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NCKYCCTBEHHbIN MHTEJUTEKT M1 KOTHUTUBHBIE MIHMOPMALIMIOHHBIE TEXHO10IM N
ARTIFICIAL INTELLIGENCE AND COGNITIVE INFORMATION TECHNOLOGIES

AHHOTanMs pa3gena

HcKyccTBEeHHBIM MHTEIUICKT CETOMIHS — OJHA M3 HamOoJiee pa3BUBAIOIIMXCS 00NacTell 3HAHUH, HApaBlICHHAS
Ha CO3/IaHHE aJTOPUTMOB BOCIIPOU3BEICHUS KOTHUTHBHBIX U TBOPUYECKUX CITOCOOHOCTEH YeIOBEKa B YCIOBHIX
HEOIIPEAEICHHOCTH U HENOIHOTHI IaHHbIX. [laHHBII pa3/ies Hallero KypHaia IHOCBSILEH KaK METOAUYECKUM OCHOBaM
HCKYCCTBEHHOTO MHTEJIEKTa, TaK M CHelU(UKe ero MPUMEHEeHHsI B COCTaBe KOTHUTHBHBIX HH()OPMAI[HOHHBIX
TEXHOJIOTHH.

HcKyccTBEeHHBII HHTEIUIEKT HAa OCHOBE MAIIMHHOTO O0y4YEeHHUSI IMUTHPYET CaM IPOoLecC padOoTHI YelloBeKa C JTaHHBIMH
B YCJIOBHSIX HEONpeIeNeHHOCTH. Kak crencTre, B pa3zienie MpeacTaBIeHbl padoThl, PACKPHIBAIOIINE ACTIEKTHI TAKHX
3aj1a4, KaK BOCCTAHOBJICHUE MaTeMaTHICCKUX OIMCAHNI HEM3BECTHBIX (PH3MIECKUX 3aKOHOB I10 JTaHHBIM, TEMaTHUECKOEC
MOJIEJTUPOBAHUE Ha OCHOBE HEPa3MEUEHHBIX U YaCTUYHO Pa3MEUEHHBIX TEKCTOBBIX JIAHHBIX, & TAKXKE ONpeesIeHne
MPEeACKa3yeMOCTH BPEMEHHBIX PSAOB KaK OCHOBBI JUISl IPOTHO3MPOBAHUS 10 JaHHBIM. OTIEIbHO PacCMOTPEHBI
MPUIIOKEHN TEXHOJOIUH MCKYCCTBEHHOT'O MHTE/UIEKTa M MAIIMHHOIO OO0y4eHUs IS CO3JaHUs MPUKIATHBIX
COLIMOTEXHMYECKHUX CHCTEM B YaCTH BBIBICHUS MEXaHU3MOB BIMSHUS CTPECcCa Ha MIPUHITHE PEIICHUH U MIPEACKa3aHus
MOKYIaTeNbCKOW aKTHBHOCTH.

Pesynbrarsl, pencTaBaeHHBIE B padoTax, OyIyT MOJE3HBI A CO3MaHMs PUKIAIHBIX HHTEIUIEKTYAIBHBIX PEIICHUH,
KaK aBTOHOMHBIX, TaK U B3aUMOJICHCTBYIOMNX ¢ YeloBeKoM. OHU MOTYT OBITh HHTEPECHBI CIICIIHATUCTAM B 00JIaCTH
HUCKYCCTBCHHOTO MHTEJUICKTA, MATEMATHICCKOTO MOJICIHPOBAHMS U MAITHHHOTO OOyUYEHUSs, a TAaKXKE OTPACICBBIM
MOTPEOUTEISIM B Pa3JINUHBIX 00JIACTSAX 3HAHHU.

Abstract

Artificial Intelligence today is one of the most dynamic areas of expertise aimed at designing algorithms for recreating
human cognitive and creative abilities in conditions of uncertainty and incomplete data. This section of the journal will
be devoted to both the methodological foundations of Artificial Intelligence and its application specifics as a part of the
area of cognitive information technologies.

Artificial Intelligence based on machine learning mimics the very process of human work with data under uncertainty. As
a result, this particular volume covers aspects of such problems as discovery of physical laws from the observation data,
topic modeling from unlabeled and partially labeled textual data, and determining the predictability of time series as a
basis for forecasting from data. Separately, the applications of Artificial Intelligence and machine learning technologies
for creating applied sociotechnical systems are considered in terms of identifying the mechanisms of the influence of
stress on decision-making and predicting purchasing activity.

The results presented in this section will be useful for the creation of applied intelligent solutions, both autonomous
and interacting with a human. They may be also attractive to both specialists in the field of Artificial Intelligence,
mathematical modeling and machine learning, and major consumers in various fields of knowledge.
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Abstract

In this article, an approach to modeling dynamical systems in case of unknown governing physical laws has been
introduced. The systems of differential equations obtained by means of a data-driven algorithm are taken as the desired
models. In this case, the problem of predicting the state of the process is solved by integrating the resulting differential
equations. In contrast to classical data-driven approaches to dynamical systems representation, based on the general
machine learning methods, the proposed approach is based on the principles, comparable to the analytical equation-based
modeling. Models in forms of systems of differential equations, composed as combinations of elementary functions and
operation with the structure, were determined by adapted multi-objective evolutionary optimization algorithm. Time-
series describing the state of each element of the dynamic system are used as input data for the algorithm. To ensure
the correct operation of the algorithm on data characterizing real-world processes, noise reduction mechanisms are
introduced in the algorithm. The use of multicriteria optimization, held in the space of complexity and quality criteria
for individual equations of the differential equation system, makes it possible to improve the diversity of proposed
candidate solutions and, therefore, to improve the convergence of the algorithm to a model that best represents the
dynamics of the process. The output of the algorithm is a set of Pareto-optimal solutions of the optimization problem
where each individual of the set corresponds to one system of differential equations. In the course of the work, a library
of data-driven modeling of dynamic systems based on differential equation systems was created. The behavior of the
algorithm was studied on a synthetic validation dataset describing the state of the hunter-prey dynamic system given by
the Lotka-Volterra equations. Finally, a toolset based on the solution of the generated equations was integrated into the
algorithm for predicting future system states. The method is applicable to data-driven modeling of arbitrary dynamical
systems (e.g. hydrometeorological systems) in cases where the processes can be described using differential equations.
Models generated by the algorithm can be used as components of more complex composite models, or in an ensemble
of methods as an interpretable component.
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symbolic regression

Acknowledgements

This research is financially supported by the Russian Scientific Foundation, Agreement No. 21-71-00128.

For citation: Maslyaev M.A., Hvatov A.A. Multiobjective evolutionary discovery of equation-based analytical models

for dynamical systems. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023,
vol. 23, no. 1, pp. 97-104. doi: 10.17586/2226-1494-2023-23-1-97-104

© Maslyaev M.A., Hvatov A.A., 2023

Hay4HO-TexHU4eCcKnii BECTHUK MHDOPMALMOHHbLIX TEXHOOMMIA, MeXaHUKn 1 ontukun, 2023, Tom 23, N2 1 97
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 1



Multiobjective evolutionary discovery of equation-based analytical models for dynamical systems

YK 004.89
OmnpenesieHue AaHAJIUTHYECKUX MoJeJIeil JTMHAMUYECKHX CHCTEM
B popme nuddepeHuHANBHBIX YPABHEHUH
Ha OCHOBE¢ MHOFOKpI/ITepI/Ia.TIBHOﬁ 3BOJ'IIOI[PIOHHOﬁ ONITUMM3ANIUN
Muxaua Anexcanaposuy Macisie!, Asekcanap Asiekcanaposuy Xsarop2™!
1.2 Vausepcurer UTMO, Cankr-Iletep6ypr, 197101, Poccuiickas ®eneparust

I mikemaslyaev@itmo.ru, https://orcid.org/0000-0001-5595-0802
2 alex_hvatov@itmo.ru™<, https://orcid.org/0000-0002-5222-583X

AHHOTaNMA

Ipexmer uccienoBanus. B paborte npemioxkeH METO MOJCIUPOBAHMUS AMHAMUYECKUX CHUCTEM IIPHU YCIOBUH, YTO
YIPaBIAIOIIME MPOLECCOM (U3NUECKUE 3aKOHBI HEM3BECTHBI. B KauecTBe MCKOMBIX MOJeNe IPUHSTHI TTOTyYSHHbIE
TIPY MOMOIIH YIPABIAEMOT0 JaHHBIMU aNrOPUTMa CUCTEMBI TU(depeHInanbHbIX ypaBHeHUH. B pesynsrare pemaercs
3aj1a4a MPOTHO3HPOBAHMS COCTOSIHISA TPOIIECcca MPU MOMOIIN HHTETPUPOBAHUS PE3YIBTUPYIOMINX AU hepeHIHaTbHBIX
ypaBHEHHUH. B oTimumy oT KilacCHYeCKHUX MOIXO00B K BOCIPOU3BEACHHUIO ANHAMHYECKIX CHCTEM Ha OCHOBE JIAHHBIX,
OCHOBAHHBIX Ha OOIIMX NMPHUHIUIAX MANIMHHOTO OOYyYeHUsI, IIPEJUIOKESHHBIN aITOPUTM MO3BOJISIET C(HOPMUPOBATH
MOJIEJIH MPOIIECCOB, CONOCTABUMBIE C aHATUTHYeCKHMU. MeToa. B kadecTBe Monenu nporecca NpUHITEl CHCTEMBI
muddepeHInanbHEIX ypaBHEHHH, NTPEICTaBICHHbIC Yepe3 KOMOMHALNY AJIEMEHTAPHbBIX (YyHKIMHA U ONIepaTopoB,
OINPCACIICHHBIC ITPU ITOMOUIU aJalITUPOBAHHOTI'O 3BOJIIOLIMOHHOI'O aJIrOpUTMa MHOFOKpHTCpHaJ’[hHOﬁ OIITUMH3ALUU.
B kauecTBe BXOJIHBIX AAHHBIX JUIsl AITOPUTMA HCIIOIb30BAaHbI BPEMEHHBIE PSbI, ONUCHIBAIONINE COCTOAHHE Ka)KI0TO
JNeMeHTa INHAMUYIECKOH cucteMsl. [l obecnedeHns paboThl arOpUTMa Ha JAHHBIX, XapaKTepPU3YIOIINX pearbHbIe
MPOLECCH], B aJTOPUTM BKJIIOUEHBI MEXaHH3MBl KOMIICHCAIINH IIyMa. VIcronb30BaHNe MHOTOKPUTEPHANBHOMN
ONTUMM3ALUH, TIPOBOJUMON B MPOCTPAHCTBE KPUTEPUEB CIIOKHOCTH WM Ka4e€CTBA OTACIBHBIX YPABHEHHH CHCTEMBI
i depeHINaIbHBIX YPaBHEHHUH, O3BOIMIIO YIyUIINTh Pa3HOOOpa3ue IpeaIaraeMbIX KaHAUIaTHEIX pereHuil. Taxke
NOJTy4eHA BBICOKAsi CXOAMMOCTD aJrOPUTMa, YTO 00ECIEeUMIIO TIOMCK MOJIEINH, HAWIYYIINM 00pa3oM ITOKa3bIBAIoNIeH
JUHAMHKY Tpolecca. Pe3ynbraTrom paboThl aJroputMa sBIsieTcss MHOXKeCTBO [lapeTo-onTHManbHBIX pelleHui
ONTHUMHU3ALMOHHON 3a/1auH, KaKI0€ U3 KOTOPBIX COOTBETCTBYET OIHOM cucTteMe AudepeHInalbHbIX YPaBHECHNH.
OcHoBHbIe pe3yJbTaThl. B xo1e paboThl co3nana 6ubnuoTeka yrpasisieMoro JaHHBIMHA MOJETUPOBAHUS JUHAMUYECKUX
CHCTEM Ha OCHOBE cHCTeM aupdepeHIanbHbIX ypaBHeHHH. [loBeienne anroputma HCclie[0BaHO Ha CHHTETHYECKOM
BaIMIAIIMOHHOM HabOpe JaHHBIX, ONMCHIBAIOIIEM COCTOSHIE ANHAMHYIECKOI CHCTEMBI «OXOTHHUK-KEPTBay, 31aHHON
ypaBuenusimu Jlorku—Bonbreppa. [IpeanoxkeH HHTErpUpOBaHHBIN B alTOPUTM MEXAaHU3M NPOTHO3HPOBAHUS
COCTOSIHHH CHCTEMbI, OCHOBAHHBIH Ha pelIeHHH c(HOPMUPOBAHHBIX ypaBHeHUil. [IpakTHYeckass 3HAYNMOCTb.
Mertox MPUMEHHUM K YHPaBISIEMOMY JaHHBIMU MOJICJIMPOBAHUIO IPONU3BOJIBHBIX THHAMHYECKUX CHCTEM (Harpumep,
THJPOMETEOPOIOTNYECKUX) B CIydasiX, KOT/a IPOLECChl MOTYT OBITh ONUCAHBI P MOMOIIM AU HepeHIINaTbHBIX
ypaBueHnit. CopMHpOBaHHBIE AITOPUTMOM MOJEIH MOYKHO HMCIIOJIb30BaTh B KaueCTBE KOMIIOHEHT 0OOJiee CIOKHBIX
KOMITO3UTHBIX MOJIEJIEH, MITH B aHCaMOle METOZ0B KaK MHTEPIPETUPYEMYIO COCTABIISIONLYIO.

KaroueBsbie ci10Ba
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Introduction

Systems of Ordinary or Partial Differential Equations
(ODEs and PDEs) are powerful tools that can describe
complex dynamics of structures involving multiple
variables. While many tools can be used for creating
mathematical models for processes, such as classical
machine learning models, or unconventional ones, like
Bayesian networks [1], they tend to have strict limitations
to their applications. In cases of many real-world systems,
in addition to the issues above, these models are often
abstracted from the intrinsic physical principles guiding
the system. The classical approach to deriving systems of
differential equations necessitates the use of mathematical
analysis in combination with an in-depth understanding of
the process. The data-driven approach to system discovery
involves the creation of an individual differential equation

for each dependent variable that can be measured from a
system.

The forms of the discovered models containing
systems of differential equations are selected due to the
prevalence of differential equation in physical systems.
For example, flow of viscous fluid is governed by Navier-
Stokes equations that are a system of partial differential
equations. Dynamics and interactions between electric
and magnetic components of the electromagnetic field are
described with Maxwell’s equations which are a system of
PDE as well. Many simpler systems, such as rotation of the
spherical pendulum, can be defined with system of ordinary
differential equations.

Apart from the descriptive possibilities, provided by
models in forms of systems of differential equations,
obtained systems can be solved to predict further states of
the process. While the toolkit for the automatic solution of
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systems of ordinary/partial differential equations is out of
scope of this study, several studies have been conducted
towards implementing equation-solving module into the
frameworks of differential equations discovery, as in work
[2]. With this ability to solve model equations, the system
dynamics can be propagated into the future.

Analysis of existing approaches

Creating models for dynamical systems governed by
differential equations has recently drawn interest. The first
perspective to the task involves developing substitutes
for the equations in forms of propagation operators that
map the state of the system forward in time like in [3]
or [4]. Dynamic Mode Decomposition (DMD) involves
approximation of the system dynamics with a finite-
dimensional linear operator. While that can be useful for
multiple real-world applications where the propagator is
linear, many other cases involve non-linear dynamics that
cannot be fully explained with DMD approach.

A number of data-driven solutions to the problem
of explaining dynamical system with explicitly derived
governing equations have been developed. Here, we
will inspect methods that are applicable not only for
problems of discovering Ordinary Differential Equations
(ODE) and systems of ODEs, but also for tasks of partial
differential equations discovery. The first problem has
sufficient solution in forms of Multilayer Stochastic Models
(MSMs) proposed by Kondrashov, Chekroun and Ghil
in [5]. However, due to the non-Markovian approach,
the approach is not extendable to the problems of partial
differential equations.

The earliest advances were made with the symbolic
regression [6]. Governing equations are viewed as
computational tree graphs where leaves are inputs, and on
the other levels various operators are located. The search
of the equation can be done with the typical graph-targeted
evolutionary optimization algorithms. More contemporary
approaches are represented by sparse regression based
models developed in many works, including Kaheman et al.
in [7] and Berg & Nystrom in [8], and with artificial neural
networks (ANN) representation of the dynamical system.
While there are multiple approaches to discover differential
equations with artificial neural networks, notable ones
include PINN [9], PDE-Net, developed by Long et al. [10],
and physics-informed neural networks by Raissi et al. [11].

Partial differential equation search with sparse
regression uses LASSO operator that is applied to
approximate time derivative with a library of candidate
terms. That library has to contain all possible equation
terms, and the usage of sparsity operator allows selection
of only a few active feature terms. The main issues of this
approach can be linked with its rigidity: the term library
has to be extensive enough to contain all possible terms
including all non-linear functions that can be present in
equations. While many of the presented approaches can
be applied to the systems of differential equations, their
possibilities are limited by description of time dynamics
of a vector variable, like in paper [12].

The algorithm described in this article is based on
the multiobjective evolutionary optimization approach,

where the model obtained is evaluated by several metrics
describing quality and complexity of the equations of the
system. Thus, the algorithm can provide the parsimonious
model that is not overly complex but can sufficiently
simulate the dynamics of the process. However, the
problem of selecting that parsimonious model from the
discovered Pareto frontier is the problem for another study.
This paper is dedicated to the problem of discovering the
optimal set of candidate equations for the further expert
conclusions and applications.

Equation discovery problem

To describe some unstudied process, which involves
multiple () dependent variables, we desire to derive a
system of differential equations. Let us denote these variables
in general problem statement as u = (u(z, x), u,(t, X),
<.y Uy(t, X)). They are defined in the spatial domain €,
represented by coordinates x, and dependent from time ¢.
In case of a system of ordinary differential equations, the
variables can be assumed to be only time-dependent (i.c.,
ul(t)’ uZ(t): ety un(t))'

For the equations search process, the algorithm requires
sets of observations arranged on a rectangular grid. For
the equation search process, the algorithm demands arrays
of calculated derivatives. While in some cases these
derivatives can be obtained directly, using measurement
techniques, in others they necessitate a preprocessing phase
where the derivatives are calculated numerically from
the input data variables. While the numerical techniques
of derivatives estimation are numerous [13], the most
efficient approaches are finite-difference differentiation
and analytical differentiation of variable-approximating
polynomials. In many cases, additional smoothing is
required to reduce magnitudes of noise in the data. Here,
the algorithm employs Gaussian smoothing in the spatial
domain, or replacement of the initial data fields with their
artificial neural network approximation.

Li(w)=0
S(u) =1 ... ,
Ly(u)=0

where S(u) is the system of differential equations that
involves variables u comprised of individual equations
Li(u) to Ly(u).

The search for the optimal structures of equations in
the system is done with the multi-objective optimization
implemented with the Many-Objective Optimization
Evolutionary Algorithm Based on Dominance and
Decomposition (MOEA/DD), introduced in [14].

The search is performed in the criteria space of
complexities C(L;'u) and modeling errors O(L;u) for each
individual equation in a system. Therefore, the problem can
be reformulated to

minimize F(S(u)) =f,(S(w)), ..., £,,(S(u))) =
=(C(Ly'n), O(L '), ..., C(L,"n), O(L,0)).
Here the constraints are introduced in the equations

construction logic rather than explicitly specified during
the optimization problem statement.
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The complexity metric C(L'u) is defined as a number of
“active” tokens in the equation, i.e. ones presented in terms
of non-zero coefficients.

The problem of selecting the most appropriate metric
for evaluating the properties of process representation for
the equation has been studied in work [2]. The best metrics
for modeling quality are L, norm of matrices of differential
operator residuals represented by:

O(L;'w) = HL/“HZ

or the norm of matrices of differences between the input
variable fields u; and the solutions #; of corresponding
equations

Q(Lj'“) = ||uj - ﬁsz-

Due to the necessity to conduct optimization, having
a limited number of candidate solutions, the implemented
approach uses concept of domination for the proposed
solutions to the problem of searching for systems of
equations. It is said that candidate system S;(u) dominates
candidate system S,(u) if for all optimized criteria f;:
Ji(S1(n)) < fi(S,(u)) and for a single criterion f;: £;(S;(u)) <
<fi(S5(u)). A solution is called Pareto-optimal if no other
solutions dominate it. The objective of the implemented
algorithm is to obtain a set of candidate solutions where
each solution is Pareto-optimal. In addition to the Pareto-
optimal set, other non-dominated sets can be introduced
by induction: n-th non-dominated level is comprised by
solution that is not dominated by any solutions, except the
ones on the n 1-th, or lower levels.

Approach description

In this section, we briefly describe the main diversions
of our approach from the original algorithm [14] and
case-specific solutions employed during the system of
differential equations derivation, such as evolutionary
operators. Following the optimization objectives stated in
the previous section, the algorithm performs a simultaneous
search of system equations and parameters which define the
equations structures. The structure of an equation can be
decomposed into a set of equation terms and a set of their
real-valued coefficients g; as in:

L'u=3allt;

The terms of constructed equations are represented
with a tokens product [[;#;, 7; € T, elementary building
blocks containing arbitrary user-defined functions. This
approach enables the discovery of non-linear equations
with compound structures that can be represented as a sum
of product terms. During search of differential equations,

.

various derivatives (e.g. 6_’:) are included into the pool T.
x,

Other case-specific functijons or external variables can
be included as tokens into the token pool to be available
for the algorithm during equation search. For example,
suppose a study objective is to discover the equation for
the temperature dynamics in a medium. In that case, the
velocity field of the medium can be considered an external
variable.

To create a system that can model the studied process, it
is possible to assume that each equation in the system must
represent the spatial or temporal dynamics of at least one
variable. By describing a variable dynamic, we understand
that the equation contains corresponding derivatives of
the variable. During the evolutionary search, evolutionary
operators affecting the structures of the equations have to
preserve the descriptive properties of such terms.

Evolutionary algorithm details

To start the evolutionary optimization, the algorithm
has to construct the initial population P = S;(u), ..., S,(u)
of randomly generated candidate systems of differential
equations. As mentioned above, a system equation has to
represent a corresponding variable’s dynamic. Therefore,
during the initialization, a variable is assigned to each
equation as its “main” one. Without loss of generality, we
can assume that the i-th equation describes i-th variable.

To emphasize the duality of the system discovery, an
individual encoding must represent both equations and
meta-parameters of the equations. The chromosome of an
individual contains computational graphs of the equations
as “equation genes” and values of the parameters that
define the creation of the equation. Equation graphs take
the form of tree graphs, where the leaves are elementary
functions stored in tokens, and intermediate nodes are
product operators that form equation terms from factor
tokens. The graph root comprises the summation operator
which combines separate terms into the equation. The
scheme of the equation system encoding is presented in
Fig. 1.

A regularization tool has to be created to regulate the
complexity of the equations proposed by the algorithm. Its
main objective is to exclude terms with low significance
and explanatory power in the resulting model. Selection
of the terms can be made with sparse regression, operating
with the LASSO operator:

”FkB - F target,k

2+ MBl, - min.

As the predicted value of the operator, a random
equation term representing an “equation variable”, i.e.,
containing its derivative, is selected. LASSO operator
can obtain a vector of term weights  with values of the
terms in the left-hand side of the equation, evaluated on
the space-time grid, normalized and combined into matrix
F, with vector of right-hand part values of Fi,oeq - In
the operator statement ||-||;, the i-th norm of the matrix is
designated.

The sparsity constant parameter A determines the
penalty of optimized functional with respect to the values
of weights in B, prioritizing setting zero coefficients to
the less significant predictors. The algorithm can control
the equation complexity by regulating the value of the
sparsity constant. Higher values of A promote equations
with fewer numbers of terms, while lower values tend to
lead to more complex equations. Due to the significance
of the sparsity parameter for the equation definition, it is
included for each equation in the system in the encoding
of the individual.

100
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Phenotype: Genotype:
Equations Chromosome
d Equation Gene 1: [dx,/dt, Ty, ..., Tim)
1 —
dr =/ilt, x1, ... X) Equation Gene 2: [dx,/dt, Tay, ..., Tom]
dx,
- = n t! 9ty n.
ar oty X1, 5 X) » :
Equation Gene n: [dx,/dt, Ty, ..., Tyn)
Meta-parameter 1: A,
Parameters [
(A1, s dal Meta-parameter n: A,

Fig. 1. Scheme of the encoding for a system of ODEs for arbitrary variables x; with sparsity constants A; as meta-parameters.

J

T, denotes the m-th term of the n-th equation of the system, while f;, is an arbitrary right-hand side function of the n-th equation
of the system

The coefficients of the equation are computed with
linear regression where active terms from the left-hand part
are combined into a matrix of predictors, and values of the
term on the right part are used as a predicted value.

Evolutionary operators

The general idea of evolutionary operators affecting the
population to obtain the set of optimal systems of equations
is borrowed from the single-objective algorithm of equation
discovery proposed in [15]. The alterations of an individual
equation can be done with operators of mutations and
crossover. The operators are applied to individuals of the
population following the guidelines presented in the paper
and describing the base algorithm [16].

The process of the evolution is held iteratively, for a
specified number of iterations and over sectors, defined
by the weight vectors introduced into the space of
optimization criteria to decompose the problem into smaller
sub-problems. As in the original version, the algorithm
constructs a set of weight vectors W = w, ..., wy from a
unit simplex, one for each candidate solution in P.

After the weights are defined, each individual of the
population P is assigned to a random sector of the criteria
space. That enables a more even coverage of the search
space due to the property that the individuals converge in
the directions of weights.

The selection of the individuals for the crossover
operators is held in a manner that respects problem
decomposition. In the base scenario, the parents are
selected from the neighboring sectors to the one associated
with the processed weight vector. However, to increase
the algorithm exploratory properties, which are vital in
the problem of equation construction, with a relatively
small probability, the parents are selected from other, non-
adjacent sectors. The selected candidates are added to the
parent pool, and the crossover is held among them.

The crossover operator affects both systems of
equations and corresponding vectors of meta-parameters.

The interactions between equations of the systems
comply with variable description requirements. For each
modeled variable, the corresponding equations of the parent

systems are affected by crossover. Two main types of
operators are used here: term-wise exchange and complete
equation swapping.

The first type of equation-level crossover operator
involves an exchange of terms between parent equations.
All initial terms of the equation are divided into three
groups. First group includes terms present in the same form
in both parents. Second group includes terms present in
both parents, but in this case the parameters of their tokens
are different. Third group contains unique ones between
parents terms. The first group is not affected by crossover
at all. The crossover between parents in the second group is
parametric-only: the same tokens exchange the parameter
values from a specified proportion.

After the creation of offspring individuals, they are
affected by mutation operators. Their purpose is two-
fold. They are increasing the exploratory properties of
the algorithm and preventing the generation of repeating
individuals which is mandatory for the implemented multi-
objective optimization approach. The main idea of the
mutation operator is the random change of a term into
a new, unique one. The first type of operator changes a
factor representing a token into a new, randomly generated
one; or changes token parameters (e.g. frequency of a sine
token) with an increment taken from normal distribution
N(0, 6) with pre-defined variance 2. The second type
involves a replacement of a term with a newly generated one.
When the offspring creation procedures are conducted, the
Pareto levels are updated with respect to the newly created
solution. The population update algorithm considers the
decomposition of the problems with a set of weight vectors
and their domination. The approach in which the evolutionary
operators are applied during the search is presented in Fig. 2.

Validation

Several validation experiments have been conducted to
assess the proposed approach performance in discovering
systems of equations that govern the dynamical system.
The most demonstrative approach to check the behavior
of our algorithm employs synthetic data obtained from the
solution of known equations.
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Fig. 2. Generalized scheme of the main search sequence of the algorithm
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The solutions of the equations were numerically Time, years
obtained using Runge-Kutta methods. The solutions for
u(f) and v(¢) are demonstrated in Fig. 3.

The Pareto-optimal set of equations obtained from the
algorithm typically has forms similar to the one presented  the combination of optimized metrics: instead of evaluating
in Fig. 4. Here, the algorithm output is reformulated with ~ complexity or approximation errors of individual equations

Fig. 3. Visualization of the solution of Lotka-Volterra equations
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Fig. 4. Pareto frontier of systems of equations obtained by the algorithm

] 02 Hay4HO-TexHn4eckuii BECTHUK MHDOPMALUMOHHBLIX TEXHONOMMIA, MeXaHMKN 1 onTukn, 2023, Tom 23, N2 1
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 1



M.A. Maslyaev, A.A. Hvatov

they are viewed for the system integrally. The allowable
interval for complexity controlling parameters A used
in sparsity operators is between 108 and 10-2. Next, an
additional family of trigonometric tokens was introduced
into the pool to create a diversity of created terms.

Ten independent runs with ten multi-objective
optimization evolutionary algorithm iterations and ten more
with 25 iterations were performed, and the obtained Pareto-
optimal sets were compared. Due to the relatively simple
structure of the initial system of equations, a successful
convergence to the similar (in terms of obtaining sets with
similar equations) was achieved in every case. While this
test cannot be considered a comprehensive study of the
algorithm properties, it can be viewed as proof that the
algorithm can operate and discover the equations.

Conclusion

In this article, we proposed a robust extension of the
single differential equation discovery approach to the
problems of creating models for systems of differential
equations. The multi-objective approach enables the

References

1. Bubnova A.V,, Deeva I., Kalyuzhnaya A.V. MIxBN: library for
learning Bayesian networks from mixed data. Procedia Computer
Science, 2021, vol. 193, pp. 494-503. https://doi.org/10.1016/].
procs.2021.10.051

2. Maslyaev M., Hvatov A. Solver-based fitness function for the data-
driven evolutionary discovery of partial differential equations. Proc.
of the 2022 IEEE Congress on Evolutionary Computation (CEC),
2022. https://doi.org/10.1109/cec55065.2022.9870370

3. Brunton S.L., Brunton B.W., Proctor J.L., Kaiser E., Kutz J.N. Chaos
as an intermittently forced linear system. Nature Communications,
2017, vol. 8, no. 1, pp. 19. https://doi.org/10.1038/s41467-017-00030-
8

4. Schmid P.J., Sesterhenn J. Dynamic mode decomposition of
numerical and experimental data. Proc. of the 615! Annual Meeting of
the APS Division of Fluid Dynamics. American Physical Society,
November 2008.

5. Kondrashov D., Chekroun M.D., Ghil M. Data-driven non-Markovian
closure models. Physica D: Nonlinear Phenomena, 2015, vol. 297,
pp. 33-55. https://doi.org/10.1016/j.physd.2014.12.005

6. Schmidt M., Lipson H. Distilling free-form natural laws from
experimental data. Science, 2009, vol. 324, no. 5923, pp. 81-85.
https://doi.org/10.1126/science.1165893

7. Kaheman K., Kutz J.N., Brunton S.L. SINDy-PI: a robust algorithm
for parallel implicit sparse identification of nonlinear dynamics.
Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 2020, vol. 476, no. 2242, pp. 20200279. https://
doi.org/10.1098/rspa.2020.0279

8. Berg J., Nystrom K. Data-driven discovery of PDEs in complex
datasets. Journal of Computational Physics, 2019, vol. 384, pp. 239—
252. https://doi.org/10.1016/j.jcp.2019.01.036

9. Han G., Zahr M.J., Wang J.-X. Physics-informed graph neural
Galerkin networks: A unified framework for solving PDE-governed
forward and inverse problems. Computer Methods in Applied
Mechanics and Engineering, 2022, vol. 390, pp. 114502. https://doi.
org/10.1016/j.cma.2021.114502

10. Long Z., Lu'Y., Ma X., Dong B. PDE-Net: learning PDEs from data.
Proceedings of Machine Learning Research, 2018, vol. 80, pp. 3208—
3216.

11. Raissi M. Deep hidden physics models: Deep learning of nonlinear
partial differential equations. Journal of Machine Learning Research,
2018, vol. 19, pp. 1-24.

12. Zhang J., Ma W. Data-driven discovery of governing equations for
fluid dynamics based on molecular simulation. Journal of Fluid

creation of a diverse set of models. With the analysis of
complexity-quality tradeoff, an expert should be able to
select the parsimonious model for the process description.
The approach has high levels of versatility that are
untypical and novel among equation discovery algorithms.
It can obtain both ordinary and partial differential equations
with arbitrary structures.

The main drawback of the developed approach has high
computational cost which can be especially noticeable in
multidimensional data (i.e., systems of partial differential
equations) or data with high noise levels where high
numbers of iterations are required for the algorithm
convergence. Therefore, improving the algorithm
computational performance can be the priority for further
development. Also, developing sufficient tools for using the
derived equations for the process state prediction is another
goal of the next research.

The numerical solution data and the Python code that
partially reproduce the experiments are available at the
GitHub repository of the ITMO University!.

I Available at: https://github.com/ITMO-NSS-team/EPDE
(accessed: 07.12.2022).

Jlureparypa

1. Bubnova A.V,, Deeva ., Kalyuzhnaya A.V. MIxBN: library for
learning Bayesian networks from mixed data // Procedia Computer
Science. 2021. V. 193. P. 494-503. https://doi.org/10.1016/j.
procs.2021.10.051

2. Maslyaev M., Hvatov A. Solver-based fitness function for the data-
driven evolutionary discovery of partial differential equations // Proc.
of the 2022 TEEE Congress on Evolutionary Computation (CEC).
2022. https://doi.org/10.1109/cec55065.2022.9870370

3. Brunton S.L., Brunton B.W., Proctor J.L., Kaiser E., Kutz J.N. Chaos
as an intermittently forced linear system // Nature Communications.
2017. V. 8. N 1. P. 19. https://doi.org/10.1038/s41467-017-00030-8

4. Schmid P.J., Sesterhenn J. Dynamic mode decomposition of
numerical and experimental data // Proc. of the 615t Annual Meeting
of the APS Division of Fluid Dynamics. American Physical Society,
November 2008.

5. Kondrashov D., Chekroun M.D., Ghil M. Data-driven non-Markovian
closure models // Physica D: Nonlinear Phenomena. 2015. V. 297.
P. 33-55. https://doi.org/10.1016/j.physd.2014.12.005

6. Schmidt M., Lipson H. Distilling free-form natural laws from
experimental data // Science. 2009. V. 324. N 5923. P. 81-85. https://
doi.org/10.1126/science.1165893

7. Kaheman K., Kutz J.N., Brunton S.L. SINDy-PI: a robust algorithm
for parallel implicit sparse identification of nonlinear dynamics //
Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences. 2020. V. 476. N 2242. P. 20200279. https://doi.
org/10.1098/rspa.2020.0279

8. Berg J., Nystrom K. Data-driven discovery of PDEs in complex
datasets // Journal of Computational Physics. 2019. V. 384. P. 239—
252. https://doi.org/10.1016/j.jcp.2019.01.036

9. Han G., Zahr M.J., Wang J.-X. Physics-informed graph neural
Galerkin networks: A unified framework for solving PDE-governed
forward and inverse problems // Computer Methods in Applied
Mechanics and Engineering. 2022. V. 390. P. 114502. https://doi.
org/10.1016/j.cma.2021.114502

10. Long Z., Lu Y., Ma X., Dong B. PDE-Net: learning PDEs from data
// Proceedings of Machine Learning Research. 2018. V. 80. P. 3208—
3216.

11. Raissi M. Deep hidden physics models: Deep learning of nonlinear
partial differential equations // Journal of Machine Learning Research.
2018. V. 19. P. 1-24.

12. Zhang J., Ma W. Data-driven discovery of governing equations for
fluid dynamics based on molecular simulation // Journal of Fluid
Mechanics. 2020. V. 892. P. A5. https://doi.org/10.1017/jfm.2020.184

Hay4HO-TexHU4eCcKnii BECTHUK MHDOPMALMOHHbLIX TEXHOOMMIA, MeXaHUKn 1 ontukun, 2023, Tom 23, N2 1
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 1

103



Multiobjective evolutionary discovery of equation-based analytical models for dynamical systems

Mechanics, 2020, vol. 892, pp. AS. https://doi.org/10.1017/
jfm.2020.184

13. Van Breugel F., Kutz J.N., Brunton B.W. Numerical differentiation of
noisy data: A unifying multi-objective optimization framework. /[EEE
Access, 2020, vol. 8, pp. 196865-196877. https://doi.org/10.1109/
access.2020.3034077

14. Maslyaev M., Hvatov A., Kalyuzhnaya A. Partial differential
equations discovery with EPDE framework: Application for real and
synthetic data. Journal of Computational Science, 2021, vol. 53,
pp. 101345. https://doi.org/10.1016/j.jocs.2021.101345

15. Li K., Deb K., Zhang Q., Kwong S. An evolutionary many-objective
optimization algorithm based on dominance and decomposition. /EEE
Transactions on Evolutionary Computation, 2015, vol. 19, no. 5,
pp. 694-716. https://doi.org/10.1109/TEVC.2014.2373386

16. Das I., Dennis J.E. Normal-boundary intersection: A new method for
generating the Pareto surface in nonlinear multicriteria optimization
problems. SIAM Journal on Optimization, 1998, vol. 8, no. 3,
pp. 631-657. https://doi.org/10.1137/s1052623496307510

Authors

Mikhail A. Maslyaev — Junior Researcher, ITMO University, Saint
Petersburg, 197101, Russian Federation, https://orcid.org/0000-0001-
5595-0802, mikemaslyaev@itmo.ru

Alexander A. Hvatov — PhD (Physics & Mathematics), Head
of Laboratory, ITMO University, Saint Petersburg, 197101, Russian
Federation, B 56088330100, https://orcid.org/0000-0002-5222-583X,
alex hvatov@itmo.ru

Received 11.10.2022
Approved after reviewing 07.12.2022
Accepted 15.01.2023

N0k

13. Van Breugel F., Kutz J.N., Brunton B.W. Numerical differentiation of
noisy data: A unifying multi-objective optimization framework //
IEEE Access. 2020. V. 8. P. 196865-196877. https://doi.org/10.1109/
access.2020.3034077

14. Maslyaev M., Hvatov A., Kalyuzhnaya A. Partial differential
equations discovery with EPDE framework: Application for real and
synthetic data // Journal of Computational Science. 2021. V. 53.
P. 101345. https://doi.org/10.1016/j.jocs.2021.101345

15. LiK., Deb K., Zhang Q., Kwong S. An evolutionary many-objective
optimization algorithm based on dominance and decomposition //
IEEE Transactions on Evolutionary Computation. 2015. V. 19. N 5.
P. 694-716. https://doi.org/10.1109/TEVC.2014.2373386

16. Das I., Dennis J.E. Normal-boundary intersection: A new method for
generating the Pareto surface in nonlinear multicriteria optimization
problems // SIAM Journal on Optimization. 1998. V. 8. N 3. P. 631—
657. https://doi.org/10.1137/51052623496307510

ABTOpBI

MacasieB Muxauni AJleKCaHIPOBMY — MJI/IINI HAy4HBIH COTPY/I-
ok, YausepcureT UTMO, Cankr-IletepOypr, 197101, Poccuiickas
Denepanus, https://orcid.org/0000-0001-5595-0802, mikemaslyaev(@
itmo.ru

XBaToB AJleKCaHIp AJIEKCAHIPOBUY — KaHIUIAT (PU3UKO-MaTeMaTh-
YeCKHX HayK, 3aBeJyromuii maboparopueii, Yausepcurer U'TMO, CaHkT-
TerepOypr, 197101, Poccuiickas ®enepauns, § 56088330100, https://
orcid.org/0000-0002-5222-583X, alex hvatov@itmo.ru

Cmamus nocmynuna 6 peoakyuio 11.10.2022
Ooobpena nocne peyenzuposanus 07.12.2022
Ipunsma k nevamu 15.01.2023

Pa6oTa focTynHa No nvMueH3un
Creative Commons
«Attribution-NonCommercial»

104

Hay4HO-TexHn4eckuii BECTHUK MHDOPMALUMOHHBLIX TEXHONOMMIA, MeXaHMKN 1 onTukn, 2023, Tom 23, N2 1
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 1



