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Abstract

The development issues of theories of robustness, roughness and bifurcations of dynamic systems are considered.
In the modern theory of dynamic systems and automatic control systems, researches of the properties of roughness
and robustness of systems are becoming more and more important. The work considers methods of research and
ensuring robust stability of interval dynamic systems of both algebraic and frequency directions of robust stability.
The main results of the original algebraic method of robust stability for continuous and discrete time are given. In the
frequency direction of robust stability, the issues of a frequency-robust method to the analysis and synthesis of robust
multidimensional control systems based on the use of the frequency condition number of the transfer matrix of the
“input-output” ratio are considered. The main provisions of the theory and method of topological roughness of dynamic
systems based on the concept of roughness according to Andronov-Pontryagin are presented with the introduction of
a measure of roughness of systems in the form of a condition number of matrices of reduction to a diagonal (quasi-
diagonal) basis at special points of phase space. Criteria for dynamic systems bifurcations are formulated. Applications
of the topological roughness method to synergetic systems and chaos have been used to investigate many systems, such
as Lorenz and Réssler attractors, Belousov-Jabotinsky, Chua systems, “predator-prey” and “predator-prey-food”, Hopf
bifurcation, Schumpeter and Caldor economic systems, Henon mapping, and others. For research of weakly formalized
and non-formalized systems, the use of the approach of analogies of theoretical-multiple topology and the abstract
method to such systems is proposed. Further research suggests the development of roughness and bifurcation theories
for complex nonlinear dynamical systems.
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Brief review of the development of theories of robustness, roughness and bifurcations of dynamic systems

YaCTOTHOTO HAaIPaBJICHUI MCCiIeoBaHUN U oOecreueHns: poOacTHON yCTOHYMBOCTH MHTEPBAIBHBIX JHHAMUYECKUX
cucteM. [IpuBeaeHbI OCHOBHBIE Pe3yJIbTaThl OPUIMHAIBHOTO aIredpanyeckoro MeToaa podacTHOH yCTOHIMBOCTH ISt
HETMPEPhIBHOTO M JUCKPETHOTO BpEMEHH. B 4acTOTHOM HampaBiIeHHM MCCIEJOBaHbI BOIPOCH YaCTOTHO-POOACTHOTO
MeTOJa aHaJIN3a U CHHTEe3a POOACTHBIX MHOTOMEPHBIX CHCTEM YMPaBICHUS HAa OCHOBE MCIONIB30BAHHS YaCTOTHOTO
grcaa 00yCIOBIEHHOCTH MepeIaTOYHON MaTPHIlbl OTHOIICHHS «BXOI—BBIXOM». V370)K€HBI OCHOBHBIC MOIOKECHHUS
TEOPHH W METOZA TOMOJIOTNIECKON rpyOOCTH TMHAMUYECKUX CHCTeM. [1010)KeHHsT OCHOBAHBI HA MOHSTHH TPYOOCTH IO
AmnnponoBy—IloHTpsruHy ¢ BBeJIeHHEM MepBI IPyOOCTH CHCTEM B BUJIE YHCIIA 00YCIOBICHHOCTH MaTPUI] IPUBEICHHS
K JAMaroHaJbHOMY (KBa3WAMAroHaJIbHOMY) 0a3nucy B 0COOBIX TOUKax (hazoBoro mpocrpanctsa. ChopMyIHpoOBaHBI
KpuTepuu OudypKanuil TMHAMHYECKUX cucTeM. [IpritoykeHHs: MeTo/ia TOHNOJIOTMYECKOH rpyOOCTH UCTIONB30BaHbI ISt
HCCIIEI0OBAaHUI CHHEPIeTHYECKUX CHCTEM U MX Xaoca Ha puMepax: cucteMsl JlopeHiia u arrpakropa Pecciepa; peakiyn
BenoycoBa—Kabotunckoro; cuctemsl Uya; CUCTEM «XUIIHUK—KEPTBA» M «XUIIHUK—KEPTBAa—THIIa»; OudypKauu
Xomnda; sxoHomuueckux cucreM Lllymmnerepa n Kanmopa; otobpaxkennss JHoHa u apyrux. [ns uccnenoanus cnado
(hopManM30BaHHEIX ¥ He()OPMATHN30BAHHBIX CHCTEM IPEITOKEHO HCIONb30BaHNE MOJX0AA aHATOTHH TEOPETHKO-
MHOKECTBEHHBIX TOTIOJIOTHH M aOCTPAaKTHOTO METO/a K TaKHM CHCTeMaM. JlaibHeiinee uccieJoBaHue mpe/nonaraeT
pasBuTHE Teopuil rpybocTH ¥ OnypKanui ATt CIOKHBIX HEIMHEIHBIX TUHAMHYIECKIX CHCTEM.
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METO/] TOIIOJIOTHYECKOH IpyOOCTH, YUCIO 00YCIOBICHHOCTH MaTPHUIbI, OUdypKanus cucreM, podacTHOCTh CHCTEM
yIpaBJICHUsI, HHTEPBaJIbHbBIC TUHAMUYECKHE CUCTEMbI, MHOTOMEPHBIE CUCTEMBI YIPABICHHs, YaCTOTHO-POOACTHBIN
METO/I, YaCTOTHOE YUCIIO0 00YCIIOBICHHOCTH, CHHEPTETHIECKHE CUCTEMBI, Xa0C, 0COObIE TOUKH U TPACKTOPHUH, MAaTPHUIHOE
ypaBHeHue CuibBecTpa
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Introduction

The interests of researchers who are attracted by the
problems of robustness and roughness in various fields
of science and technology [1-4], and not only in control
theory, but also in ecology, synergetics, etc., are related to
the fact that these problems relate to the most important
properties of systems considered in their actual functioning.
Especially it expands the boundaries of the problem of
roughness, its connection with the problems of bifurcations
and catastrophes.

As for control systems, the issues of robust stability are
currently the most considered and solved. The solution of
these issues is connected with the fundamental works of
V.L. Kharitonov [5, 6] in which the issues of robust stability
for interval polynomials are solved.

At present, many new results have been obtained in the
theory of robust stability, first of all, the line theorem and
discrete analogs, and variants of Kharitonov’s theorems.
Soviet and Russian scientists — Ya.Z. Tsypkin and
B.T. Polyak [4], Yu.l. Neimark [7] developed frequency
criteria for robust stability of the Mikhailov, Nyquist, and
D-decomposition types.

The author’s papers [8—10] present original results
obtained for continuous and discrete linear interval
dynamical systems which are generally called the algebraic
method of robust stability.

The possibilities of matrix equations of the Sylvester
type made it possible to take a fresh look at the traditional
methods and tools for research multidimensional control
systems, especially in the frequency direction of the theory
of robustness for multidimensional systems. These include
frequency transfer matrices and frequency characteristics
constructed on their basis. In particular, the problem of
designing frequency transfer matrices is solved using the
concept of similarity of the forced component of the state
of a multidimensional system to the state of the source of a
finite-dimensional exogenous impact [11].

The concept of similarity made it possible,
from a unified algorithmic standpoint, to construct
frequency transfer matrices of continuous, discrete and
multidimensional systems with modulation for single-
frequency and multi-frequency cases of excitation of
system inputs by harmonic exogenous action.

The use of the singular value decomposition of the
frequency transfer matrices of multidimensional systems
makes it possible to construct majorant and minorant
amplitude and phase frequency characteristics of the
studied systems by state, output, and error on the extremal
elements of the algebraic spectrum of singular numbers
and singular bases.

The main procedures of the frequency-robust method
for the synthesis of multidimensional systems are based
on the possibilities of the modal-robust generalized modal
control.

In the classical formulation, the questions of
roughness and bifurcations of dynamical systems were
posed at the dawn of the formation of topology as a new
scientific direction in mathematics by the great French
mathematician and physicist H. Poincaré [1], in particular,
the term bifurcation was first introduced by him and means
literally “bifurcation” or, in other words, new solutions
branch off from the solutions of the equations of dynamical
systems.

Many fundamental results in the theory of roughness
and bifurcations were obtained by A.A. Andronov and his
school. In the work of A.A. Andronov, L.S. Pontryagin [2],
the concept of roughness was first given, which was later
called the concept of roughness in the sense of Andronov—
Pontryagin [3].

In the author’s papers [12-23], results are obtained
that develop the concept of roughness in the sense of
Andronov—Pontryagin, allowing one to quantitatively
research and solve problems of roughness and bifurcations
of dynamical systems which are effectively applied to
synergetic systems.
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The review considers the development of theories
of robustness, roughness and bifurcations of dynamical
systems, in particular, in relation to control systems and
synergetic systems of various physical natures.

The main stages in the development
of the theory of robustness of systems

The traditional understanding of roughness and
robustness in modern literature defines robustness as the
ability of systems to preserve certain properties of not a
single system, but a set of systems defined in one way or
another under finite parametric or external disturbances,
and roughness as a property of systems to preserve a
qualitative picture of the partition of the phase space on
the trajectory under a small disturbance of the system
topologies [2, 3, 15, 24-26].

As mentioned above, the solution of issues of robust
stability is primarily associated with the fundamental works
of V.L. Kharitonov for interval polynomials [5, 6].

In these works, V.L. Kharitonov solved questions
about the stability of interval polynomials (or a family of
polynomials) of the form

f()\‘):bo)\,n‘i’bl)\,n71 +... +bn, (1)

where b, i = 0, 1, ..., n are the coefficients given in the
intervals b; < b; < b;, b;, b; are the lower and upper bounds
of the coefficients b; respectively.

It is shown that the necessary and sufficient conditions
for the robust stability of the entire family of real and
complex polynomials (1) are, respectively, the stability of
four and eight (paired) angular polynomials. These corner
polynomials are now called Kharitonov polynomials.

At present, the following have been obtained: the
edge theorem and discrete analogues and variants of
Kharitonov’s theorems, frequency criteria for robust
stability of the Mikhailov, Nyquist, D-decomposition types
[4,7].

It should be noted that the issues of designing robust
nonlinear control systems have not yet been sufficiently
considered, especially when the models and parameters of
disturbances are uncertain [27, 28].

The works [29-32] present surveys and formulations of
robust stability problems which were based on the work of
V.L. Kharitonov [5].

In the work of B.T. Polyak, P.S. Shcherbakov [31] the
concept of superstability of linear control systems has
been proposed. At the same time, superstable systems
have convexity properties that allow simple solutions for
many classical problems of control theory, in particular, the
problem of robust stabilization under matrix uncertainty.
But a significant limitation of such systems is the practical
narrowness of their class, determined by the conditions for
the presence of dominant diagonal elements of the system
matrix with negative values.

In the work of V.M. Kuntsevich [32] interesting results
on robust stability for linear discrete systems have been
obtained. In this case, the matrix of the system is given
in the Frobenius form which also narrows the class of
considered real systems.

In the works [33, 34], B.R. Barmish and others
proposed counterexamples to Bialas’ theorem [35], which
were annulled in [8].

In the works [36, 37], M. Mansour and others obtained
discrete analogs of Kharitonov’s weak and strong theorems
[5], which have restrictions imposed on the interval
domains of the coefficients, or in cases of applying [25]
a complex procedure for projecting polynomial roots onto
the segment [ -1, 1].

In the modern theory of interval dynamical systems,
there are two alternative directions [4—7, 10, 27-30, 38]:
1) algebraic or Kharitonian direction;

2) frequency or Tsypkin—Polyak direction.

The author’s papers [8-10, 21, 39-42] present original
results obtained in the Kharitonian direction for continuous
and discrete linear interval dynamical systems which are
generally called the algebraic method of robust stability.
The main results of the method are presented in [10].

The novelty and distinctive feature of the method lies in
the fact that for an interval dynamical system with a matrix
of general form both in continuous time

X(2) = Ax(1), x(tp) = Xo, 2

and in the discrete case

X(m+1)=Ax(m),m=1,2,3, ..., 3)

where x = x(f) € R", x(m) are state vectors; A € R is an
interval matrix with elements ajjs I, Jj = 1, n, representing
interval values a;; € [ay, a;] with angular values ay, djjs
a; < ay, the necessary and sufficient conditions for the
robust stability of systems (2) and (3).

In the continuous case, the so-called successive separate
slope coefficients b; of the characteristic polynomials (1) of
system (2) are determined, which are found by optimization
methods of nonlinear programming in terms of the interval
elements of the matrix A.

In the discrete case, the concepts of points and intervals
of intermittency are introduced for the coefficients of the
characteristic polynomial of the system [9, 11, 40—43] on
the basis of which an algorithm for determining the robust
stability of system (3) is formulated.

The interval characteristic polynomial of a discrete
system, obtained using the z-transform, has the form

n f— —
f(Z) = det(ZI - A) = 'zobizniia bi € [bis bi]s bi = bia
=

where I the identity matrix.

The algebraic method of robust stability, which was
developed for linear interval dynamical systems, can
be applied fo the research of nonlinear interval systems
[44], based on the use of the provisions of the topological
roughness method described in [20]. In this case, the
dynamics of systems is considered near its singular
trajectories.

In the frequency direction of analysis and synthesis
of robust multidimensional systems, a new method of
frequency-robust systems [11] is proposed, based on the
concepts of modal control.
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Structural redundancy of multidimensional objects
allows us to set the problem of generalized modal control
[11] when solving the problem of synthesizing the control
law that delivers to the matrix F of the system obtained
by aggregating the original multidimensional continuous
control object

X =Ax+ Bu,y=Cx

and the control law implemented as a linear composition of
feedforward on exogenous impact and feedback on the state

u=K,g-Kx,
F=A-BK, G=BK,,

where A € R, B, K € Rvm, K, € R"", u is the control
vector, g is the external input vector, n is the order of
the control object, are the desired algebraic spectrum of
eigenvalues A, 6{F} = {;, i = 1, n} and geometric spectrum
of eigenvectors &, {&;: F§;=AE;, =1, 1, [<n}, [is the order
of the closed system, the feedback matrix K on the state of
the object is calculated using the relation K = HM-!, and
the matrix M is the solution of the Sylvester equation

MT — AM = -BH,

where I' € R is the state matrix of the modal model that
determines the desired spectrum of the system modes, M is
the transformation matrix of the bases of similar matrices I'
and F = A — BK, H € R is an arbitrary matrix forming
an observable pair (I', H) with I'.

The problem of synthesizing multidimensional
frequency-robust continuous systems in the class of well-
conditioned “input-output” relations can be solved by
methods of generalized modal control that provides the
system state matrix with a modal-robust representation. At
the same time, due to asymptotic properties, the estimate
of the frequency condition number of the “input-output”
relation in the entire frequency range of exogenous
harmonic influence takes on a minimum value, the degree
of deviation of which from unity is determined by the
degree of deviation from unity of the condition number of
the matrix of eigenvectors.

The main stages in the development of the theory
of roughness of systems

In modern science, more and more attention is paid to
the roughness of dynamic systems, and this is primarily due
to the increased interest of researchers in the unifying areas
of science which include the science of self-developing
systems, and phenomena is synergetics. Also important
for science is the problem of studying chaotic phenomena
or chaos in synergetic systems which are also associated
with the problem of the roughness of such systems [45-47].

Synergetics is increasingly intruding into many areas
of modern science, both in the natural sciences and in the
humanities and social sciences [48—52], in the study of
which issues of roughness and bifurcations are of great
importance.

In the classical formulation, the questions of roughness
and bifurcations of dynamical systems were posed by the
great French scientist H. Poincaré [1].

Many fundamental results in the theory of roughness
and bifurcations were obtained by A.A. Andronov and his
school [2, 3].

In the theory of dynamical systems, two different
approaches to the roughness problem are known:

— based on the concept of roughness according to Peixoto
or otherwise “structural stability” [53];

— on the basis of the Andronov—Pontryagin concept
of roughness, when in contrast to the Peixoto
concept, e-closeness of the original and disturbed
homeomorphisms is required.

In [12-23, 54], results were obtained that develop the
concept of Andronov—Pontryagin roughness, which form
the basis of the topological roughness method effectively
applied to synergetic systems of various physical nature.

The fundamentals of the topological roughness method
are given in [20].

In this case, the method is based on the concept of
Andronov—Pontryagin roughness when the initial system
of the n-th order is considered

() = F(2(7)), “4)

where z() € R is the vector of phase coordinates; F is an
n-dimensional differentiable vector function.

System (4) is called topologically rough in the sense
of Andronov—Pontryagin in some domain G if the original
system and the perturbed system defined in the subdomain
G of the domain G:

i=F@) +1(2), (%)

are e-identical in the topological sense.

Systems (4) and (5) are ¢-identical if there are open
domains D, D in the n-dimensional phase space for
DcDcGcaG:

3e, § >0, such that, if [|f(@)|| <3, | df@)/dz | <3,
ij=Tothen |z - 2] |1<e.  ©
or (D, () = (D, (1),

otherwise, the partitions of the domains D and D by the
trajectories of systems (5) and (4) are e-identical (they have
the same topological structures with trajectories close to €),
where € and § are arbitrary small numbers.

If (6) is not satisfied, then system (4) is non-rough in the
sense of Andronov—Pontryagin.

The foundations of the theory and method of topological
roughness are laid down in [13] where the main definitions
are introduced and basic theorems are proved on the
necessary and sufficient conditions for roughness near
singular points, on the conditions for the existence of a
control that delivers roughness to the system, and on the
conditions for the occurrence of topology bifurcations in
the system [20]. In this case, the measure of roughness is
the condition number C of the matrix of reduction to the
diagonal (quasi-diagonal) basis of the matrix of the system,
in special trajectories (points, lines, manifolds) of the
system. The method of topological roughness is a method
of quantitative research of the roughness of dynamical
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systems based on the qualitative concept of roughness
according to Andronov—Pontryagin.

The method has been tested in the research of many
well-known synergetic systems of various physical nature,
such as Lorenz, Rossler, Belousov—Zhabotinsky systems,
“predator-prey”, “predator-prey-food”, Chua chain,
Rikitake dynamo, Henon mapping, Hopf bifurcations,
models of economic systems such as Schumpeter, Kaldor,
etc. [15-23]. At the same time, the results of the method
obtained on the above systems are consistent with the
known results of other researchers of these systems.

The system (attractor) of Lorenz, which is the most
research by many authors due to the fact that this system,
is essentially the historically first system (1963) where
the validity of the hypothesis of the great French scientist
H. Poincar¢ (1892) on the existence of chaotic motions in
a deterministic system.

Researches of the Lorenz system using the measure
of roughness C confirmed the main bifurcations of this
system [15, 19] described in the literature and meeting the
conditions of the criteria given in [20].

The theory and method of topological roughness of
systems suppose the formalization of the mathematical
model of the systems under study.

In works [19-23], in the case of systems that are weakly
formalized and not formalized by mathematical models, the
following approach is proposed, namely, the approach of
analogies of set-theoretic topology and the abstract method
to the researches of such systems.

Basic provisions of the analogy approach. Let some
set M, be given, with which the set M, is associated, the
relations of which are determined by some morphism —,
i.e., the relation

Ml —>M2, (7)

such that

F(M)) = M,, (8)

where F is a functor serving as a mapping between sets.

Definition 1. Relation (7) defines a certain space of
sets {M}, in which the topology of this space 7 is defined.

Definition 2. Singular manifolds p of the space {M} are
called singular points, singular lines, and multidimensional
manifolds in this space, where certain singular (singular)
discontinuities are possible in relation (8), in the sense of
the topology of 7.

Definition 3. 4 disturbance of a set M is a set F(M)
such that M + F(M) forms a disturbed set in the space {M}.

Definition 4. We introduce a metric 6 for disturbance
and a metric € for disturbed sets.

Definition 5. We call the topology of the space {M}
near some singular manifold p rough if, under a small
disturbance 6 of the set M, the disturbed set M + F(M)
differs from the set M by no more than a small €.

With the definitions introduced above, it is possible
to use all the main provisions of the theory and method
of the topological roughness of dynamical systems, i.e.,
consider the issues of maximum roughness and minimum
non-roughness, etc.

The main stages in the development
of the theory of bifurcations of systems

The concept of the bifurcation of these systems is
closely related to the concept of roughness of dynamical
systems. As noted earlier, the term bifurcation refers to any
abrupt change that occurs when changing parameters in
any system, whether it be dynamic, ecological, economic,
synergetic, etc.

The beginning of work on the theory of bifurcations
should be attributed to the works of H. Poincaré where
he researches the dependence of equilibrium states on a
parameter [1]. The American scientist E. Hopf also made
a significant contribution to the theory of bifurcations
[55-58].

A.A. Andronov and his school made a huge contribution
to the theory of bifurcations [2, 3, 59, 60]. In essence, they
considered all questions of bifurcations on the phase plane:
bifurcations of equilibrium positions (singular points),
bifurcations of limit cycles, etc.

Much attention is paid to the issues of bifurcations in
the works of V.I. Arnold, D.V. Anosov and their colleagues
[2, 61]. In these works, researches of bifurcations and
singularities for large orders of systems (n > 3) are already
being carried out, based on modern topological methods.

The method of topological roughness described above
makes it possible to research bifurcations of high-order
dynamical systems, in particular, in determining the
bifurcations and chaos of synergetic systems using matrix
condition numbers [19-23].

Let us present a basic theorem obtained on the basis
of the topological roughness method for researches
bifurcations of dynamical systems [15, pp. 48—50].

Theorem. In order for a bifurcation of the topological
structure to arise in the domain G of a multidimensional
dynamical system with the value of the parameter q = q*,
q € Rp, it is necessary and sufficient that:

1) orin the domain G under consideration there exist non-
hyperbolic singular points, or orbitally unstable limit
cycles, for which:

J4
C{M(q*)} = min ZIC,-{M((])},
-

where p is the number of common points or limit cycles
in the domain G, C, is condition number of a matrix at
the i-th singular point;

2) either in the domain G of the dynamical system there
are hyperbolic points or limit cycles for which the
following condition is satisfied:

CiM(q*)} = .

Conclusion

The paper provides a brief overview of the main stages
in the development of theories of robustness, roughness,
and bifurcations of dynamical systems. A bibliography
of the author’s main publications is given, in which
fundamental results in the field of theories of robustness,
roughness and bifurcations of dynamical systems in general
and synergetic systems in particular are obtained.
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Methods for researching and ensuring the robust
stability of interval dynamical systems of both algebraic
and frequency directions of robust stability are considered.
The main results of the original algebraic method of robust
stability for continuous and discrete time as well as the
method of analysis and synthesis of frequency-robust
multidimensional systems are presented. To research the
robustness of nonlinear interval systems, it is proposed
to use a combination of the algebraic method of robust
stability with the provisions of the method of topological
roughness.

The main provisions of the theory and method of
topological roughness of dynamical systems are presented
based on the concept of roughness according to Andronov—
Pontryagin and allowing one to quantitatively research
the roughness and bifurcations of systems, in particular,
synergetic systems of various physical nature.
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