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Abstract

The paper reports a method for compressed representation of matrix data on the principles of quantum theory. The method
is formalized as complex-valued matrix factorization based on standard singular value decomposition. The developed
approach establishes a bridge between standard methods of semantic data analysis and quantum models of cognition
and decision. According to the quantum theory, real-valued observable quantities are generated by wavefunctions being
complex-valued vectors in multidimensional Hilbert-space. Wavefunctions are defined as superpositions of basis vectors
encoding composition of semantic factors. Basis vectors are found by singular value decomposition of the initial data
matrix transformed to a real-valued amplitude form. Phase-dependent superposition amplitudes are found to optimize
approximation of the source data. The resulting model represents the observed real-valued data as generated from a
small number of basis wavefunctions superposed with complex-valued coefficients. The method is tested for random
matrices of sizes from 3 x 3 to 12 x 12 and dimensionality of latent Hilbert-space from 2 to 4. The best approximation
is achieved by encoding latent factors in normalized complex-valued amplitude vectors interpreted as wavefunctions
generating the data. In terms of approximation fitness, the developed method surpasses standard truncated SVD of
the same dimensionality. The mean advantage over the considered range of parameters is 22 %. The method permits
cognitive interpretation in accord with the existing quantum models of cognition and decision. The method can be
integrated in the algorithms of semantic data analysis including natural language processing. In these tasks, the obtained
improvement of approximation translates to the increased precision of similarity measures, principal component analysis,
advantage in classification, and document ranking methods. Integration with quantum models of cognition and decision
is expected to boost methods of artificial intelligence and machine learning improving imitation of natural thinking.
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AHHOTALUA

IIpenmer uccaegoBanms. [IpencTaBiieH MeTO CXKATOTO MPEICTABICHUS MAaTPUYHBIX JIAHHBIX HA NPUHIMIAX
KBaHTOBOI TeopuHu. /laHHBIC UMCIOT BHJ TaOJIHIIBI YHCICHHBIX 3HAYCHUI HAOOpa BEJIMUYUH B PsJIC IKCIICPUMCHTOB.
MeTton hopmanu3oBaH B BuJ¢ (aKTOPU3ALNN JAHHBIX HA OCHOBE CHHTYJISIPHOTO pa3jiokKeHHs, 0000IEHHOTO Ha
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10JIe KOMIUIEKCHBIX 4Hces. PaccMoTpeHa BO3MOXKHOCTh MHTEPIPETALMH pa3pabOTaHHOTO METOJa B COOTBETCTBHU
C IPUHIMIIAMH KBAHTOBOM KOTHUTUBUCTUKH. MeToA. B COOTBETCTBHHM C KBAHTOBOW TEOpHUEH, ACHCTBUTEIbHBIC
BEJIMYMHBI B MCXOJHBIX JAHHBIX MOPOXKIAIOTCA BOJHOBBIMU (DYHKIMSAMH B BHJE KOMIUIEKCHO3HAYHBIX BEKTOPOB B
MHOTOMEPHOM THIIEOEPTOBOM MPOCTPAHCTBE. BONMHOBBIE (DYHKIMI OIPEAEISIIOTCS CyTEPIO3UIIAMH Oa3UCHBIX BEKTOPOB,
MIPEACTABIAIOMINMU KOMITO3UIHIO CEMaHTHIeCKUX (aKTOpoB. ba3ucHbIE BeKTOpa pacCUUTHIBAIOTCS C MTOMOIIBIO
CHHTYIISIPHOTO Pa3JIOKSHNUSI MaTPHIIBI HCXOJHBIX JaHHBIX, TPUBEICHHON K aMIUIUTYAHOH (opme. KommiekcHo3HaTHbIE
K03 HUIUEHTEI Pa3IOKEHHS OTIPEASIISIOTCS 10 YCIOBUIO HAMITYYIIIeH allpOKCUMAINH HCXOHBIX JaHHBIX. OCHOBHbIE
pe3yasTaThl. MeTos anpoOupoBaH Ha CIydailHO CreHEpHPOBAHHBIX MaTpHIAX pa3MepoM oT 3 X 3 mo 12 x 12 n
Pa3MepHOCTSIX CKaTOro TMiIbO0epTOBa MPOCTpaHcTBa oT 2 10 4. Hawmmy4miast TOUHOCT NMPUOIVKEHUSI TOCTUIaeTCs IPU
UCIIOJIb30BAaHUU B KAUECTBE 3JIEMEHTOB PA3JIOKEHNUsT HOPMUPOBAHHBIX KOMIUICKCHO3HAYHBIX BEKTOPOB, BBIIIOJIHAOIINX
POJTb MOPOXKAAIOINX BOIHOBBIX (DyHKIMIL. [TomyueHHass TOUHOCTB BO BCEX CIIy4dasiX MPEBOCXOIUT TOUHOCTh MPHOIMKEHHS
CTaH/IapTHBIM METOJIOM yCEUEHHOTO CHHTYISPHOTO pasziokenus. CpenHee MOBBIILIEHHE TOYHOCTH HA UCCIIET0BAaHHOM
HHTEpBaJie mapaMeTpoB cocTaBuio 22 %. MeTox momyckaeT KOTHUTHBHYIO HHTEPIPETAIHI0, COBMECTUMYIO C
KBAaHTOBBIMU MOJICIISIMH TIOBEJCHUS U NMpHHATHA perneHnid. [IpakTuyeckass 3HaYnMocTh. [IpeacTaBieHHbI MeTO
MIPUMEHHM B 33j1adyax CEMaHTHYECKOTO aHaM3a JAaHHBIX, BKIIOYas 33/1a4l 00pabOTKH €CTEeCTBEHHOrO s3bIKa. B aTnx
MIPYIOKEHUSIX MTOTYYEHHBIH pe3ysIbTaT MOXKET OBITh HCIIOIB30BaH JUIsl ITOBBIMICHUS! TOYHOCTH BBIIEICHUS TIIaBHBIX
CMBICJIOBBIX KOMIIOHEHT, COBEPILIEHCTBOBAHUS METO/IOB KJIACCU(HKALMH U PAHKUPOBAHUS TEKCTOBBIX JOKYMEHTOB.
B03MOXHOCTh KOTHUTHBHOM MHTEPIIPETAMU U (hopMan3aiys B popMe MaTPUIHOTO Pa3IOKEeHHsT OTKPBIBACT MO/IXO/IbI
K JajbHEHIIeMy HUCTIOJIb30BAHUIO MOZI€el KBAHTOBOW KOTHUTUBUCTUKHU B 3a/1auaX aHann3a JaHHbIX. Oxkupaercs,
YTO BCTPaMBaHNWE KBAHTOBOH JIOTMKH Ha OCHOBE KOMIIJIEKCHO3HAYHOTO BEPOSITHOCTHOTO MCUHCICHHS B allTOPHTMBI
MAIIMHHOTO 00ydeHnsI ¥ MCKYyCCTBEHHOTO MHTEIUIEKTa MO3BOJIUT UMUTHPOBATh PabOTy €CTECTBEHHBIX KOTHUTHBHBIX

CUCTCM.
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Introduction

Most of the existing methods of data science represent
features of the analyzed data by real numbers. Recent
progress in cognitive-behavioral modeling, however,
calls into question the appropriateness of this choice.
Namely, quantum models of human behavior show the
advantage of encoding cognitive factors by complex-
valued amplitudes related to the observable quantities by
quantum-theoretic Born’s rule. The resulting probabilistic
structure captures regularities of human behavior better
than classical probability, making progress in problems
challenging classical approaches [1-5]. When data
originate from human behavior (e.g., for texts in natural
language, social and economic statistics), complex-valued
quantum-probabilistic structure is then expected to improve
performance of the existing methods of analysis.

In this paper we focus on a Singular Value
Decomposition (SVD) used to approximate a two-
dimensional array of data as a product of smaller size
matrices encoding “semantic” structure behind the observed
data. Using real-valued calculus by default, this procedure
is a mathematical core of latent semantic analysis of natural
language [6—8]. As motivated above, we turn SVD from
classical to complex-valued structure, while keeping its
basic matrix-factorization idea.

Stage 1: real-valued amplitude-wise SVD

Source data have a form of a real-valued matrix P
with M rows and N columns. Rows of matrix P stand
for M target features that can have two outcomes, say 0

and 1. Columns are N > M experiments in which these
features are observed. Real positive element P[i, j] = p;;
is the probability of observing feature i in experiment j,
normalized such that total probability of all features in each
experiment is unity:

M
Pl = 2py=1. (1)
i=1

Vector p; can be interpreted as a probabilistic profile of
the observed features in experiment j. Normalized matrix
P is then converted to the amplitude matrix A by element-
wise square root
so that the probability vectors p; are transformed to the real-
valued amplitude column forming matrix A.

Next, matrix A is approximated by a product

A=U x A XV, 3)

where U, A and V; are truncated versions of the real-
valued matrices obtained from standard SVD shown in
Fig. 1. Namely, matrix U; consists of K < M orthogonal
columns, V{ consists of K orthogonal rows, and A;
are the corresponding eigenvalues. Decomposition (3)
approximates initial amplitude matrix A optimally in the
least-squares sense [6, 9].

Return to the probabilities is realized by element-wise
squaring of the approximated amplitudes A2 inverting the
relation (2). The result is different from the approximation
P obtained from standard SVD applied directly to the
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Fig. 1. Amplitude-wise singular value decomposition. First, normalized source probability data P (1) are converted by element-wise
square root (2) to positive real amplitudes A. This matrix is approximated by standard SVD truncated to K largest eigenvalues (3).
Shown is the case N=6, M=4, K=2

source data and truncated to the same dimension K. The
latter approximates the source data more accurately, as
measured by the Frobenius norm ||-||:

dsyp = ||P — P|| <[P - A% “4)
This measure is used to estimate the advantage of the
developed method in section “Testing”.

Stage 2: Complex-valued factorization

Advantage over the standard SVD (4) is achieved by
extending the domain of the amplitude matrix A to complex
numbers. Observable probabilities are then generated from
a complex-valued matrix ¥ by element-wise application of
the Born’s rule generalizing square-root relation (2)

Pop =P py=lv )
Matrix ¥ is factorized in the product
¥Y=U,xC, (6)

where Uy is the same as in (3), while matrix C consists of N
complex-valued column vectors |cj) of length K as shown
in Fig. 2.

Column vectors of ¥ are superpositions

As required by (1), these vectors are normalized as

<‘I’j|\|’j> = <cj‘cj> =1, (®)
where row vector (-| is conjugate (Hermitian) transpose
of |') in quantum-theoretic bra-ket notation. Accordingly,
vectors |\|lj> play the role of wavefunctions generating
probabilistic profiles p; in each of N experiments.

As in quantum physics [10], K mutually orthogonal
real-valued columns |u;) of matrix U, are interpreted as
stationary cognitive states of the (behavioral) system
that generated the data. They function as an incomplete
set of basis vectors in M-dimensional Hilbert-space
H,, accommodating wavefunctions |\|1_,-). K-dimensional
subspace Hy they span is a complex-valued version of a
low-dimensional semantic space used in latent semantic
analysis [6—8]. Normalized vectors |cj> in this space are
cognitive wavefunctions representing behavioral data in
compressed “semantic” form.

Stage 3: Finding the coefficients

Coefficient matrix C in (6) is sought to obtain the
wavefunction matrix ¥ that would reproduce source data
P in the best possible way. Namely,

C = argmin||P — P )

CXpHa

< where P, is the matrix of explained probabilities
W) =Ule)=Yc;lu). (7) generated by element-wise Born’s rule (5), and ||| is the
/ = Frobenius (Hilbert-Schmidt) matrix norm. Definition (9)
U C b 4 Peyp
lu;) [uz) ler) [e2) lex) 1) [w2) lwn) P P2 P~
U U pPu P2 Piv
Cii Ci2 Cin | P21
X =
Ck1 Ck2 CKN
Uy U P PuN
Real basis Complex-valued Complex-valued Explained
vectors coefficients amplitudes probabilities

Fig. 2. Scheme of the complex-valued matrix factorization (6). Real-valued basis vectors |u;) obtained from amplitude-wise truncated
SVD (Fig. 1) are superposed with N complex-valued coefficient vectors |c;) forming the matrix C of shape K x N. This produces
N wavefunctions |\|lj> (7) generating the explained probabilities P, via the Born’s rule (5). Coefficients C are set to minimize the
Frobenius distance between explained and actual probability matrices. As in Fig. 1, shown is the case N=6, M=4,K=2
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prescribes to find N complex-valued vectors |cj> of length K
satisfying normalization (8). Each component c;; is encoded
by magnitude » and phase @, both being real numbers,
whereas phase of one ¢;; in every |¢;) is set to zero due to
insensitivity of the observable probabilities to the global
phase factor. In total, this results in

2N(K-1) (10)
real-valued parameters sought to minimize distance
between the explained and actual data (9). This problem
is addressed by standard numerical optimization methods.
We used the Nelder-Mead algorithm from SciPy library
[11] applied for N independent optimization problems of
2(K — 1) dimensions for each vector |c;).

Testing

This section summarizes approbation of the developed
algorithm. The first test validates normalization of the
complex-valued vectors in (7) and (8), supporting their
interpretation as wavefunctions of data. Tests 2 and 3
quantify improvement of the data approximation achieved
by the developed method relative to its real-valued version
and the standard SVD.

Test 1: normalization

Normalization of coefficients ¢;; in (7) is due
to interpretation of vectors \cj) as wavefunctions of
experimental data in K-dimensional latent space. This
choice is verified by lifting restriction (8) and allowing
vectors |cj) to have arbitrary lengths

) an

Compared to (10), this adds one additional parameter
for each of N vectors |cj), so that the total number of
optimization variables becomes N(2K — 1). Histogram of
the resulting values (11) from 2000 optimized vectors is
shown in Fig. 3. The mean and standard deviation of this
statistics

r;=1.002 +0.016 (12)

400 1
.
2
S 2001
0-
0.96 1.00 1.04
7

Fig. 3. Distribution of 2000 coefficient vector lengths (11)
obtained in complex-valued decomposition of random data with
shape N =6, M= 4, and truncation to K = 2 basis dimensions.
Heights of the bars show the number of the values falling in the
corresponding bins. The mean value is sharply peaked at unity
(12) in agreement with normalization (8)

indicate that in agreement with quantum-theoretic reason
normalization (8) simplifies representation without
degrading its accuracy.

Test 2: real-complex difference for the same
algorithm

This test quantifies how generalization to complex
numbers improves quality of the approximation obtained
from the same form of matrix decomposition. Namely,
complex-valued algorithm shown in Fig. 2 is compared
with its performance when the coefficient matrix C in
optimization (9) is limited to real numbers. In this latter
case, real-valued amplitude matrix W approximates the
source data with Frobenius distance

2
dreal = ”P - \PRH

analogous to (4). This value is compared with the distance
obtained from the complex-valued version of an algorithm

dcomplex = ”P - ‘\Il|2|| (13)
by relative improvement
drea B dcom ex
R, = (14)

dreal

This quantity is measured for truncation numbers K
ranging from 2 to 4 and sizes N and M of the source data
matrix P ranging from K + 1 to K + 8. In each set (K, N, M),
independent optimizations producing d;., and dgompjex Were
performed for 100 randomly generated matrices P.

The resulting values (14) are shown in Fig. 4. The
largest improvements are achieved for the smallest N and M
close to K. For each K, decreasing of R; as a function of M
is due to an increasing number of features addressed by the
same number of the optimized phase factors. Averaging of
Ry over all N and M for K =2, 3, 4 produces mean relative
improvements of 41 %, 56 %, and 75 %, respectively.
To compare, the mean difference between the sides of
inequality (4) over the same range of parameters is 6 %.

Test 3: quantum-probabilistic decomposition and
standard truncated SVD

In this test, the quantum-probabilistic scheme shown
in Fig. 2 is compared with the standard truncated SVD.
The corresponding distances (13) and (4) are compared by
relative improvement

_ dSVD - dcomplex
=

15

dSVD ( )

Identically to the previous one, this test is performed
for K =2, 3, 4 and sizes of source data N and M ranging
from K + 1 to K + 8. The obtained color maps, analogous to
shown in Fig. 4, indicate that improvement (15) is largely
independent on N. Therefore, these data are shown in Fig. 5
as functions of M for each K. As in the test 2, the largest
improvements are observed for the number of features
M= K + 1 reaching ~80 % for K = 4. Average improvement
overall K=2,3,4is(R,) =22 %.

Test 3 is significant in two aspects. First, it shows the
advantage over widely used baseline method of semantic
data analysis. Test 2, in contrast, compares the developed
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Fig. 4. Advantage in approximation fitness achieved by complex-valued decomposition (Fig. 2) over its real-valued version. Color
maps show relative improvement (14) for K = 2, 3, 4 with the number of experiments N (horizontal axis) and the number of features
M (vertical axis) ranging from K + 1 to K + 8 in each case

M-K

Fig. 5. Relative improvement (15) quantifying the advantage of
the developed algorithm over the standard SVD approximation
truncated to the same number of latent factors K

algorithm with its real-valued version realized specifically
to explicate the difference brought in by using complex
numbers. The resulting improvement shown in Fig. 4 is
then explainable by the larger number of parameters in the
complex-valued version, adding the new (phase) degrees
of freedom.

Results of test 3 are not explained by this argument.
For K =2, for example, the total numbers of parameters in
both algorithms are equal: matrix C (Fig. 2) and the product
A¢ x V;in standard SVD (Fig. 1) have the same number of
parameters 2N (10). Higher approximation fitness in this
case is then due to more efficient use of these parameters
by the developed algorithm. Analogous advantage of the
quantum-probabilistic approach is observed for the Hilbert-
space model of semantics of natural language [12].

Discussion

Although the quantum-probabilistic structure was
previously used mostly to model of human-generated
(behavioral) data, the obtained result shows its advantage

even for the pseudo-random matrices taken for testing
above. In this case, the obtained model works in “as if”
mode, suggesting a cognitive structure of a living agent
that might generate the considered data. This process is
the essence of an “intentional stance”, virtually endowing
behavior with human-like subjectness [13].

Formally, the obtained improvement in accuracy is due
to phase degrees of freedom allowing account of non-linear
composition of probabilistic factors by linear superposition
of the basis wavefunctions. Analogous to similar method
[14], this aligns with previous results showing that this
“interference effect” is necessary for modeling of data
not restricted to rational Boolean logic [15]. Within the
intentional stance, interference accounts for regularities
of semantic composition, central in modeling of natural
language, information retrieval, and artificial intelligence
in general [16-23]. The obtained result connects these
methods to classical LSA and its successors [24, 25].
In this perspective, phase degrees of freedom account
for subjectivity of meaning non-predetermined by the
input data, thereby allowing modeling of alternative
interpretations of the same factuality.

Conclusion

The obtained result shows the benefit of turning from
real- to complex-valued calculus in the baseline method of
data analysis. Better approximation of data with the same
number of parameters reveals fundamental advantage of
quantum-theoretic calculus for compressed representation
of information. This advantage can be projected to other
methods of data analysis, processing of natural language,
and algorithms of artificial intelligence. Analogous to LSA
and SVD considered here, these areas can harness the
advantage of the Hilbert-space probability structure.
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