HAYYHO-TEXHUYECKMI BECTHUK MH®OPMALIMOHHBIX TEXHOIOM I, MEXAHVKI 1 OMTUKN

° mapT-anpens 2023 Tom 23 N2 2 http://ntvifmo.ru/ hAvano-TExHMuECKMM BECTHMK
I IITMO SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS "Hm“pMA““““HMX ]EXH“"“[““' MEXAH“K“ “ “"T“K“
March-April 2023 Vol. 23 No 2 http://ntv.ifmo.ru/en/
ISSN 2226-1494 (print) ISSN 2500-0373 (online)

10.17586/2226-1494-2023-23-2-313-322

Hybrid JAYA algorithm for workflow scheduling in cloud
Sandeep Kumar Bothra!™, Sunita Singhal2, Hemlata Goyal®

1.2.3 Manipal University Jaipur, Jaipur, Rajasthan, 303007, India

1 bothrajain@gmail.com™, https://orcid.org/0000-0003-0555-569X
2 sunita.singhal@jaipur.manipal.edu, https://orcid.org/0000-0003-2462-8102
3 hemlata.goyal@jaipur.manipal.edu, https://orcid.org/0000-0003-1344-0921

Abstract

Workflow scheduling and resource provisioning are two of the most critical issues in cloud computing. Developing an
optimal workflow scheduling strategy in the heterogeneous cloud environment is extremely difficult due to its NP-complete
nature. Various optimization algorithms have been used to schedule the workflow so that users can receive Quality of
Service (QoS) from cloud service providers as well as service providers can achieve maximum gain but there is no such
model that can simultaneously minimize execution time and cost while balancing the load among virtual machines in a
heterogeneous environment using JAYA approach. In this article, we employed the hybrid JAYA algorithm to minimize
the computation cost and completion time during workflow scheduling. We considered the heterogeneous cloud computing
environment and made an effort to evenly distribute the load among the virtual machines. To achieve our goals, we used
the Task Duplication Heterogeneous Earliest Finish Time (HEFT-TD) and Predict Earliest Finish Time (PEFT). The
makespan is greatly shortened by HEFT-TD which is based on the Optimistic Cost Table. We used a greedy technique
to distribute the workload among Virtual Machines (VMs) in a heterogeneous environment. Greedy approach assigns
the upcoming task to a VM which have lowest load. In addition, we also considered performance variation, termination
delay, and booting time of virtual machines to achieve our objectives in our proposed model. We used Montage, LIGO,
Cybershake, and Epigenomics datasets to experimentally analyze the suggested model in order to validate the concept. Our
meticulous experiments show that our hybrid approach outperforms other recent algorithms in minimizing the execution
cost and makespan, such as the Cost Effective Genetic Algorithm (CEGA), Cost-effective Load-balanced Genetic
Algorithm (CLGA), Cost effective Hybrid Genetic Algorithm (CHGA), and Artificial Bee Colony Algorithm (ABC).
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AHHOTaNMA

[ImanupoBanue pabodnx MPOIECCOB U MPEIOCTABICHUE PECYPCOB — JIBE HanOoIee BayKHBIC MPOOIEMbI 00IauHBIX
BBIYKCIICHUH. Pa3paboTka onTUMaIbHOHN CTpaTerHy INIAHUPOBAaHUS Pa0OYHX MPOIECCOB B TETEPOTCHHONW 00IaYHOM
cpefe upe3BBIUaifHO ciIoXkHA U3-3a ee NP-momHoit npupozst. [Ipn mmanupoBanun pabodero mporecca HCIOIb3YIOTCs
pa3IYHbIe AJTOPUTMBI ONTHMHU3AINH JJISI TIOJTyIEeHUs TTOJIb30BaTeIISIMH KaueCcTBeHHOTo obcmyxkuBanus (Quality of
Service, Q0S) OT MOCTABIIMKOB OOIAYHBIX yCIyT. [Ipn 3TOM MOCTaBIIMKN yCIIyT HOJDKHBI MOIYYaTh MAaKCHMAIbHYIO
BbITOy. CerofHs He CyIIECTBYET TaKOW MOJEIH, KOTopas Morjia Obl OZHOBPEMEHHO MHHHMHU3UPOBATh BpeMs U
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Hybrid JAYA algorithm for workflow scheduling in cloud

CTOUMOCTB BBITIOJTHEHHUSI paboT Mpy GaJIaHCHPOBKE HArPY3KH MEX/Ty BUPTYaJIbHBIMH MallIMHAMU B T€TEPOTEHHOI cpejie ¢
ucrnonb3oBanueM noaxona JAYA. B pabote npemnoxen rubpuanblii anroput™ JAYA 171si MUHUMH3HPOBAHUSI CTOMMOCTH
BBIUHCIICHNH ¥ BpEMEHH BBIIONHEHHS pabOT MPH MIaHUPOBAHUM paboyero mporiecca. PaccMoTpena rereporeHHas cpesa
00TauHBIX BBIYHCIECHNH, TIO3BOISIONIAs PABHOMEPHO PACIIPEIeNATh HArPpy3Ky MeX /Ty BUPTYaIbHBIMHU MamuHaMH. [71st
JOCTHYKEHUS STHX LIeNel HCIoab30BaHbl dBprcTHdeckre moaxoasl Task Duplication Heterogeneous Earliest Finish
Time (HEFT-TD) u Predict Earliest Finish Time (PEFT). [lnutensHOCTH BBITOTHEHHS pabOT 3HAYUTETHHO COKPAIIACTCS
omaromapst HEFT-TD, ocHoBanHOMY Ha Tabnuie onTHMHCTHYHBIX 3aTpar (Optimistic Cost Table). st pacnpenenenns
paboueil Harpy3Ku MeXJy BUPTyaJbHBIMH MallMHAMH B T€TEPOTCHHOI Cpeje MCIOIb30BAH JKaTHBIH aITrOPUTM.
JKanHblit anropuT™ Ha3zHayaeT MPEACTOAIIYIO 3a/1ady BUPTYaJbHON MaIllHEe ¢ HaUMEHbIIei Harpy3koil. PaccmorpeHo
M3MEHEHHE TIPOM3BONTEILHOCTH, 3aICPIKKH 3aBEPILCHHS H BPEMsl 3arpy3K1 BUPTYalIbHBIX MaliH. C Lebio POBEPKH
MPEAI0KEHHON KOHIEINH JJTs SKCIIEPUMEHTATLHOTO aHaIn3a MPeJICTaBIEHHOM MOJIENN HCHOIb30BaHbl HAOOPHI TAHHBIX
Montage, LIGO, Cybershake n Epigenomics. BrInonHeHHbIE SKCTIEPIMEHTBI OKAa3aJIH, YTO PACCMOTPEHHBIN THOPHUIAHBIN
TIO/IXOZT TIPEBOCXOAUT O0JIee paHHUE aTOPUTMBI TT0 MHHIMH3AIHN CTOMMOCTH H BPEMEHH €T0 BBITTOTHEHMS, TAKHE KaK
Cost Effective Genetic Algorithm (CEGA), Cost-effective Load-balanced Genetic Algorithm (CLGA), Cost effective
Hybrid Genetic Algorithm (CHGA) u Artificial Bee Colony Algorithm (ABC).

KiioueBnble c1oBa
anroput™ JAYA, miiaHupoBaHue paboyuero mporecca, CTOMMOCTb BBITIOJIHCHHUSI, BPEMsI BBITIOJTHCHUS, 0aTaHC HArpy3KH,
00J1a4HbIE BEIYUCIIEHMSI

Cceprika aasa nurupoBanus: borpa C.K., Cunrxan C., T'osur X. 'mOpunusnii anroput™m JAYA 1i1st muiaHIpOBaHUS
pabounx nporeccos B obnake // HayuHo-TeXHUUECKHIT BECTHUK MH()OPMAIIMOHHBIX TEXHOIOTHH, MEXaHHKHU U OIITHKH.

2023. T. 23, Ne 2. C. 313-322 (na anr. 513.). doi: 10.17586/2226-1494-2023-23-2-313-322

Introduction

Cloud computing is an emerging sector of computing
in which a collection of resources is provided to a user as a
service rather than as a product. The best thing about these
services is that consumers do not need to be aware of the
actual locations of the resources or the configurations of
these resources that provide the needed service. A workflow
submitted by a user to be executed on the cloud is a group
of interdependent tasks that are represented by a Directed
Acyclic Graph [1]. When workflow scheduling is done in
a heterogeneous computing system, the problem becomes
more complicated since the processors in the distributed
environment may not be similar and require varying
amounts of time to complete the same operation. Workflow
scheduling and resource provisioning are two of the most
critical issues in cloud computing. Developing an optimal
workflow scheduling technique in the heterogeneous cloud
environment is extremely difficult due to its NP-complete
nature [2].

Various optimization algorithms [3] have been used to
schedule the workflow so that users can receive Quality
of Service (QoS) from cloud service providers. Task
scheduling is essential for optimum utilization of cloud
resources and also for providing end-users with a QoS
[4]. Task scheduling issues come in two flavors: static
scheduling and dynamic scheduling. In the static category,
all task details, including the costs of computation and
communication for each activity as well as how those
activities relate to one another, are known in advance.
However, in the dynamic category, such data is not
available, and choices are made in real time. Furthermore,
static scheduling refers to compile-time scheduling, and
dynamic scheduling refers to scheduling at runtime [5].

Heuristic approaches are problem-dependent and
frequently too greedy, resulting in their becoming stuck in
a local optimum and failing to achieve an optimal solution.
When there is partial information or limited computing
power, a meta-heuristic is a higher-level technique or
heuristic that is used to find, generate, or select a heuristic

capable of offering a good solution to an optimization
problem.

Due to the poor convergence rate of the meta-heuristic
technique, achieving an optimal solution is difficult. As a
result, a one-size-fits-all solution will not guarantee optimal
resource utilization. That’s why, the hybrid nature of the
approach is one of the best ways to reach our goal function.
So we developed a new model using the JAYA algorithm
where seeding is performed using the Task Duplication
Heterogeneous Earliest Finish Time (HEFT-TD) [6] and
Predict Earliest Finish Time (PEFT) [7] heuristics. We
made an effort in this paper to shorten the computation time
and cost while still meeting the deadline.

Our goal was to create a hybrid metaheuristic strategy
that was effective for decreasing processing time and costs
while maintaining load balance amongst Virtual Machines
(VMs) under time restrictions. The strategy used in this
work employs a HEFT-TD and PEFT strategies during
population initialization, which helps with cost cutting and
load balancing.

The following is the rest of the article which
summarizes prior research in this topic. The implementation
and outcomes of the recommended method, as well as
a comparison with existing methods, are discussed in
further detail. This publication also includes a discussion
and conclusion that recommends additional research in
this area.

Related Work

The objective of our model in a cloud computing context
is to improve the system turnaround time and resource
usage. The number of interdependent jobs and available
resources in a distributed environment varies dynamically.
Various scheduling algorithms developed to obtain optimum
solution, some of them heuristic and other are meta-
heuristic as both methodologies are integral to maintaining
optimal resource scheduling as we mentioned earlier.

Based on the Particle Swarm Optimization (PSO)
technique, the authors develop a multi-objective algorithm
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for scheduling workflow. They use two factors in their
innovative method to fulfill their goals: makespan and
resource usage as well as a strict encoding technique.
Despite the fact that their testing results show that their
technique is more resilient than baseline approaches, they
fail to account for VMs balancing [8].

The authors [9] use a Pareto distribution to allocate
unused VMs in Ant Colony Optimization (ACO) to
minimize computation cost and time. They also use
a minimal relocation of VMs strategy to boost the
effectiveness of their approach in assessing workflow
computation time and price; however, as their approach
is dependent on a relatively small workflow size, the
performance of the algorithm is uncertain.

To schedule the workflow, the authors enhanced PSO.
In order to achieve the lowest operational time and cost,
they started by regulating the global and local performance
of particles using a nonlinear decreasing technique of
inertia weight. However, they failed to take into account the
dynamic nature of the cloud computing environment [10].

An Artificial Bee Colony (ABC) based algorithm is
proposed in the literature [11], with the authors emphasizing
the QoS regulations and critical security principles. A hive
table is kept in a data center to reduce execution cost,
execution time, job migration, and VM load-balancing.
They should build a hybrid strategy because the ABC
approach alone is unable to manage all of these aspects.

For load balancing during workflow scheduling
in the cloud, the author [12] uses the JAYA algorithm.
Authors [13] suggested a modified backfilling technique
for optimal cloud resource use in which they schedule
jobs without a decision-maker to firmness conflicts. To
lower the execution cost and duration, a vocalization
of the humpback whale optimization algorithm [14] is
presented. By using less energy, this technique protects the
environment. Authors [15] proposed an efficient method for
scheduling work in the cloud utilizing the MAPREDUCE
and GA-WOA. The proposed approach consists of stages,
such as feature reduction, feature selection, task separation,
and task scheduling. They intended to reduce makespan,
however they did not consider load balance among virtual
machines.

Although the authors [16] integrated execution time
and throughput in their model based on Bat algorithm, but
they didn’t take into account communication time which
is a crucial component in reducing execution time and
increasing throughput. They were likewise unconcerned
about the load balance between the multiple VMs also.
This obscurity is eliminated in [17] when the authors
tried to optimize the resource allocation for VMs and
suggested using the Bat approach to evenly distribute the
workload over several VMs. In the paper [18], authors
proposed a hybrid method that combined Heterogeneous
Earliest Finish Time (HEFT) and Genetic Algorithm
(GA) to reduce processing costs and time under budget
limitations; however, they were unable to account for VM
booting time. In the literature [19], a multi-objective load
balancing method, which is based on GA, was proposed,;
in it delays in acquisition are ignored while cost and time
are decreased. In the literature [20], authors described an
approach utilizing JAYA in which they only concentrated

on minimizing the execution cost and makespan but did not
take into account the performance variance and acquisition
delay of the VM as well as they did not aware regarding
load balance among VMs. To address these issues, we were
inspired to implement a hybrid JAYA model “HJA”.

After a thorough examination of the literature, we
determined the research gap that researchers’ applied
heuristic methods to workflow scheduling are ineffective
due to the NP-hard nature of the problem. Iteration
is required for metaheuristic techniques to reach an
optimal solution. As a consequence, hybrid metaheuristic
approaches outperform traditional metaheuristic techniques
in terms of identifying the optimal solution.

Proposed Methodology

Description of JAYA

After a deep literature review, we decided to implement
a hybrid model using the JAYA algorithm (HJA) which
is based on the heuristics of HEFT-TD and PEFT. Since
all evolutionary and swarm cognitive algorithms are
unpredictable and necessitate the same governing variables,
such as size of population and iteration number, we choose
the JAYA [21] technique. In addition to the standard
control parameters, various algorithms, such as ACO,
PSO, GA, etc., also need their own algorithm-specific
parameter settings, such as pheromone value, evaporation
rate, cognitive acceleration constant, and crossover
rate. The above-mentioned algorithms performance is
greatly impacted by the right adjustment of algorithm-
specific parameters. Inadequately adjusting algorithm-
specific parameters either leads to the best local result or
increases processing effort. There are no algorithm-specific
parameters needed for JAYA. It was invented by R. Venkata
Rao in 2016 [21]. It is a parameter-less algorithm that
requires a few iterations to achieve an optimum solution.

Xt = X+ U sy — XD = 720X = XD (1)

New solution is obtained by applying the above
mentioned eq. (1).

During the #th iteration jt variable of kth solution is
update by Xﬁl Random number 1 and »2 have range
between 0 to 1. During the #h iteration best candidate is

t . Yt
Xj pes and worst candidate is X;

] JWorst®

Brief introduction of HEFT-TD and PEFT

HEFT-TD [6] is based on the duplication approach, this
approach can be used to reduce the cost of communication
between two dependent jobs. It is predicated on the concept
that communicating across dependent activities running on
the same system is completely free. In order to achieve this
goal and reduce the cost overhead associated with inter-task
communication, this strategy duplicates predecessor tasks.

The PEFT [7] is composed of two stages: the task
prioritizing phase, which establishes task priorities, and the
processor selection phase, which chooses the best processor
for carrying out the current job. This algorithm forecasts
by computing an Optimistic Cost Table while maintaining
quadratic time complexity. The sum of a node earliest start
time and computation time is called the Earliest Finish
Time (EFT) of a node on a particular processor.
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Computation of Execution Time and Cost

In this study, we focused not just on reducing execution
costs while achieving the time constraint, but also
managing load among various VMs. We took into account
a VMs acquisition delay and performance fluctuation, both
of which are crucial factors in reducing computation time
in a diversified cloud computing environment.

Sl.Zefl.
ETyp (T) = Speedyuy (2)
k

Here ETy),(T;) is task execution time which we
obtained by dividing the size of the task (Sizez,) through the
processing speed of the kth VM (Speedy,,,) as mentioned
ineq. (2).

DataFiler.
TTy =———. 3)
v p

Here 7T E; is the time consumed to transfer the data
between tasks scheduled in the different VMs. It is also
known as communication time. It can be calculated by
using the size of an output data file and average bandwidth
p as mentioned in eq. (3) where Ej; refers to the edge
between parent task 7; to child task 7}, and DataFiley, is

the output file of task T;.

avail(VM,) = STy, + 4

ETVMk(Tl)
(1 - PerVar)|’

avail(VM,) indicates when kth VM is ready to execute new
task. PerVar is performance variation of VM and ST7, is the
time which is estimated to start the execution as deplcted
in eq. (4).

ST, = acq_delay, if task is root node. (5)

We used eq. (5) to compute the starting execution time
of root node where acq delay refers to booting time of
VM, i.e. 60 sec.

STT,' = maX{avail{VMk},maprepred(Tl_) {FTTp + TTEpl}}(6)

If the task is not a root node, then ST, is computed
using eq. (6) where FT7. is the time which is estimated to
finish the execution.

ETVMA(TI)

FTr=S8Tp + .
g i (1 — PerVar)

()

By using the eq. (7) we computed the finishing time
of task T;.

I[fTET< D, TET = max .oy {FT(T))}. (8)

TET is total execution time which also included the
termination delay of last VM which is executed till end of
complition. TET is computed using eq. (8).

VM,

TEC = zc

type( VMk)X VMrm_ET7 VM)w_ST . (9)

Timelnterval

If TET does not violate the deadline constraint (D) then
Total Execution Cost (TEC) is calculate as given in eq. (9)
where C,,,.(yay,) denotes the cost of execution on VM of k
type, whlle VM,, srand VM, pris the start and end times
of VM execution, respectively.

Our experiment takes into account three types of
deadline constraints: hard, medium, and soft.

Deadline D = (0. + 1) X minET(Wi). (10)
Above, eq. (10) used to calculate the deadline where
minET(W);) is the sum of time to start and execute all the
tasks of workflow W, on the fastest VM, and a is a step
length whose value is 0.4. The hard range is 0 to 1.2, the
medium range is 1.2 to 2.8, and the soft range is 2.8 to 4.4.
All above equations are taken from literature [22].
Proposed Algorithm
1. Determine the population size and termination criteria
2. Initialize one-one set of candidate solution using
HEFT-TD and PEFT
3. Initialize remaining N-2 population using random
technique with greedy approach
4. Compute the fitness of each candidate solutions in
the population using fitness function using eq. (8) &
eq. (9)
Find the best and worst candidate solutions
Apply the eq. (1) to all candidate solutions
Compute the Finish Time of candidate solution
According to eq. (10), check the deadline constraint of
candidate solution
9. If any candidate solution does not satisfy deadline
constraint according the eq. (8), then go to step 6
otherwise compute TEC using eq. (9)
10. If(X’“) < (Xt{,m) then
11' bcst) (
12. End If
13. Repeat steps 5 to 12 until termination criteria satisfied
14. Return best candidate solution
In our JAYA-based hybrid module, the population
is initialized using three techniques. One individual is
initialized using HEFT-TD, another one using the PEFT
approach, and the remaining candidate solutions are
generated using a random method with a greedy strategy.
These approaches not only minimize the makespan but
also reduce the computation cost. The fitness of each
candidate is computed using eq. (8) and eq. (9), and the
JAYA approach is applied using eq. (1) to find a more
optimum solution. If the candidate solution satisfies the
deadline constraint criteria, then the total execution cost
is computed. These steps are iterated until we receive the
optimum solution. Fig. 1 illustrates our model through
flowchart to explain each step.

P9

Evaluation of Performance

Experimental Environment

We included various types of workflows as benchmarks
like Montage, Cybershake, LIGO, and Epigenomics, with
sizes of fifty, hundred, and five hundred tasks.

Montage represents an astronomy application where
the majority of nodes focus more on I/O than processing.
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The “Flexible Image Transport System” (FITS) format
photographs used as input in this astronomy application
are output as custom sky mosaics. Cybershake is employed
by “Southern California Earthquake Center” to display
earthquake risks in a particular area. It produces artificial
seismograms. Additionally, this process requires a lot of
memory and a central processing unit. Epigenomic is
bioinformatics application workflow where the majority
of the nodes are CPU-intensive. Changes in human cell
gene function are referred to as epigenetic state and they
are mapped on a genome-wide scale by an epigenomic
approach. “Laser Interferometer Gravitational-wave
Observatory” is acronym standing for LIGO. This scientific
workflow uses a lot of CPU power and consumes a lot of
memory. Numerous things happen in the universe that
causes gravitational waves which it detects.

We executed the suggested model HJA in a JAVA-
based robust environment and reached at a conclusion after
performing each type of workflow 30 times. We examined
five different types of VMs according to requirements [22]
as illustrated in Table 1. We used the Amazon Elastic Block
Store (EBS) average bandwidth of 20 kbps!. We employed

I Amazon Elastic Block Store. Available at: https://aws.

500 candidate solutions as size of population and a highest
number of iterations of 250 in our experiment [23-26].

In the Fig. 1, 7 is each individual candidate solution
from set of total number of N solutions.

Analysis of Experimental Result

Execution Cost and Makespan Analysis

Fig. 2 and 3 show our overall comparison of the
baseline and our suggested HJA. The outcome of our
experiment demonstrates the resilience of our suggested
model HJA. HJA is 20.16 %, 16.58 %, 14.04 %, and
2.88 % less expensive than ABC, CEGA, CLGA, and
CHGA respectively.

HJA has a 39.92 %, 9.05 %, 13.91 %, and 2.82 %
shorter average makespan than ABC, CEGA, CLGA, and
CHGA respectively.

Deadline and Load Balance Analysis

Table 2 illustrates the hit rate and Fig. 4 demonstrates
balance of load among VMs.

If a processor hasn’t any job, the load index measured
value as zero, the load index increase according to the job
assign to a processor.

amazon.com/ebs/ (accessed: 22.07.2020). VMC; = PE,,,, * PEmips' (11)
Table 1. Details of VMs in our experimental environment
VM Types Processing Capacity, GFLOPS ECUs (Cores) Memory, GB Disk, GB Cost /Hour, $

ml.Small 4.4 1(1) 1.7 160 0.04

ml.Large 17.6 4(2) 7.5 850 0.16

ml.Xlarge 35.2 8(4) 15 1690 0.32

cl.Medium 22 5(2) 1.7 350 0.20

cl.Xlarge 88 20(8) 7 1690 0.80

Table 2. Analysis of hit rate under deadline constraint, %
Deadline Algorithm Montage Cybershake LIGO Epigenomics

CHGA 96.30 94.07 93.10 92.30
ABC 78.10 77.10 79.10 79.12

Hard HIJA 95.62 93.00 92.56 90.15
CEGA 92.34 88.48 88.50 83.49
CLGA 95.50 91.48 91.46 88.02
CHGA 99.90 99.80 99.74 99.83
ABC 82.08 80.35 81.03 82.97

Crunch HIA 99.61 99.82 99.60 99.81
CEGA 99.50 99.62 99.50 99.61
CLGA 99.51 99.76 99.57 99.74
CHGA 99.89 99.80 99.77 99.81
ABC 99.81 99.89 99.81 99.90

Soft HIA 83.45 82.00 85.78 86.57
CEGA 99.68 99.70 99.61 99.50
CLGA 99.69 99.78 99.70 99.71
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Fig. 1. Flowchart of proposed model

We can calculate the capacity of a VMC; through
product of the number of processing elements PE,,,
available in VM, and its execution speed in MIPS as
mentioned in eq. (11). Here, PE,,, indicates the number
of processing elements in a particular V.

m
VMC =% VMC,,

=1

(12)

V'MC indicates the execution capacity of all VMs which
is equal to the sum of all ¥MC; as mentioned in eq. (12)
where m is the total number of VMs.

(13)

Load L; is computed using eq. (13). Here, T refers to
task length which is divided by VMC;, and n is the number
of total tasks. Task length is expressed as in MI (Million
Instruction).

m
TL=3% L, (14)

=1
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Fig. 2. Analysis of Cost: Montage Workflow (a); Cybershake Workflow (b); LIGO Workflow (c); Epigenomics Workflow (d)

Total Load (71L) represents the load on all VMs in a given
data center which is calculated as given in eq. (14), where
i refers to the number of VMs till m.

TL

LCpu=—-o.

yMC (15)

Load capacity per unit is computed as given in eq. (15).

(16)

The threshold value TH; of any VM, is computed as
mentioned in eq. (16).

For any VM;, if the total load on VA is less than its
threshold value TH, then it is under-loaded, if it is equal to
its TH, then it is balanced, and if it is greater than its 7H,
then it is over-loaded. In our experiment, we examine the
variation of load on 5 VMs under the baseline algorithms
as well as our proposed HJA. If load is greater than
100 percentages that means machine is overloaded; if less
than 100 percentages, i.e., it is under-loaded.

Fig. 4 illustrates how our HJA outperforms competing
baseline techniques in terms of load balancing across all
5 VMs. VM has the highest load of 112, and VM5 has the
lowest load of 95. It indicates that VM5 is under loaded by

TH, = LCpu x VMC,.

—5 whereas VM, is overloaded by +12. This demonstrates
the sturdiness of the HJIA model we’ve suggested.

Discussion

Three strategies are used to initialize the population
in our hybrid module based on JAYA. The remaining
potential solutions are created using a random method with
a greedy strategy, and one individual is initialized using
HEFT-TD, another using the PEFT methodology. These
methods lower the cost of calculation while simultaneously
minimizing the makespan. To arrive at a more ideal option,
the fitness of each candidate is calculated and the JAYA
technique is used. The overall execution cost is calculated
if the candidate solution meets the deadline constraint
requirements. We repeat these procedures until we find
the optimum solution. The results of our experiment show
how robust our proposed model HJA is. ABC, CEGA,
CLGA, and CHGA are each 20.16 %, 16.58 %, 14.04 %,
and 2.88 % more expensive than HJA. In comparison to
ABC, CEGA, CLGA, and CHGA, respectively, HJA has
shorter average makespans of 39.92 %, 9.05 %, 13.9131 %,
and 2.82 %. In terms of load balancing across all 5 VMs,
our HJA performs better than competing baseline
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Fig. 3. Analysis of Makespan: Montage Workflow (a); Cybershake Workflow (b); LIGO Workflow (c); Epigenomics Workflow (d)

methodologies. The load on VM is the highest at 112, and
the load on VMj is the lowest at 95. It shows that VM is
overloaded by +12, whereas VM5 is under-loaded by —5.
This illustrates how resilient the HJA paradigm we’ve
proposed is.

—CHGA —HIJA

—ABC — CEGA ---CLGA

140

Conclusion and Future Direction

We revealed our meta-heuristic, cost-effective,
load-balanced hybrid evolutionary strategy to schedule
scientific process. We applied the HEFT-TD and PEFT
approaches to minimize the execution cost of workflows
and to balance the load across VMs where configuration
of VMs is varying. We extensively evaluated four types
of workflows which are belong to scientific domains with
varying task sizes within a user-defined deadline, taking
into account three parameters: makespan, computing cost,
and load balance. Our experimental findings have shown
that the suggested HJA algorithm outperforms the ABC,
CEGA, CLGA, and CHGA in terms of computational cost
and execution time as well as load balancing across virtual
machines.

In the future, we would like to address the dynamic
nature of workflow with varying nature of communication
bandwidth and communication delays throughout data
centers using the most recent metaheuristics strategies
along with machine learning.

=X

< 100

o

—

[

]

=

g

E 60

S

20+
VM1 VM2 VM3 VM4 VM5
Types of Virtual Machine
Fig. 4. Balance of load among various VMs
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