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Abstract

Computer modeling is one of the most common approaches to the analysis of thin-walled shell structures stress-strain
state analysis. It requires considerable time costs and high-performance hardware, especially when it is necessary to
conduct a comparative analysis of various shell configurations. In this paper, we propose the use of deep learning
methods to improve performance of this process. The purpose of work is to develop methods for high-performance
computer simulation of thin-walled shell structures using deep neural networks, allowing to take into account geometric
and physical properties of the structure as well as the load applied to it. A training approach and deep neural network
architecture were developed to perform computer modeling of the stress-strain state of the shell. To form a training
dataset, a computational experiment was carried out to simulate 3904 different configurations of doubly curved shallow
shells that differ in linear dimensions, curvature radii, and materials used. Based on this dataset, 30 deep neural networks
with different architectures were trained. To determine the optimal architecture in terms of modeling accuracy, mean
absolute percentage error with clipping near-zero samples was calculated for each of the neural networks based on the
test dataset. A network has been developed that allows calculating the stress-strain state of different shell configurations
under an arbitrary uniformly distributed load. This is the first solution in the field of shell neural network modeling
that allows us to vary the applied load, geometric and physical parameters of the shell and obtain calculation results at
an arbitrary point of its middle surface. Performance measurements were carried out which show that the developed
neural network allows simulating the stress-strain state of a shell structure 2117 times faster compared to the duration
of solving the same problem by classical simulation. The modeling error using the network is at an acceptable level.
An original architecture of a neural network for modeling the stress-strain state of shells was proposed which, through
minor modifications, can be adapted for high-performance modeling of other building structure types. In accordance
with the described architecture, a deep neural network was trained which reduces the computation time by several
orders of magnitude. The results obtained are of high practical importance for researchers in the field of thin-walled
shells modeling since they allow us to significantly reduce the time costs associated with conducting computational
experiments. One of the possible applications for developed solution is prototyping of various shell configurations.
Once prototyping is complete, the most efficient shell configurations can be explored in detail using classical computer
simulation techniques.
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AHHOTAIUA

Ipeamer nccaegoanusi. OqHUM 13 Haubosiee pacIPOCTPAHEHHBIX MOJXOJ0B K HCCIIEJOBAHUIO HANPSHKEHHO-
ne(OPMUPOBAHHOTO COCTOSIHHSI TOHKOCTEHHBIX 000JI0UEUYHBIX KOHCTPYKIMH MOJ BO3ACHCTBHEM BHELIHHX CHII
SBJISIETCS. UX KOMIIBIOTEpHOE MoJenrpoBaHue. JlaHHOe peleHre TpedyeT CyIeCTBEHHBIX BPEMEHHBIX 3aTpaT U
BBICOKOIPOM3BOUTENBHOTO AMapaTHOToO 00ecHedeH s, 0COOEHHO MPH HEOOXOANMOCTH MIPOBEICHUS CPABHUTENBLHOTO
aHAIM3a Pa3IMIHBIX KOHPUTypanuii obomodek. B nanHO# paboTe 11 MOBBIIEHHS TPOU3BOIUTENFHOCTH MOJIETUPOBAHUS
TIPeI0KEHO IPIMEHEHNE METOJI0B NITyOOKOro 00yueHHs. BrimomHeHa pa3paboTka BEICOKOIPOM3BOANTEIEHOTO METOA
KOMITBIOTEPHOTO MOZICJIMPOBAHHS TOHKOCTEHHBIX 000JIOUETHBIX KOHCTPYKIIHI C HCIIOIb30BAaHNEM LITyOOKHX HEHPOHHBIX
CeTeif, O3BOJISIONIETO YIECTh TeOMEeTpHISCKHe U (pru3ndeckne CBOWCTBA KOHCTPYKIIMH, a TAK)Ke MPHUKIIAIBIBAEMYIO K
Hel Harpy3Kky. Meroa. OCHOBa MeTO/Ia COCTOHT B MOAXO0JE K O0yYEHHUIO M apXUTEKType ITyOOKOi HEeHpOHHOH ceTH,
CIOCOOHOH BBITTOJIHATH KOMITBIOTEPHOE MOJIEIHPOBAHNE HAPSIKEHHO-1e()OPMHPOBAHHOTO COCTOSHHSI 00O0JIOUKH.
Jns dopmupoBanus olydaroiiero Habopa JaHHBIX MPOBEACH BBIYUCIUTEIBHBIH IKCTIEPUMEHT MOJISINPOBAHUS
3904 xoHdUTrypaluil MOJOTUX ABOSKOBBITYKIBIX 000JI04EK Pa3HbBIX JWHEHHBIX Pa3MepOB, PAJUYCOB KPUBU3HBI
1 HUCIIONIB3yEeMBIX MaTepuanoB. Beimonneno ob6ydenne 30 miry0OKMX HEHPOHHBIX CETEH Pa3THUYHBIX apXUTEKTYD.
Jlns BEIOOpA apXUTEKTYpPhI, ONTUMATIBHON C TOYKH 3PEHUS] TOUHOCTH MOJCITHPOBAHMUS, IS KQXKIOH M3 00ydIeHHBIX
ceTell Ha MPOBEPOYHOM HAOOpPE MAaHHBIX PACCUNTAHA CPEHSS aOCONMIOTHAS OMHMOKA B MPOIEHTAX C OTCEUCHHEM
OKOJIOHYJIEBBIX 00pa3ioB. OCHOBHBIE pe3yabTaThl. Pazpaborana HelipoHHas CETh, TO3BOJISIONIAs Oe3 CyIIeCTBEHHBIX
BBIYHMCIUTEIBHBIX 3aTpaT ONPEACIUTh HANPSIKEHHO-Ie(pOPMUPOBAHHOE COCTOSTHHE MHOXKECTBAa KOH(UTYpaui
0001104eK MO/l BO3/IEHCTBUEM NPOM3BOIBHOM PABHOMEPHO-pAcHpeeNeHHOI Harpy3ku. [laHHOe peleHre — nepBoe
B 00JIacTH HEHPOCETEBOTO MOJCINPOBAHUS 000JI0UEK, MO3BOJIAIONIEE 3a1aBaTh PUKIAJAbIBAEMYIO HAIPYy3KY,
reoMeTpHuecKre 1 (pU3MYecKue mapamMerpbl 000JIOYKH U MOJIy4aTh Pe3yJIbTaThl pacyeTa B MPOU3BOJIBHON TOUKE
CpeIMHHON MOBEPXHOCTH 00onoukH. [IpoBeneHo cpaBHEHNE TPOU3BOANTEIBHOCTH KIACCHYECKOTO MOJEITHPOBAHNUS
W MOJICTUPOBAHMS HANPSHKEHHO-IE()OPMIPOBAHHOTO COCTOSHUS pa3pabOTaHHOW HEHpOHHOH ceTu. s omgHoM
KOHCTPYKIIUH MOZICIMPOBAHNE B HEHPOHHOM CETH BBINONHSETCS B TedeHHe 2 MC, 9To B 2117 pa3 OvIcTpee 110 CpaBHEHHIO
¢ KraccudecknM. [Ipu 3TOM IorpentHoCTs MOACIUPOBAHYS C HCIIOIb30BAaHNEM CETH MOJTyYeHa Ha JOITYCTUMOM yPOBHE.
IpakTnyeckast 3HAYNMOCTD. [Ipeioxkena opurHHaIbHas apXUTEKTYpa HEHPOHHOW CETH MOZISIIMPOBAHHS HAIIPSHKEHHO-
n1e(hOPMUPOBAHHOTO COCTOSIHUSI MOJOTUX JIBOSKOBBIITYKIIBIX 00071049eK. APXUTEKTypa MyTeM HE3HaYUTEIbHBIX
MoaM(pUKAMi MOXKET OBITh NPUCTIOCOONIEHA JUIs BEICOKOIPOU3BOAUTEIBHOTO MOACINPOBAHUS PA3HBIX BHJIOB
CTPOUTENIBHBIX KOHCTPYKIMI. OcyIecTBICHO 00ydeHHe ITyO0Koi HEHPOHHOH CeTH, KOTOpasi 00eCIeUnBaeT COKpaleHIe
JUTUTEIbHOCTH BBIYMCICHUH Ha HECKOIBKO MOPsAAKOB. [lomydeHHble pe3ynbTaTsl 0071aJal0T BEICOKON MPAaKTHIECKON
3HAYUMOCTEIO IS HcClleioBaTeseil B 001acTi MOAEINPOBAHNS TOHKOCTEHHBIX 000I04eIHbIX KOHCTpyKIuid. Hanbomee
NIePCTIEKTUBHBIM ITPUMEHEHHEM Pa3pad0TaHHOTO PEIICHUS SBISIETCS MPOTOTHIIHPOBAHUE PA3IMIHBIX KOH(DUTYparmit
o6omouek. [To okoHUaHNH MpOTOTHIHPOBaHUS Hanbosee d3hheKTHBHBIE KOHGUTYpAIE MOTYT OBITH JIETAIBHO
HCCJIEZ0BaHbI C HCIIOIb30BAHNEM KIACCHYECKUX METOJO0B KOMITBIOTEPHOTO MOJICITHPOBAHHSI.
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Introduction

Thin-walled shell structures (or shells) are structures
bounded by two curved surfaces, the largest distance
between which is much smaller than any other dimension
[1]. They are actively used in architecture and construction
[2], aerospace [3], ship modeling [4], acoustics [5], space
industry [6], and many other areas due to their low weight
and high strength [7]. A visualization of a doubly curved
shallow shell, which is one of the most common types of
shell structures, is given below (Fig. 1).

Fig. 1. Example of a doubly curved shallow shell
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Computer modeling of a shell is time-consuming and
requires high-performance hardware, such as multicore
processors and graphical processors [§]. To analyze the
properties of various shell configurations (which differ
in their shapes and materials) it is necessary to calculate
Stress-Strain State (SSS) of the shell that occurs under
the influence of external forces. In accordance with the
Reissner-Mindlin model [1] used in this work, shell SSS is
described by a set of 5 functions of two spatial coordinates
x, y: U, V, W (displacements in three orthogonal directions
Ox, Oy, Oz accordingly) and '¥,, ¥, (functions of normal
segment turning angles to the middle surface in planes xOz
and yOz accordingly). -

Suppose there are functions U, V, W, ¥,, '¥,, which
depend not only on but also on geometry parameters and
material properties as well as on the load applied to the
shell. These functions describe the SSS of a whole class of
shells. The presence of such functions would significantly
reduce the time spent on the calculation. Obtaining an
analytical expression for them seems impossible due to the
complexity of the corresponding boundary value problem,
so this work considers construction of their approximations
with the use of deep learning.

The purpose of this work is to develop high-
performance methods for computer simulation of thin-
walled shell structures using deep neural networks and
allowing to take into account geometric and physical
properties of the structure as well as the load applied to
it. To achieve this purpose, the following problems were
solved:

— A computational experiment was carried out for 3904
shell configurations differing in geometric properties
and material parameters.

— Architecture of an Artificial Neural Network (ANN) for
modeling SSS of the shells is proposed.

— ANN was trained on the results of a computational
experiment.

— Accuracy and performance of SSS modeling with the
use of ANN was estimated.

During the work, a computer based on AMD Ryzen
9 3900X CPU, 64 GB RAM, Nvidia Geforce RTX 2070
Super GPU and OS Manjaro Linux (kernel version 5.15.44)
was used. Julia programming language [9] was used for
software development.

Application of deep learning in shell modeling is a
relatively new scientific direction [10]. Therefore, the
literature review also includes works on modeling plates
(since a plate can be considered as special case of a shell
without geometric curvilinearity). Mallela et al. [11] used
the results of finite element modeling of composite plates
to train a neural network capable of determining the critical
load of the plate. The average error in determining critical
load for that study was about 2 %. A similar approach
was used in [12] and it has shown high effectiveness
in calculating the critical load of hat-stiffened panels.
Tahir et al. [13] used the data from a large amount of
physical experiments on loading a cylindrical shell to
train a critical load calculation ANN. They were able to
achieve prediction accuracy that exceeds the accuracy of
corresponding empirical formulas. These papers show high
efficiency of ANNs in the problems of modeling plates and

shells. At the same time, reviewed network architectures
allow determining only the critical load for a plate or
a shell, while the proposed approach allows predicting
displacements and rotation angles for a specific load at an
arbitrary point of shell.

Ribeiro et al. [14] developed 4 ANNs SSS modeling
for the plate (2 ANNs for modeling plates without
reinforcement and 2 ANNSs for modeling plates reinforced
with ribs). The modeling accuracy of these networks was
estimated by the authors as high. But in comparison to the
proposed method, described ANNs do not allow varying
thickness, physical characteristics of the plate, or the
applied load. Also, the network output is limited to vertical
displacements and von Mises stress value.

It is worth noting that ANNSs trained on the results of
physical experiments in most cases allow to achieve high
modeling accuracy, and ANNs trained on the results of
computer simulations are usually developed to increase
modeling performance. When learning on “synthetic”
dataset, ANN is limited by the accuracy of this dataset.
From the other side, it usually requires much less
computations for an ANN to transform the input data to
SSS information.

Thereby, literature review has shown that the
proposed approach (development of a neural network
capable of determining SSS of the shell at any point of
its surface by the value of applied load, geometric and
physical properties) is an original solution of the discussed
problem.

Training dataset preparation

To train an ANN predicting the SSS of a custom shell
configuration, it is necessary to form a dataset describing
SSSs of various shells. Therefore, it is necessary to prepare
a set of pairs in the form of (¢, x, v, g1, ..., v.» M1 -+ mN,,,)
> UV, W, ¥, ‘Py), where ¢ is the value of uniformly
distributed load applied to the shell; x, y are coordinates
of the considered point on the middle surface of the shell;
1> s &y, ATe the parameters describing shell geometry;
my, ..., my are the parameters describing shell material;
N, N, are the amounts of geometry parameters and
material parameters, respectively.

We consider the class of doubly curved shallow shells.
Geometry of these shells is determined by parameters
a, b — linear dimensions along the Ox, Oy axes
accordingly; # — shell thickness; and R;, R, — curvature
radii along Ox, Oy axes accordingly. Computer modeling
was carried out with the assumption of material isotropy,
therefore physical properties of the shell are determined by
three parameters: £ — the modulus of elasticity, G — the
shear modulus, and p — the Poisson’s ratio.

When forming the training data set, doubly curved
shallow shells with the following geometric characteristics
were considered. The range of values for the linear
dimensions is from 1.0 to 21.0 m and the step is 4 m. Range
of thickness values is from 0.01 to 0.1 m and the step is
0.03 m. Range of values for the curvature radii is [min(a, b),
6 min(a, b)] divided evenly by 3 parts (i.e., containing
4 evenly distributed values). From the described set of
possible configurations, those configurations were excluded
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min(a, b)

for which # > (i.e., which are not thin walled).

Aluminum (E = 7.00 x 104 MPa, G = 2.60 x 104 MPa, p =
=0.34) and steel (£ =2.00 x 105 MPa, G = 8.20 x 104 MPa,
p =0.25) were considered as construction materials. The
applied load is uniformly distributed and normal to middle
surface. The range of values for the load is from 0.0 MPa
to 10.0 MPa in increments of 0.1 MPa. Shell termination
is hinge-fixed.

In accordance with the procedure described above, 3904
configurations were formed. They were randomly divided
into 80 % training configurations used for training dataset
generation and 20 % test configurations used for test dataset

generation. Then, for each configuration 101 = H +1

SSS calculations were performed in accordance with the
previously defined load application interval. Total duration
of computer modeling was around 7.9 hours. Overall
amount of unique SSS calculations is 394,304 states.

Computer modeling of shells was carried out using
author’s software a detailed description of which is beyond
the scope of this work. We only note that it is based on the
application of Ritz method to solve the variation problem
for total deformation energy functional. The Reissner-
Mindlin model is used as a mathematical model when
constructing the functional for a shell, and the LBFGS
algorithm is used for minimization purposes. As a result of
computer simulation, an approximate solution is formed as
5 functions U(x, y), V(x, y), Wix, y), ¥(x, ), ¥, (x, ) which
are weighted sums of products of trigonometric functions.

To discretize continuous functions when preparing the
training dataset, the surface of each shell was divided by
a uniform grid of size 5 x 5. This size was chosen because
usually load-deflection diagrams are built in geometric
center of the shell and its quarters while nodes of the
5 x5 grid include these points. It is worth noting that
using the same coordinates during each epoch of ANN
training can lead to the state of neural network where its
prediction for an arbitrary point (x, y) not falling in the
center or one of shell quarters will be unreliable. Therefore,
another training dataset was added which includes data
from 5 x 5 grid with a non-uniform step determined by a
pseudo-random number generator. This dataset was rebuilt
every 5 epochs so that the network does not “get used” to
the same coordinates. A similar approach was used to train
ANN on shell behavior at its boundaries. Every 5 epochs,
an additional training dataset was randomly generated from
20 points along the perimeter of the shell which guarantees
correct training of the network to the conditions of shell
termination.

In total, 27,601,280 pairs of the form (¢, x, v, a, b, h,
R, Ry, E,G,W)=> (U V, W, ¥, ‘I‘y), i.e., pairs of input and
output data, were generated. To optimize the ANN learning
process, normalization was also applied to input data.

ANN architecture

Flux jl library [15] was used to implement the neural
network. To determine optimal configuration of the ANN,
30 network configurations were considered differing in
architectures, amount of hidden layers, and sizes of each

layer. Mean Squared Error was used as a loss function and

Mean Absolute Percentage Error (MAPE) with a cut-off for

those samples that are less in modulus than € = 0.01 was

used as a metric for evaluating model quality. As a result
of comparing different ANN configurations, the following
was found to be the most effective:

— An input layer with 11 neurons by the number of
parameters describing a shell.

— 4 dense layers with 176 neurons each (11 x 16).

— 5 parallel chains of layers, each with 1 layer of
187 neurons (skip connection from the input layer and
176 inputs from previous layer), 3 layers of 88 neurons
(8 times the input length) and 1 layer with 1 output
neuron.

Overall amount of trained parameters is equal to
327,365. ReLU activation function is used for all neurons
except for the output layer; an identity function is used
for the output layer. ADAM optimization procedure was
applied for ANN training.

Approbation of ANN

ANN was trained for 50 epochs after which the values
of loss function and MAPE metric on the test dataset
stabilized at the level of 0.001 and 25 %, respectively.
Considering the error of Reissner-Mindlin model,
which is about 5-20 % depending on the degree of shell
curvilinearity, achieved relative error is acceptable.
Detailed analysis showed that the reason of high relative
error is the incorrect prediction of near-zero values which
is not critical for modeling purposes.

To demonstrate the capabilities of developed ANN, it
was tested on a shell with the following characteristics:
a=54m,b=54m,7=0.09m,7=205m,R,=20.5m,
E=2.0x105MPa, G=238.2 x 104 MPa, p = 0.35. They
were chosen to exclude the possibility of accurate ANN
prediction due to overfitting the training data set. The only
parameters that the network has already “seen” are the
material parameters. Load-deflection diagrams obtained
using the classical approach to calculation and ANN
modeling are presented below (Fig. 2), where W(q, x, )
is the vertical displacement of shell middle surface under
load ¢ at point (x, y).

W(q,2.7,2.7)

~A- Classic

-0 ANN

0.10 0.20 0.30 0.40
W, m

Fig. 2. Load-deflection diagram calculated by ANN and classic
modeling methods
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Fig. 3. Vertical displacement (/, m) of shell middle surface modeled by ANN («) and classic modeling methods (b)

As can be seen from the figure, ANN provides high
modeling precision. Displacement after the critical load
(¢ = 2.7 MPa) was evaluated with relative error equal to
1.17 %. It is worth noting that ANN was able to determine
the critical load of shell, but it could not simulate the
“discreteness” of the transition to another stress-strain
state after the critical load. Results of classic calculation
with a load step of 0.1 MPa contains an abrupt change in
the behavior of the structure when passing the 2.7 MPa
load, but ANN performs the transition from one state to
another relatively smoothly, starting with a load of 2.3 MPa
and ending with a load of 2.8 MPa. On the other hand, all
the necessary calculations took 0.002 s which is 2117 times
faster compared to the classical computation approach, and
this required 4.234 seconds for simulation.

The most efficient application of the proposed approach
is modeling a large number of constructions. For example,
to estimate the influence of shell dimensions on the critical
load, researcher needs to model different configurations
of shells (suppose 50 distinct values). Classical computer
modeling approach will require about 3 hours (4.2 seconds
per shell, 50 x 50 = 2500 computations). Using the
proposed ANN, calculations will take about 5 seconds.

Contour maps of vertical displacement field W(x, y)
for the previously considered shell under load ¢ = 2.9 MPa
(i.e., after shell buckling) are presented below (Fig. 3).
Coordinates x, y are dimensionless and obtained by
normalizing the middle surface coordinates to the range
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[0.0, 1.0], vertical displacements are given in meters. It
can be seen that ANN (Fig. 3, @) has learned to correctly
model shell fixing and that it describes shell behavior after
critical load with high accuracy. Maximum absolute ANN
modeling error is less than 1 cm.

To further evaluate ANN modeling accuracy, computer
simulation was performed for 75 steel shells with the
following characteristics: a, b € [7, 11, 15, 19, 23],
R| =R, =min(a, b). These configurations do not intersect
with training or test datasets. MAPE metric for them was
equal to 36 % which is only 11 % higher than the metric
value on the test dataset. In most cases large error values
were caused by smooth transitions near the critical load
value which is insignificant in most cases.

Conclusion

A deep neural network for stress-strain state
computation of the shell was described and developed.
Such a network makes it possible to increase the
performance of shell modeling by several orders of
magnitude. The proposed solution is unique and currently
has no analogues. The most promising application of the
developed artificial neural network is prototyping. It can be
used for quick comparison of numerous structures. Most
efficient configurations can be further examined with the
use of classic computation methods. Main directions for
further research are accuracy improvement and extension
of the class of simulated structures.
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