1); $\psi = 70^\circ$ (кривая 2); $\psi = 75^\circ$ (кривая 3); $\Delta = 65^\circ$ (кривая 4); $\Delta = 70^\circ$ (кривая 5); $\Delta = 75^\circ$ (кривая 6)


Fig. 1. Spectral dependencies of elliptical parameters for system "ITO/substrate" under the various incidence angles: $\psi = 65^{\circ}$ (1); $\psi = 70^{\circ}$ (2); $\psi = 75^{\circ}$ (3); $\Delta = 65^{\circ}$ (4); $\Delta = 70^{\circ}$ (5); $\Delta = 75^{\circ}$ (6)


Интерпретация результатов эллипсометрии для данной системы проходила в два этапа. Исходя из допущения, что пленка ITO однородна и оптические свойства ее слоев не зависят от расположения относительно подложки, были установлены следующие параметры ε_{∞} = 3,049, Amp = 3,124, En = 6,494 эВ и Br = 2,112 эВ при MSE = 4,174. Данные параметры для пленки ITO согласуются с полученными в работах [13, 14], как по величинам параметров, так и по полученной точности интерпретации (MSE). Однако необходимо учесть, что условия осаждения и пост-обработки приповерхностных и периферийных слоев ITO отличаются. Следовательно, существует градиент по морфологическим и оптическим свойствам ІТО вдоль толщины. При использовании двухслойной модели ITO определены данные эллипсометрии с большей точностью. В случае лазерно-ориентированного осаждения ITO, наилучшая точность MSE = 2,967 получена в случае нижнего слоя при параметрах ε_{∞} = 3,065, Amp = 3,113, En = 6,324 эВ и Br = 2,067 эВ и верхнего (приповерхностного) — ε_{∞} = 3,409, Amp = 2,428, En = 7,059 эВ и Br = 2,006 эВ. При этом средняя толщина нижнего и верхнего слоев ITO составила $h_{bot} = 68,2$ нм и $h_{top} = 82,4$ нм. Для наглядного сравнения дисперсионные зависимости п и к представлены на рис. 2.

На основании спектральных зависимостей (рис. 2) видно, что вблизи подложки пленки ITO оптически более плотные, что также проявляется в увеличении ϵ_{∞} . Это согласуется с наличием шероховатостей, и соответственно, воздушных зазоров в приповерхностных слоях. Относительно высокая амплитуда осциллятора в приповерхностном слое свидетельствует о высокой латеральной проводимости, что свойственно для ITO. Таким образом, оптические свойства слоев в лазерноосажденных пленках ITO зависят от координаты вдоль толщины. Для последующей интерпретации результатов будет использоваться двухслойная модель слоев ITO из-за оптимальной точности.

При анализе структур «УНТ-ITО-подложка» необходимо учесть, что УНТ осаждаются не сплошным слоем, а преимущественно в виде кластеров [10]. При сравнении профилей сканирующей электронной микроскопии (СЭМ) можно заметить, что с ростом напряженности электрического поля в процессе осаждения УНТ, поверхность становится более однородной (рис. 3). Для численного сравнения была построена гистограмма числа областей N, имеющих интенсивность I_{SE} . Исходными данными служили СЭМ-снимки, которые конвертировались по оттенкам серого в шкале, где оттенки I_{SE} = 255 — белого, а $I_{SE} = 0$ — черного. В качестве параметров сравнения использованы математическое ожидание $M(I_{SE})$ и дисперсия $\sigma(I_{SE})$ интенсивности вторичной эмиссии. В случае поверхности ITO без УНТ, $M(I_{SE}) = 116,4$ и $\sigma(I_{SE}) = 41,8$. При осаждении УНТ $M(I_{SE}) = 93,4$; 113,8; 117,1 и $\sigma(I_{SE})$ — 45,3; 44,1; 43,3 при E равной 100, 200, 600 В/см соответственно. Рост $M(I_{SE})$ свидетельствует об увеличении интенсивности сигнала (за счет осаждения УНТ), а спад σ_{SE} характеризует более равномерное осаждение УНТ при увеличении напряженности поля.


Ранее было установлено [11, 12], что физико-химические свойства структур на основе ITO с УНТ обусловлены не только индивидуальным вкладом УНТ и ITO, но и областями ITO с внедренными УНТ— «интерфейсом». Параметрами интерфейса можно управлять при помощи напряженности электрического поля E в процессе осаждения УНТ, которая в насто-

 $Puc.\ 2.$ Спектральные зависимости $n\ (a)$ и $k\ (b)$ пленок оксидов индия и олова, полученных методом лазерно-ориентированного осаждения в зависимости от выбранной модели

Fig. 2. Spectral dependencies of n (a) and k (b) of ITO films, obtained by laser-oriented deposition method depending on the selected model

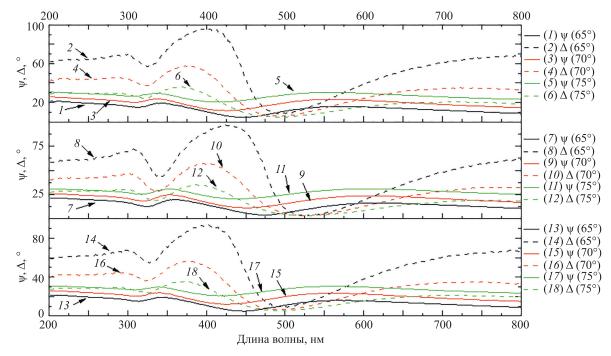

 $Puc.\ 3$. Снимки сканирующей электронной микроскопии и гистограммы распределения интенсивности сигнала вторичной эмиссии поверхностей оксидов индия и олова: без углеродных нанотрубок (a) и с углеродными нанотрубками, осажденными при напряженностях электрического поля: 100 B/cm (b), 200 B/cm (c), 600 B/cm (d)

Fig. 3. Scanning electron microscopy images and secondary emission histogram distribution of ITO surfaces: without CNTs (a) and with CNTs, deposited under various electrical field strength: 100 V/cm (b), 200 V/cm (c), 600 V/cm (d)

ящей работе изменялась в диапазоне 100–600 В/см. Следовательно, для более детальной оценки влияния УНТ на свойства ITO необходимо учесть, что часть УНТ с подобранной хиральностью имплантируется в решетку ITO. Для оценки глубины имплантации был использован метод эллипсометрии с EMA-моделью. Эллипсометрические параметры ψ и Δ структур ITO с УНТ зависят от параметра E (рис. 4).

При сравнении данных на рис. 1–2 можно заметить интерференционные сдвиги, которые обусловлены уве-

личением оптической длины пути при осаждении УНТ. Для интерпретации результатов, представленных на рис. 4, сначала была использована модель ЕМА. Слой осажденных УНТ делится на две области. Первая область соответствует границе раздела (интерфейсу) ІТО с УНТ, что обусловлено согласованием диаметров УНТ с решеткой ІТО и их последующей имплантацией в объем ІТО; вторая — содержит фрагменты УНТ, которые имеют контакт с воздухом и образуют шероховатость поверхности. Оптические свойства интерфейса

Puc.~4. Спектральные зависимости эллиптических параметров структур оксидов индия и олова с углеродными нанотрубками на подложках K8 при варьировании напряженности электрического поля E: 100 B/cm (кривые I-6), 200 B/cm (кривые 7-12), 600 B/cm (кривые 13-18) и углах падения α

Fig. 4. Spectral dependencies of elliptical parameters for structures ITO with CNTs on crown K8 substrate under the various electric field strength E and incidence angles α

«УНТ–ІТО» (n_{int} , k_{int}), в модели ЕМА, описываются линейной аппроксимацией:

$$\begin{cases} n_{int} = n_{\text{ITO}}(1-p) + n_{\text{YHT}}p, \\ k_{int} = n_{\text{ITO}}(1-p) + k_{\text{YHT}}p \end{cases},$$

где р — содержание УНТ в объеме интерфейса.

В соответствии с минимизацией MSE учитывается толщина интерфейса h_{int} и шероховатость R_q . Условия, соответствующие минимуму MSE в разных областях сканирования при разных режимах осаждения пред-

ставлены на рис. 5. Референтные параметры для УНТ были взяты из работы [15].

Из рис. 5 можно заключить следующее: с ростом напряженности электрического поля в процессе осаждения УНТ E увеличивается глубина имплантации УНТ, которая связана с толщиной интерфейса h_{int} , а также содержание УНТ в объеме интерфейса p, что связано с ростом вероятности имплантации. Несмотря на то, что модель ЕМА позволяет с высокой степенью достоверности интерпретироваться результаты эллипсометрии MSE < 4, в ней не учитываются свойства границы раз-

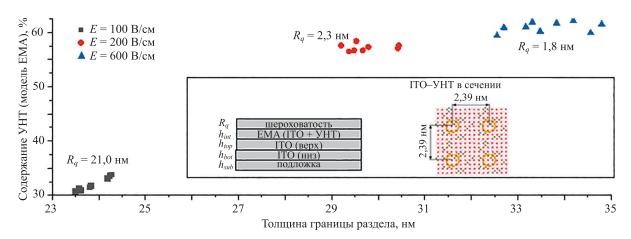


Рис. 5. Зависимость толщины границы раздела углеродных нанотрубок с оксидами индия и олова и содержания углеродных нанотрубок от используемой напряженности электрического поля в процессе осаждения

Fig. 5. The dependence of CNTs-ITO interface and CNTs content versus applied electric field strength during deposition of CNTs

Таблица. Аппроксимация оптических параметров слоев ITO, УНТ и границы раздела ITO-УНТ по модели Лоренца в спектральном диапазоне 200–800 нм

Table. Approximation of optical parameters of ITO and CNT layers and the interface between ITO and CNT using the Lorentz model in the spectral range 200–800 nm

Порядковый номер осциллятора	$oldsymbol{arepsilon}_{\infty}$	Amp_i	En_i , э ${ m B}$	Br_i , эВ	<i>h</i> , нм	R_q , нм	MSE
		IT	О (однослойна	я модель)			
1	3,049	3,124	6,494	2,112	150,3	35,9	4,174
•		IT	О (двухслойна	я модель)			
1 (верх)	3,409	2,428	7,059	2,006	82,4	35,6	2,967
1 (низ)	3,065	3,113	6,324	2,067	68,2		
•			УНТ [15	[]			
1	1,044	2,070	4,563	2,304	X	X	0,113
		Граница р	аздела УНТ-П	FO(E = 100 B/c)	ем)		
1	1,909	2,530	5,717	1,709	19,0	29,3	2,465
2		3,275	4,714	2,857			
		Граница р	аздела УНТ-П	FO(E = 200 B/c)	em)		
1	1,215	3,232	6,127	2,672	21,8	25,4	3,048
2		3,396	4,202	0,576			
		Граница р	аздела УНТ-П	FO (E = 600 B/c)	ем)		
1	1,007	3,576	6,301	2,366	18,6	27,2	1,865
2		3,551	4,239	0,581			

Примечание. Х — численного описания данного параметра при указанных условиях не требуется.

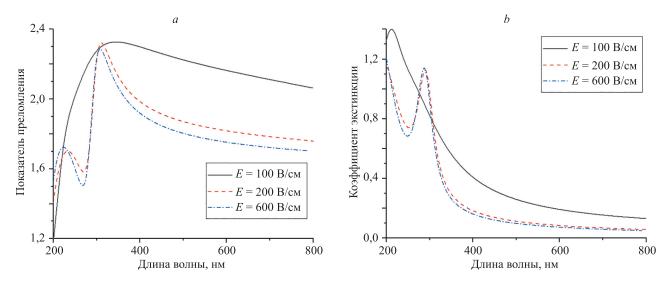


Рис. 6. Спектральные зависимости показателя преломления (a) и коэффициента экстинкции (b) интерфейса пленок оксидов индия и олова с углеродными нанотрубками, осажденными при разной напряженности электрического поля (100, 200 и 600 В/см)

Fig. 6. Spectral dependences of the refractive index (a) and extinction coefficient (b) of the interface of ITO films with CNTs deposited at different electric field strengths (100–600 V/cm)

дела ITO–УНТ, оптические свойства которых отличаются от индивидуальных свойств ITO и УНТ. Данные о коэффициентах заполнения по модели Лоренца для ITO и УНТ, толщине границы раздела УНТ–ITO и содержании УНТ, полученные ранее (рис. 1–5), были использованы в качестве референтных для последующего поиска параметров заполнения для границы раздела УНТ–ITO. Согласно указанному подходу, интерфейс ITO–УНТ можно описать суперпозицией осцилляторов (таблица).

Отметим, что при осаждении УНТ величина ϵ_{∞} снижается, что можно объяснить эффектом просветления за счет УНТ. Наблюдается также рост амплитуды осцилляторов при осаждении УНТ, что может быть связано с увеличением количества носителей заряда. Спектральные зависимости показателей преломления и коэффициентов экстинкции, полученные на основе данных таблицы показаны на рис. 6.

При сравнении данных рис. 5 (оптические свойства отдельно взятого ITO и УНТ), заметно, что при использовании E = 100 В/см интерфейс ITO-УНТ определяется преимущественно ITO, а при E = 200 B/cm и E = 600 B/cm — УНТ, что согласуется с результатами, полученными при использовании приближения сплошной среды (рис. 5). Анализ спектральных зависимостей коэффициента экстинкции (рис. 6, b) интерфейса УНТ-ІТО, а также сопоставление полученных данных с зависимостями для ITO без УНТ (рис. 2, b), свидетельствует о батохромном сдвиге спектров экстинкции (пропускания) при осаждении УНТ, который возрастает с увеличением напряженности электрического поля в процессе осаждения УНТ. Полученные результаты согласуются с предположением о формировании комплекса с переносом заряда [16] при введении межмолекулярного донора (УНТ) в систему «акцептор (In₂O₃)донор (SnO_2) ». Заметим также, что, как было показано ранее [17], УНТ могут проявлять как акцепторные, так и донорные свойства.

Заключение

На основе полученных эллипсометрических данных выполнен детальный анализ оптических свойств границы раздела: оксидов индия и олова с углеродными нанотрубками. Установлено, что при лазерно-ориентированном осаждении углеродных нанотрубок на поверхность пленок оксидов индия и олова формируется граница раздела, которая представляет собой композитный материал, оптические свойства которого отличаются от исходной матричной структуры. В новом композите наблюдается уменьшение показателя преломления и фиксируется батохромный сдвиг спектров коэффициентов экстинкции и поглощения, величина которого увеличивается в зависимости от роста напряженности электрического поля в процессе осаждения углеродных нанотрубок. При использовании модели сплошной среды данный феномен можно связать с ростом содержания углеродных нанотрубок в интерфейсе «углеродные нанотрубки-оксиды индия и олова» и увеличении толщины слоя с интерфейсом при росте Eс 100 до 600 В/см. Полученные результаты позволяют прогнозировать свойства композитных материалов на основе оксидов индия и олова с углеродными нанотрубками для последующих задач в оптоэлектронных, микрофлюидных и биомедицинских приложениях. Выбор оптимального режима осаждения углеродных нанотрубок на поверхность пленок оксидов индия и олова зависит от области применения композитных структур. Так, например, при разработке жидкокристаллических устройств, работающих на просвет, режим с E = 600 B/cm является более предпочтительным ввиду снижения потерь на отражение.

Литература

- Dong W.J., Yu H.K., Lee J.L. Abnormal dewetting of Ag layer on three-dimensional ITO branches to form spatial plasmonic nanoparticles for organic solar cells // Scientific Reports. 2020. V. 10. N 1. P. 12819. https://doi.org/10.1038/s41598-020-69320-4
- Amin R., Maiti R., Gui Y., Suer C., Miscuglio M., Heidari E., Khurgin J.B., Chen R.T., Dalir H., Sorger V.J. Heterogeneously integrated ITO plasmonic Mach–Zehnder interferometric modulator on SOI // Scientific Reports. 2021. V. 11. N 1. P. 1287. https://doi. org/10.1038/s41598-020-80381-3
- Liu C., Wang J., Wang F., Su W., Yang L., Lv J., Fu G., Li X., Liu Q., Sun T., Chu P.K. Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings // Optics Communications. 2020. V. 464. P. 125496. https://doi.org/10.1016/j. optcom.2020.125496
- Hong C.H., Shin J.H., Ju B.K., Kim K.-H., Park N.-M., Kim B.-S., Cheong W.-S. Index-matched indium tin oxide electrodes for capacitive touch screen panel applications // Journal of Nanoscience and Nanotechnology. 2013. V. 13. N 11. P. 7756–7759. https://doi. org/10.1166/jnn.2013.7814
- Ahmed M., Bakry A., Qasem A., Dalir H. The main role of thermal annealing in controlling the structural and optical properties of ITO thin film layer // Optical Materials. 2021. V. 113. P. 110866. https:// doi.org/10.1016/j.optmat.2021.110866
- Losego M.D., Efremenko A.Y., Rhodes C.L., Cerruti M.G., Franzen S., Maria J.P. Conductive oxide thin films: Model systems for understanding and controlling surface plasmon resonance // Journal of Applied Physics. 2009. V. 106. N 2. P. 024903. https://doi. org/10.1063/1.3174440
- El Nahrawy A.M., Abou Hammad A.B., Youssef A.M., Mansour A.M., Othman A.M. Thermal, dielectric and antimicrobial properties of polystyrene-assisted/ITO:Cu nanocomposites // Applied Physics A. 2019. V. 125. N 1. P. 46. https://doi.org/10.1007/s00339-018-2351-5
- Mei F., Huang J., Yuan T., Li R. Effect of cerium doping on the microstructure and photoelectric properties of Ce-doped ITO films // Applied Surface Science. 2020. V. 509. P. 144810. https://doi. org/10.1016/j.apsusc.2019.144810
- Taha H., Jiang Z.T., Yin C.Y., Henry D.J., Zhao X., Trotter G., Amri A. Novel approach for fabricating transparent and conducting SWCNTs/ITO thin films for optoelectronic applications // Journal of Physical Chemistry C. 2018. V. 122. N 5. P. 3014–3027. https://doi. org/10.1021/acs.jpcc.7b10977
- Toikka A., Ilin M., Kamanina N. Perspective coatings based on structured conducting ITO thin films for general optoelectronic applications // Coatings. 2024. V. 14. N 2. P. 178. https://doi. org/10.3390/coatings14020178
- 11. Каманина Н.В., Васильев П.Я., Студенов В.И. Оптическое покрытие на основе ориентированных в электрическом поле углеродных нанотрубок для оптического приборостроения, микро- и наноэлектроники при нивелировании границы раздела сред: твердая подложка-покрытие. Патент RU 2405177. Бюл. 2010. № 33.
- Complete EASE: Data Analysis Manual (version 4.63). J.A. Wollam Co. 2011, 410 p.
- Jung Y.S. Spectroscopic ellipsometry studies on the optical constants of indium tin oxide films deposited under various sputtering conditions // Thin Solid Films. 2004. V. 467. N 1-2. P. 36–42. https:// doi.org/10.1016/j.tsf.2004.02.047
- Emam-Ismail M., El-Hagary M., El-Sherif H.M., El-Nahass M.M. Spectroscopic ellipsometry and morphological studies of nanocrystalline NiO and NiO/ITO thin films deposited by e-beams technique // Optical Materials. 2021. V. 112. P. 110763. https://doi. org/10.1016/j.optmat.2020.110763
- Ermolaev G.A., Tsapenko A.P., Volkov V.S., Volkov V.S., Anisimov A.S., Gladush Y.G., Nasibulin A.G. Express determination of thickness and dielectric function of single-walled carbon nanotube films // Applied Physics Letters. 2020. V. 116. N 23. P. 231103. https://doi.org/10.1063/5.0012933
- Kamanina N.V., Zubtcova Yu.A., Kukharchik A.A., Lazar C., Rau I. Control of the IR-spectral shift via modification of the surface relief between the liquid crystal matrixes doped with the lanthanide nanoparticles and the solid substrate // Optics Express. 2016. V. 24. N 2. P. A270–A275. https://doi.org/10.1364/oe.24.00a270

References

- Dong W.J., Yu H.K., Lee J.L. Abnormal dewetting of Ag layer on three-dimensional ITO branches to form spatial plasmonic nanoparticles for organic solar cells. *Scientific Reports*, 2020, vol. 10, no. 12819, pp. 12819. https://doi.org/10.1038/s41598-020-69320-4
- Amin R., Maiti R., Gui Y., Suer C., Miscuglio M., Heidari E., Khurgin J.B., Chen R.T., Dalir H., Sorger V.J. Heterogeneously integrated ITO plasmonic Mach–Zehnder interferometric modulator on SOI. Scientific Reports, 2021, vol. 11, no. 1, pp. 1287. https://doi. org/10.1038/s41598-020-80381-3
- Liu C., Wang J., Wang F., Su W., Yang L., Lv J., Fu G., Li X., Liu Q., Sun T., Chu P.K. Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings. *Optics Communications*, 2020, vol. 464, pp. 125496. https://doi. org/10.1016/j.optcom.2020.125496
- Hong C.H., Shin J.H., Ju B.K., Kim K.-H., Park N.-M., Kim B.-S., Cheong W.-S. Index-matched indium tin oxide electrodes for capacitive touch screen panel applications. *Journal of Nanoscience* and Nanotechnology, 2013, vol. 13, no. 11, pp. 7756–7759. https://doi.org/10.1166/jnn.2013.7814
- Ahmed M., Bakry A., Qasem A., Dalir H. The main role of thermal annealing in controlling the structural and optical properties of ITO thin film layer. *Optical Materials*, 2021, vol. 113, pp. 110866. https:// doi.org/10.1016/j.optmat.2021.110866
- Losego M.D., Efremenko A.Y., Rhodes C.L., Cerruti M.G., Franzen S., Maria J.P. Conductive oxide thin films: Model systems for understanding and controlling surface plasmon resonance. *Journal* of *Applied Physics*, 2009, vol. 106, no. 2, pp. 024903. https://doi. org/10.1063/1.3174440
- El Nahrawy A.M., Abou Hammad A.B., Youssef A.M., Mansour A.M., Othman A.M. Thermal, dielectric and antimicrobial properties of polystyrene-assisted/ITO:Cu nanocomposites. *Applied Physics A*, 2019, vol. 125, no. 1, pp. 46. https://doi.org/10.1007/s00339-018-2351-5
- Mei F., Huang J., Yuan T., Li R. Effect of cerium doping on the microstructure and photoelectric properties of Ce-doped ITO films. *Applied Surface Science*, 2020, vol. 509, pp. 144810. https://doi. org/10.1016/j.apsusc.2019.144810
- Taha H., Jiang Z.T., Yin C.Y., Henry D.J., Zhao X., Trotter G., Amri A. Novel approach for fabricating transparent and conducting SWCNTs/ITO thin films for optoelectronic applications. *Journal of Physical Chemistry C*, 2018, vol. 122, no. 5, pp. 3014–3027. https://doi.org/10.1021/acs.jpcc.7b10977
- Toikka A., Ilin M., Kamanina N. Perspective coatings based on structured conducting ITO thin films for general optoelectronic applications. *Coatings*, 2024, vol. 14, no. 2, pp. 178. https://doi. org/10.3390/coatings14020178
- 11. Kamanina N.V., Vasil'ev P.J., Studenov V.I. Optical coating based on carbon nanofibres aligned in electric field for optical instrument making, micro- and nano-electronics when levelling boundary interface of media: solid substrate-coating. *Patent RU 2405177*, 2010. (in Russian)
- 12. Complete EASE: Data Analysis Manual (version 4.63). J.A. Wollam Co. 2011, 410 p.
- 13. Jung Y.S. Spectroscopic ellipsometry studies on the optical constants of indium tin oxide films deposited under various sputtering conditions. *Thin Solid Films*, 2004, vol. 467, no. 1-2, pp. 36–42. https://doi.org/10.1016/j.tsf.2004.02.047
- Emam-Ismail M., El-Hagary M., El-Sherif H.M., El-Nahass M.M. Spectroscopic ellipsometry and morphological studies of nanocrystalline NiO and NiO/ITO thin films deposited by e-beams technique. *Optical Materials*, 2021, vol. 112, pp. 110763. https://doi. org/10.1016/j.optmat.2020.110763
- Ermolaev G.A., Tsapenko A.P., Volkov V.S., Volkov V.S., Anisimov A.S., Gladush Y.G., Nasibulin A.G. Express determination of thickness and dielectric function of single-walled carbon nanotube films. *Applied Physics Letters*, 2020, vol. 116, no. 23, pp. 231103. https://doi.org/10.1063/5.0012933
- Kamanina N.V., Zubtcova Yu.A., Kukharchik A.A., Lazar C., Rau I. Control of the IR-spectral shift via modification of the surface relief between the liquid crystal matrixes doped with the lanthanide nanoparticles and the solid substrate. *Optics Express*, 2016, vol. 24, no. 2, pp. A270–A275. https://doi.org/10.1364/oe.24.00a270

- Sheka E.F., Chernozatonskii L.A. Graphene-carbon nanotube composites // Journal of Computational and Theoretical Nanoscience. 2010. V. 7. N 9. P. 1814–1824. https://doi.org/10.1166/jctn.2010.1546
- 17. Sheka E.F., Chernozatonskii L.A. Graphene-carbon nanotube composites. *Journal of Computational and Theoretical Nanoscience*, 2010, vol. 7, no. 9, pp. 1814–1824. https://doi.org/10.1166/jctn.2010.1546

Авторы

Тойкка Андрей Сергеевич — аспирант, Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина), Санкт-Петербург, 197022, Российская Федерация; младший научный сотрудник, Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра «Курчатовский институт», Гатчина, 188300, Российская Федерация, № 5721627270, https://orcid.org/0000-0002-8694-8497, astoikka.nano@gmail.com

Каманина Наталия Владимировна — доктор физико-математических наук, старший научный сотрудник, заведующий лаборатории, НПО «Государственный оптический институт им. С.И. Вавилова», Санкт-Петербург, 192171, Российская Федерация; профессор, Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина), 197022, Санкт-Петербург, Российская Федерация; ведущий научный сотрудник Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра «Курчатовский институт», Гатчина, 188300, Российская Федерация, вс 55980751700, https://orcid.org/0000-0002-2903-2685, nvkamanina@mail.ru

Andrei S. Toikka — PhD Student, Saint Petersburg Electrotechnical University "LETI", Saint Petersburg, 197022, Russian Federation; Junior Researcher, Petersburg Nuclear Physics Institute — National Research Center "Kurchatov Institute", Gatchina, 188300, Russian Federation, Sc 5721627270, https://orcid.org/0000-0002-8694-8497, astoikka.nano@gmail.com

Authors

Natalia V. Kamanina — D.Sc. (Physics & Mathematics), Senior Researcher, Head of Laboratory, Research and Production Association "Vavilov State Optical Institute", Saint Petersburg, 192171, Russian Federation; Professor, Saint Petersburg Electrotechnical University "LETI", Saint Petersburg, 197022, Russian Federation; Leading Researcher, Petersburg Nuclear Physics Institute — National Research Center "Kurchatov Institute", Gatchina, 188300, Russian Federation, Sc 55980751700, https://orcid.org/0000-0002-2903-2685, nvkamanina@mail.ru

Статья поступила в редакцию 28.02.2024 Одобрена после рецензирования 29.03.2024 Принята к печати 16.05.2024 Received 28.02.2024 Approved after reviewing 29.03.2024 Accepted 16.05.2024

Работа доступна по лицензии Creative Commons «Attribution-NonCommercial»