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Abstract

Kubernetes has become a cornerstone of modern software development enabling scalable and efficient deployment
of microservices. However, this scalability comes with significant security challenges, particularly in detecting
specific attack types within dynamic and ephemeral environments. This study presents a focused application of
Machine Learning (ML) techniques to enhance security in Kubernetes by detecting Denial of Service (DoS) attacks
and differentiating between DoS attacks, resource overload caused by attacks, and natural resource overloads. We
developed a custom monitoring agent that collects telemetry data from various sources, including real-world workloads,
actual attack scenarios, simulated hacking attempts, and induced overloading on containers and pods, ensuring
comprehensive coverage. The dataset comprising these diverse sources was meticulously labeled and preprocessed,
including normalization and temporal analysis. We employed and evaluated various ML classifiers, with Random Forest
and AdaBoost emerging as the top performers, achieving F1 macro scores of 0.9990 + 0.0006 and 0.9990 + 0.0003,
respectively. The novelty of our approach lies in its ability to accurately distinguish between different types of resource
overloads and provide robust detection of DoS attacks within Kubernetes environments. These models demonstrated
a high degree of accuracy in detecting security incidents, significantly reducing false positives and false negatives.
Our findings highlight the potential of ML models to provide a targeted, proactive security framework for Kubernetes,
offering robust protection against specific attack vectors while maintaining system reliability.
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AHHOTAaNMA

Beenenne. Kubernetes — kiroueBas miuatdopma Iisi MacmTabupyemMoro u 3QpQGEeKTHBHOTO pa3BEePTHIBAHUS
MHUKpocepBucoB. C yBelIn4eHHEM MaclITaOUPyEeMOCTH BO3PACTAET CIOXKHOCTD BBIABICHUS M CBOEBPEMEHHOIO
oOHapykeHHs Cenu(pHYSCKUX TUTIOB aTak B AMHAMUYHBIX cpenax Kubernetes. Meron. B pabote mpensioxeH moaxon
U oBBIILIeHHMs GezonacHocTr Kubernetes, ITO3BOJISAIOMINI IETEKTUPOBATH aTakKu TUITA «OTKa3 B 00cTy)uBaHum» (Denial
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Enhancing Kubernetes security with machine learning: a proactive approach to anomaly detection

of Service, DoS), ocHOBaHHBII Ha HCIOIL30BAHUH METOIOB MalIMHHOTO o0yueHus. [Toxxon 6a3upyercs Ha JaHHBIX,
MOJIy4EeHHBIX OT MOJIb30BATENILCKOTO areHTa MOHUTOPHHTA, OCYIIECTBILIONIEr0 cO0p TeJIeMeTpuiecKoi nHdopmannu
U3 Pa3IMYHBIX HCTOUYHHUKOB, BKJIIOUAst peanbHble paboune Harpy3Ku, CIIEHApHUH aTak, UMHUTALIUIO B3JIOMA U MEPErpy3Ky
pecypcoB B KOHTeHHepax u moaax. IlomydeHnsle JaHHbIe pa3MedaroTCest 1 00pabaThIBAOTCs, BKIIIOUAst HOPMATH3AIHIO
1 BPEMEHHOH aHaIIN3 AJIsI CO3/IaHusI TIOJTHOIIEHHOTO Habopa naHHBIX. OCHOBHBIE pe3yJbTaThl. B X01e SKcriepiMeHToB
MIPOTECTHUPOBAHBI PA3INYHBIE KJIACCH(UKATOPBI MAIIMHHOTO 00y4yeHus. Hanmboee BEICOKHE TTOKA3aTeIH KadecTBa
TIOJTy4YeHBI C HCIOb30BaHueM anroputMoB Random Forest m AdaBoost, naromme makpo Fl-omenku 0,9990 + 0,0006
1 0,9990 + 0,0003 cooTBeTcTBeHHO. Pa3paboTaHHBIN MMOAXO0A MO3BOJIIET (P HEKTUBHO OTIMYATH IIEPErpy3KH PECypPCOB,
BBI3BAaHHBIC aTaKaMU OT €CTECTBEHHBIX Ieperpy3ok, u obecreunBaeT TouHoe BbisiBIeHne DoS-arak. [Ipemioxennas
MOJCJIb MAIIMHHOI'O O6y‘leHHﬂ JAEMOHCTPHUPYET BBICOKYIO TOYHOCTL B 06Hapy>1<eH1/11/1 HHIMACHTOB 6630HaCHOCTI/I,
CYIIECTBEHHO CHIKast KOIMYECTBO JIOXKHBIX cpadaTeiBanuil. O0cyxkaenne. [TomydeHHbIe pe3ynbTaThl MOKA3bIBAIOT, YTO
MOZIENT MAIIMHHOTO 00Y4eHHsI MOTYT CTaTh OCHOBOM /TSl CO3J[aHMs TPOAKTUBHOM crucTeMsl Oe3onmacHocti Kubernetes,
KOTOpast 00ECTICUNT HAAEKHYIO 3aIUTy OT CHEU(PIIESCKIX BEKTOPOB aTaK, COXPaHss IPH STOM CTAOMIBHOCTH CHCTEMBL.
[TomydenHsle pe3yabTaThl MOTYT OBITH ITOJIE3HBI UCCIEAOBATEISIM | CIICIIMAINCTaM B 00iacTH KubepOezonacHoCTH
npuioxenns: Kubernetes.

KiioueBnle c1oBa
oe3omacHocTh Kubernetes, MUKpOCEpBHCHI, MAIHHHOE 00yUYeHHE, OOHAPY)KCHUE aHOMAJIHI, KOHTCHHEePU3aIIHs,
KnOepOe30MacHOCTh, TEIEMETPHUCCKUE JaHHbIC, 00HAPYKCHHUE YIPO3 B PCATbHOM BPEMECHHU

Ccepuika aast uutupoBanus: Japsum I, Xammyn XK., BopooseBa A.A. Ilossimenne 6ezonacHoctu Kubernetes ¢
UCIIOE30BaHHEM MAIIMHHOTO OOyUYeHUs: MPOAKTHBHBIN MOIX0 K 0OHapyXeHHI0 aHoManuii / Hayuno-TexHudyecknit
BECTHUK MH()OPMAIMOHHBIX TEXHOJOTUil, MexaHuku 1 ontuku. 2024. T. 24, Ne 6. C. 1007-1015 (na anr. 53.). doi:

10.17586/2226-1494-2024-24-6-1007-1015

Introduction

The microservices architecture has emerged as a
transformative approach in software development,
enabling the decomposition of monolithic applications
into smaller, independently deployable services. This
architectural style promotes scalability, flexibility, and
rapid deployment, addressing the demands of modern
software applications [1]. By leveraging containerization
technologies such as Docker and Kubernetes, microservices
can be orchestrated efficiently, providing a robust
framework for developing and maintaining complex,
large-scale applications [2]. However, the distributed and
dynamic nature of microservices introduces significant
security challenges. Traditional security mechanisms
often fail to adequately protect microservices due to
their inability to adapt to the continuous integration and
deployment cycles inherent in these environments.

Security in Kubernetes extends beyond traditional
perimeter defenses. In a containerized environment,
each pod represents a potential entry point for attackers.
Vulnerabilities in container images, misconfigurations in
Kubernetes manifests, or even compromised nodes can
lead to catastrophic breaches if left unchecked [3, 4].
In this context, Machine Learning (ML) models can
be trained to recognize patterns and anomalies in data,
making them highly effective at detecting attacks that
may otherwise go unnoticed by traditional Intrusion
Detection Systems (IDS). The ability of ML models to
learn and adapt makes them particularly suited for the
dynamic and complex nature of cybersecurity. Both
supervised and unsupervised ML algorithms are used in
this domain. Supervised learning can classify whether
network traffic is normal or potentially harmful, while
unsupervised learning can identify previously unseen attack
patterns [5-7].

However, the application of ML in cybersecurity is
not without challenges. One of the main challenges is the
quality and quantity of data required to train effective

ML models. Cybersecurity datasets need to be large
and diverse to encompass the wide range of potential
attacks, and they also need to be labeled accurately to
train supervised learning algorithms. This often requires
significant resources and expertise [8]. Another challenge
is the interpretability of ML models. Many effective ML
models, such as neural networks, are often described as
“black boxes” because their internal workings are not
easily interpretable by humans. This can make it difficult
to understand why a particular prediction was made, which
is often important in cybersecurity contexts [9, 10].

In this article, we explore the concept of using machine
learning to enhance security in Kubernetes environments
by detecting DoS attacks. Our approach not only identifies
DoS attacks but also differentiates between resource
overloads caused by attacks and natural fluctuations in
resource usage, a critical distinction for reducing false
positives. We collect telemetry data from multiple sources,
including real-world workloads, actual attack scenarios,
simulated hacking attempts, and induced overloads on
containers and pods. By leveraging machine learning
algorithms to analyze this diverse data, we aim to detect
anomalous behaviors indicative of potential attacks. This
proactive approach empowers organizations to identify and
mitigate attacks in Kubernetes environments before they
escalate into full-blown breaches.

Related Works

Recent advancements in container technology
have spurred significant research into securing these
environments. This section reviews notable works that
have contributed to enhancing the security of containerized
applications, particularly in detecting attacks such as
DoS and differentiating between attack-induced resource
overloads and natural system overloads.

Researchers in [11] introduced a real-time Host-based
IDS for Linux containers. Their approach monitors system
calls from the host kernel to detect anomalies in container
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behavior. The system achieved a high detection rate of
100 % with a low false positive rate of around 2 %.

In [12], researchers developed an online anomaly
detection system for Docker containers using an optimized
isolation forest algorithm. By assigning weights to
resource metrics and using weighted feature selection,
their system improves detection accuracy. This approach
effectively detects anomalies in both simulated and real
cloud environments with minimal performance overhead,
which is crucial for distinguishing between attack-related
overloads and natural variations in resource usage.

Researchers in [13] proposed a probabilistic real-time
IDS for Docker containers. Their IDS uses n-grams of
system calls and probabilistic models like Maximum
Likelihood Estimator and Simple Good Turing to
detect malicious applications. The system achieved
accuracy ranging from 87 % to 97 % on various datasets,
demonstrating its potential in detecting a wide range of
attacks, including DoS.

Researchers in [14] evaluated the performance of
anomaly-based IDS at the container level for multi-
tenant applications. They used the Bag of System Calls
technique and a sliding window with eight machine
learning algorithms. Decision Tree and Random Forest
algorithms provided the best results, achieving an
F-Measure of 99.8 %. The study also found that Decision
Tree is faster and consumes less Central Processing Unit
(CPU) and memory compared to Random Forest, which
is advantageous for real-time attack detection in resource-
constrained environments.

In [15], researchers presented an approach to evaluate
intrusion detection effectiveness in container-based systems
using attack injection. They used a TPC-C workload with
a database engine running as a container and monitored
its system calls. The approach was effective in different
scenarios, consistently detecting most attacks with precision
values showing more variance, which could be beneficial in
scenarios involving varied types of attacks like DoS.

A study in [16] focused on container vulnerability
exploit detection, evaluating static and dynamic detection
schemes using 28 real-world vulnerability exploits. Static
scanning detected only 3 out of 28 vulnerabilities, while
dynamic anomaly detection schemes detected 22 exploits.
This highlights the importance of dynamic detection
methods in identifying attack-induced anomalies that static
methods might miss.

Researchers in [17] introduced Compiler Description
Language (CDL), a classified distributed learning
framework for detecting security attacks in containerized
applications. CDL integrates online application
classification with anomaly detection to address the
challenge of insufficient training data for dynamic,
short-lived containers. CDL improved detection rates
and reduced false positive rates significantly compared
to traditional methods, making it a promising approach
for distinguishing between different causes of resource
overloads in Kubernetes environments.

In [18], researchers analyzed security attacks and
detection techniques for Docker containers, highlighting
the need for effective security measures due to the high
efficiency and widespread use of Docker in development

and deployment. Their study proposed a detailed analysis
of existing security mechanisms and attacks, presenting a
detection framework that proved effective in experimental
evaluations, particularly in identifying DoS attacks.

Lastly, in [19], researchers conducted a comprehensive
analysis of Docker container attack and defense
mechanisms. They identified significant gaps in existing
defenses, particularly in handling dynamic attack
landscapes. Their evaluation framework, using an extensive
dataset of 51 real-world vulnerabilities, demonstrated that
static scanning tools and dynamic anomaly detection
approaches both have limitations, with high false positive
rates and inadequate training data being major issues. This
underscores the need for more robust detection mechanisms
that can accurately differentiate between attack-induced and
natural resource overloads.

Problem Statement: Challenges in Detecting Attacks
in Kubernetes and Microservices Environments

Adopting Kubernetes for its agility and scalability also
introduces significant security challenges. This section
examines the key challenges in detecting attacks in these
environments and why traditional security measures may
be insufficient.

1. Complexity and Dynamism: Kubernetes environments
are highly dynamic, with containers continuously
being created, scaled, and terminated in response to
varying workloads. In a microservices architecture,
where applications consist of numerous independently
deployable services, each running in its own container,
the complexity is further amplified [12, 19]. This
dynamism increases the difficulty in distinguishing
between normal operational behaviors and potential
attacks, such as DoS attacks or resource overloads
caused by malicious activities. Differentiating these
from natural, benign overloads in the system is a critical
challenge for effective attack detection.

2. Attack Surface Expansion: The proliferation of
containers and microservices significantly expands
the attack surface in Kubernetes environments.
Attackers have numerous entry points to exploit,
ranging from vulnerabilities in container images
and misconfigurations in Kubernetes manifests
to compromised nodes and insecure Application
Programming Interfaces. Traditional security tools
often focus on perimeter defenses and lack the
visibility needed into containerized workloads, leaving
Kubernetes environments vulnerable to sophisticated
attacks, including DoS attacks that can be easily
mistaken for legitimate resource spikes [18, 19].

3. Ephemeral Nature of Containers: Containers are
ephemeral by design, meaning they are short-lived and
can be easily replaced or terminated. Traditional security
measures, which rely on static configurations and long-
lived assets, struggle to adapt to the transient nature of
containers. Consequently, security teams may find it
difficult to maintain visibility into the security posture
of Kubernetes workloads and respond effectively to
attacks, particularly those involving intentional resource
exhaustion that mimics natural system behavior [19].
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4. Lack of Contextual Awareness: In Kubernetes
environments, security events and telemetry data are
generated at a high volume and velocity. Without proper
context distinguishing between normal operational
behavior and attack-induced anomalies becomes a
daunting task. For example, an unexpected surge in
resource usage might either be a result of a legitimate
operational demand or a DoS attack. Traditional
security measures often lack the intelligence to analyze
telemetry data in real-time and identify subtle deviations
from normal behavior that indicate potential attacks
[9, 10]. This lack of contextual awareness increases
the likelihood of false positives and false negatives,
undermining the effectiveness of security measures in
Kubernetes environments.

5. Scalability and Performance Impact: As Kubernetes
clusters scale to accommodate growing workloads,
traditional security measures may introduce scalability
and performance overhead. Agent-based security
solutions commonly used in traditional environments
may struggle to keep up with the dynamic nature of
Kubernetes deployments leading to increased resource
consumption and performance degradation [6]. This
challenge is particularly pronounced when trying
to detect DoS attacks and differentiate them from
legitimate high-load scenarios where the security
system must operate efficiently without hindering
overall system performance.

These challenges underscore the need for advanced,
adaptive security solutions that can effectively detect
and differentiate between various types of attacks,
including DoS attacks, in Kubernetes and microservices
environments. By leveraging machine learning techniques,
this study aims to address these challenges, providing a
robust framework for proactive attack detection and
mitigation in these complex, dynamic systems.

Dataset Collection with Custom Monitoring Agent

In this section, we detail the dataset used for training
and evaluating our machine learning models for attack
detection in Kubernetes environments. The dataset is
comprehensive, incorporating telemetry data collected from
a variety of sources to ensure the models can effectively
differentiate between DoS attacks, resource overloads
caused by attacks, and natural system overloads.

Custom Monitoring Agent. To gather comprehensive
telemetry data from Kubernetes nodes and applications,
we developed a custom monitoring agent tailored to our
specific requirements. This agent is designed to collect a
diverse range of system-level and application-level metrics,
providing valuable insights into resource utilization,
network activity, and application behavior. The custom
monitoring agent is deployed across all nodes in the
Kubernetes cluster, ensuring thorough data collection and
monitoring coverage.

Data Collection Sources. The dataset comprises
telemetry data collected from multiple sources, including:
— Real-world Workloads. Metrics were gathered from

production Kubernetes clusters running under typical

operational conditions. This real-world data provides

a baseline for normal system behavior and natural

resource usage patterns.

— Actual Attack Scenarios. We intentionally induced
DoS attacks and other resource-exhausting activities in
controlled environments. This data helps in training the
models to recognize the specific signatures and patterns
associated with such attacks.

— Simulated Hacking Attempts. To further enrich the
dataset, we simulated various attack vectors that could
potentially target Kubernetes environments. These
simulations were designed to mimic real-world hacking
activities, including attempts to overload resources or
exploit vulnerabilities.

— Induced Overloading on Containers and Pods. We
also conducted experiments to deliberately overload
containers and pods in a non-malicious manner. This
data is crucial for teaching the models to distinguish
between malicious overloads caused by attacks and
benign overloads resulting from legitimate high-
demand scenarios.

Data Collection from Kubernetes Nodes. Our
monitoring agent collects an extensive array of system-level
metrics from each Kubernetes node at regular intervals.
These metrics include CPU usage, disk I/O, network traffic,
memory utilization, process activity, and TCP/UDP socket
statistics. By capturing these metrics, we obtain a holistic
view of the cluster health and performance, enabling the
identification of anomalous behavior that may indicate
potential attacks.

Data Collection from Applications. In addition to
monitoring Kubernetes nodes, our custom agent gathers
metrics directly from the target applications. These
application-level metrics encompass CPU and memory
usage, open file descriptors, and detailed HyperText
Transfer Protocol (HTTP) request statistics. Monitoring
application behavior in real-time allows us to detect
deviations from normal operation such as unusual spikes
in resource consumption. Specifically, we identify
and analyze patterns in HTTP request handling by
categorizing them into predefined threat models, which
helps in distinguishing between benign anomalies and
potential attacks. This approach enhances the precision
of our detection mechanisms, ensuring that the identified
anomalies are meaningful and actionable.

Timestamped Data Collection. All metrics collected
by our monitoring agent are timestamped to facilitate
temporal analysis of system behavior. Timestamped
data enables the correlation of events across different
components of the Kubernetes environment, aiding in the
identification of patterns indicative of security incidents,
including those that may evolve gradually or occur in bursts
such as DoS attacks.

Dataset Integrity and Quality. Ensuring the integrity
and quality of the collected dataset is paramount for the
effectiveness of our machine learning models. We employ
rigorous data validation techniques to address missing
values, outliers, and data quality issues, ensuring that our
models are trained on clean and reliable data. High-quality
datasets enhance the accuracy and robustness of the machine
learning models leading to more reliable detection of attacks
and reducing the chances of false positives and negatives.
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Experiments and Model Evaluation

The success of machine learning models in detecting
attacks within Kubernetes environments relies heavily on
the quality of the dataset, the preprocessing steps, and the
evaluation methods used. In this section, we outline the
experiments conducted to train and evaluate our models,
focusing on their ability to detect DoS attacks, differentiate
between attack-induced resource overloads, and natural
resource spikes.

Data Preprocessing. The initial phase of our machine
learning project involves comprehensive data processing.
This crucial step includes loading the dataset, cleansing
unnecessary columns, transforming time-related data into
discrete components, and partitioning the dataset into
training and testing subsets. Utilizing the pandas library,
we leveraged its robust DataFrame structure to efficiently
manipulate our structured data.

Firstly, we removed the ‘id” column, which does not
contribute to our analysis. Subsequently, the ‘time’ column
was converted to a datetime format, from which ‘hour’,
‘minute’, and ‘second’ components were extracted using
pandas date-time functionality. This step ensures that
temporal data can be effectively utilized in model training,
which is crucial for detecting patterns related to DoS attacks
that may occur at specific times or under certain conditions.

After data preprocessing, the dataset was split into
features (X) and the target variable (y). We applied
normalization to the features using the StandardScaler
from scikit-learn, ensuring that each feature contributes
equally to the model training. The dataset was then divided
into training and testing sets to facilitate model evaluation
on unseen data, enhancing the model generalizability [20].

Model Selection and Training. We employed a diverse
array of classifiers from the scikit-learn library, including
Logistic Regression, Decision Tree Classifier, Random
Forest Classifier, Support Vector Classifier, K-Nearest
Neighbors Classifier, Gradient Boosting Classifier,
AdaBoost Classifier, and Extra Trees Classifier. Each
classifier was trained using default parameters on the
training set, learning the underlying patterns in the data to
make accurate predictions.

Given the focus on distinguishing between DoS attacks,
attack-induced resource overloads, and natural overloads,
special attention was given to models that could capture
complex patterns and interactions within the data. For
instance, ensemble methods like Random Forest and
AdaBoost were particularly effective in this regard due to
their ability to handle a variety of data distributions and
interactions.

Model Evaluation. Upon training, the models were
evaluated on the testing set comparing the predictions
against the actual values to calculate accuracy. However,
to ensure a more robust performance estimate, we
implemented cross-validation. StratifiedKFold cross-
validation with five splits was employed, preserving the
percentage of samples for each class in each fold. This
method provides a comprehensive performance measure
by averaging the results across multiple rounds of training
and testing.

In addition to accuracy, we calculated the F1 macro
scores for each model using cross-validation. The F1 macro
scores accounts for both precision and recall, providing a
balanced measure of model performance across all classes,
including the detection of DoS attacks and differentiation
between resource overloads (Fig. 1). Fig. 1 shows the
F1 macro scores obtained for each machine learning
classifier over multiple cross-validation folds. Each subplot
demonstrates how a specific classifier performs consistently
across different folds, providing insights into the robustness
and generalizability of the models. The high consistency
observed across folds indicates minimal variance in the
performance, underlining the reliability of the classification
models in detecting DoS attacks and distinguishing between
resource overloads. The models were also evaluated based
on their ability to minimize false positives and false
negatives, which is crucial for maintaining the reliability
of security systems in Kubernetes environments.

Novel Contributions. One of the novel aspects of
our work is the ability of our machine learning models to
distinguish between attack-induced and natural resource
overloads. This is particularly important in Kubernetes
environments where resource usage can fluctuate naturally
due to varying workloads. By accurately identifying these
differences, our models reduce the risk of false positives,
thereby enhancing the operational efficiency of the security
system. This ability to differentiate adds a layer of precision
that is often lacking in traditional security approaches,
making our solution particularly suited for dynamic, cloud-
native environments.

The results from the cross-validation show that the
models generally achieved high F1 macro scores, with
the Random Forest Classifier and AdaBoost Classifier
achieving top performance (0.9990 + 0.0006 and 0.9990 +
+ 0.0003, respectively). These results indicate strong
model performance across various classifiers with minimal
variability across folds, highlighting the robustness of our
approach.

Confusion Matrices. To further elucidate model
performance, we generated confusion matrices for each
classifier (Fig. 2). Fig. 2 presents the confusion matrices
derived from the cross-validation predictions of each
classifier. The rows represent the actual class labels
(‘attack’ and ‘no attack’), while the columns show the
predicted class labels. Diagonal elements indicate the
number of correctly classified instances for each class,
and the off-diagonal elements represent misclassifications.
These matrices provide a visual assessment of the types of
errors made by each classifier, helping to identify whether
a model is prone to mistaking natural resource spikes for
DoS attacks or vice versa. This analysis allows for targeted
refinement of the models to reduce both false positives and
false negatives. These matrices offer detailed insights into
how well each model discriminates between the classes,
highlighting areas where the model excels and where it
requires improvement. For example, the confusion matrices
help identify whether a model is particularly prone to
mistaking natural overloads for DoS attacks or vice versa,
allowing us to refine the models further.
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Fig. 1. F1 macro scores across cross-validation folds for various machine learning classifiers
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Fig. 2. Confusion matrices for various machine learning classifiers applied to the dataset
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Enhancing Kubernetes security with machine learning: a proactive approach to anomaly detection

Conclusion

The dynamic and distributed nature of Kubernetes and
microservices architecture necessitates advanced security
measures that extend beyond traditional approaches.
Our study has demonstrated that machine learning can
significantly enhance security in Kubernetes environments
by providing robust, real-time detection of attacks,
including Denial of Service attacks. Our models are
particularly effective in distinguishing between attack-
induced resource overloads and natural fluctuations in
resource usage, a critical capability for reducing false
positives and maintaining operational efficiency.

By leveraging telemetry data collected from multiple
sources, including real-world workloads, simulated
hacking attempts, and induced overloading scenarios,
we have developed a comprehensive dataset that enables
our Machine Learning (ML) models to accurately detect
and differentiate between various types of attacks. The
integration of these models into production environments
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