HAYYHO-TEXHUYECKMI BECTHUK MH®OPMALIMOHHBIX TEXHOIOM I, MEXAHVKI 1 OMTUKN

° HosIGpb—aekabpb 2024 Tom 24 N2 6 http://ntvifmo.ru/ GAviHOo-TExHMuECKuM BECTHMK
I IITMO SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS “Hm“pm““““"hm IEXH“"""'“, MEXAH“K“ “ “"T"m
November-December 2024 Vol. 24 No 6 http://ntv.ifmo.ru/en/
ISSN 2226-1494 (print) ISSN 2500-0373 (online)

doi: 10.17586/2226-1494-2024-24-6-1035-1043

Specification language for automata-based objects cooperation
Fedor A. Novikovl, Irina V. Afanasieva2, Ludmila N. Fedorchenko3™?, Taisia A. Kharisova*

1 Peter the Great St. Petersburg Polytechnic University (SPbPU), Saint Petersburg, 195251, Russian Federation

2 Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS), Nizhny Arkhyz, 369167,
Russian Federation

3 St. Petersburg Federal Research Center of the Russian Academy of Sciences, Saint Petersburg, 199178, Russian
Federation

4 Joffe Institute, Saint Petersburg, 194021, Russian Federation

I fedornovikov5 1 @gmail.com, https://orcid.org/0000-0003-4450-0173
2 riv615@gmail.com, https://orcid.org/0000-0003-4225-4124

3 Inf@jias.spb.su™, https://orcid.org/0000-0002-4008-9316

4 tais.harisova@mail.ru, https://orcid.org/0009-0002-3456-0471

Abstract

Automata-based programming is a programming paradigm that has been successfully used in the development of
reactive systems, distributed control systems, and various mission-critical applications where the ability to verify the
compliance of a real system with its model given in the form of specifications is critical. The traditional testing of such
systems can be difficult; thus, more advanced verification tools are required to increase confidence in the reliability of
real systems. The previously proposed language for the specification of the Cooperative Interaction of Automata-based
Objects (CIAO) was successfully used to develop several different reactive systems as a result of which a number of
shortcomings were identified and eliminated in the new version of CIAO v.3. This new version of the language was
developed for the automatic verification of automata-based programs according to the formal specifications of a certain
class of real-time systems. Three innovations distinguish CIAO v.3 from previous versions. First, an explicit distinction
between automata classes and automaton objects as instances of these classes. Second, we specify the binding of
automaton objects through interfaces using a connection scheme. Third, we describe the semantics of the behavior of
a system of interacting automaton objects using a semantic graph. This paper presents the main concepts of the new
language version including the abstract syntax, operational semantics, and metamodel. The third version of the CIAO
language naturally includes almost all the advantages of object-oriented programming into the paradigm of automata
programming. The connection of automaton objects through the corresponding interfaces is arbitrarily reflected by the
connection scheme. A semantic graph describing the semantics of the behavior of the automata-based program is used
to implement automatic verification with respect to formal specifications.

Keywords

behavior model, automata-based programming, state transition graph, UML, state machine diagram, class diagram,
concurrent behavior, software architecture, reactive system

For citation: Novikov F.A., Afanasieva [.V., Fedorchenko L.N., Kharisova T.A. Specification language for automata-

based objects cooperation. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024,
vol. 24, no. 6, pp. 1035-1043. doi: 10.17586/2226-1494-2024-24-6-1035-1043

© Novikov F.A., Afanasieva 1.V., Fedorchenko L.N., Kharisova T.A., 2024

Hay4HO-TexXHU4eCcKuii BECTHUK MHDOPMALIMOHHbLIX TEXHONOM A, MEXaHUKK 1 onTukun, 2024, Tom 24, N2 6
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no 6 1 035

http://ntv.ifmo.ru/
http://ntv.ifmo.ru/en/
mailto:fedornovikov51@gmail.com
https://orcid.org/0000-0003-4450-0173
mailto:riv615@gmail.com
https://orcid.org/0000-0003-4225-4124
mailto:lnf@iias.spb.su
https://orcid.org/0000-0002-4008-9316
mailto:tais.harisova@mail.ru
https://orcid.org/0009-0002-3456-0471

Specification language for automata-based objects cooperation

VIIK 004.415.52, 004.434
S3pIk cnenupuKAMN B3aUMO/IeiiCTBUSL ABTOMATHBIX 00HEKTOB

®enop Anexcanaposny Hosuxosl, Upuna BukropoBna AdanacheBaZ,
Jronmuaa Huxonaesna ®enopuenko’™, Taucusi Aupaposna Xapucopa4

I Cankr-TleTepOyprekuii monutexuudeckuii yuusepeutet [lerpa Benukoro, Cankr-IletepOypr, 195251, Poccuiickas
Denepanus

2 CnenmanbHas actpodusudeckas oocepsaropus PAH, KapauaeBo-Uepkecckas Pecniybnuka, 3eneHayKCKuid p-H, Moc.
Hwxnuit Apxei3, 369167, Poccuiickas ®enepanns

3 Canxr-IlerepOyprekuii @enepanbubiii uccnenoparensckuii nentp PAH, Cankr-Iletep6ypr, 199178, Poccuiickas
Denepanus

4 ®usuko-rexunueckuii uuctutyt uM. A.®. Modde PAH, Cankr-Iletepbypr, 194021, Poccuiickas Deneparus

I fedornovikov51(@gmail.com, https://orcid.org/0000-0003-4450-0173
2 riv6 1 5@gmail.com, https://orcid.org/0000-0003-4225-4124

3 Inf@jias.spb.su<, https://orcid.org/0000-0002-4008-9316

4 tais.harisova@mail.ru, https://orcid.org/0009-0002-3456-0471

AHHOTAIUA

BBenenne. ABToMaTHOE MPOrpaMMHpPOBaHHE — MapajurMa IporpaMMHPOBAHHS, YCICUIHO MPUMEHsIeMas IpH
pa3paboTke pearupyrox CUCTEM, PACIIPE/I/ICHHBIX CHCTEM YIIPaBICHHS U Pa3IMYHBIX OTBETCTBEHHBIX MPUIIOKEHUIH,
IJie KpUTHUECKN Ba’kHA BO3MOXKHOCTbH BEPH(DPHKALNU COOTBETCTBHS PEATbHON CHCTEMBI €€ MOJAENH, 3aJaHHOH B
Buje crnenupukanuid. TpaIunnoHHOE TECTUPOBAHNE TAKUX CHCTEM MOXET OBITh 3aTPyAHEHO, TO3TOMY TpeOyroTCs
Ooree COBEPIICHHBIE CPEICTBA BEPH(UKAIMN AJISI TOBBIIIEHNS CTETICHH JJOBEPHS K HaICKHOCTH PEabHON CHCTEMBI.
[pemnoxeHHBIN paHee S3BIK CIIENN(HUKAIIMN KOONEePaTHBHOTO B3aUMOJCHCTBUS aBTOMATHBIX 00bekToB (Cooperative
Interaction of Automata Objects, CIAO) ObLT ycHEnHO MPUMEHEH JIJTs pPa3padOTKH HECKOIBKUX PEarupyroinX CHCTEM.
OJHAaKO OH TaK)Ke BBISIBUJI Psijl HEJJOCTAaTKOB, KoTopble ycTpaHeHbl B CIAO v.3. Meton. HoBast Bepcnst si3bIka pazpaborana
C IIEeJIbI0 aBTOMATHUYECKOW BepU(HKAIINY aBTOMATHBIX MPOTPaMM 10 (GpOpMaIbHBIM CrielU(pHUKALMIAM OIPE/IeICHHOTO
KJacca cucteM peanbHoro BpeMeHu. CIAO v.3 compepKUT Tpy HOBOBBEACHUS B OTJMYHE OT IPEIIIECTBYIOIINX BEPCUIL.
Bo-nepBbIX, IBHOE pasrpaHNYEHHE aBTOMATHBIX KJIACCOB M aBTOMAaTHBIX OOBEKTOB KaK IK3EMIUIIPOB 3TUX KIIACCOB.
Bo-Bropsix, ciennuKamys CBI3bIBAHNS aBTOMATHBIX 00OBEKTOB Yepe3 MHTEP(EHChl C MOMOIIBIO CXEMBI CBA3EH.
B-TpeTpux, omucanne CEMAHTHKH MOBEICHHUS CHCTEMBI B3aHMOJCHCTBYIOINX aBTOMATHBIX OOBEKTOB C MOMOIIBIO
ceMaHTHUIecKoro rpada. OcHOBHBIE pe3yabTaThl. B paboTe npencTaBieHs! 0OCHOBHBIC KOHIIEIIINH HOBOM BEPCHU SI3BIK,
NIpUBEIEHB! a0CTPAKTHBIN CHHTAKCHC, OTIEPAllMOHHAsl CeMaHTHKa U MeTamoznens. Oocy:kaenne. CIAO v.3 mo3Bomsier
€CTeCTBEHHBIM 00pa30M BKIIIOYHTH B I1ApaJUrMy aBTOMAaTHOT'O IIPOrPaMMHPOBAHNSI TIOYTH BCE IPEHMYIIECTBA OOBEKTHO-
OPHMEHTHPOBAHHOTO MPOrpaMMUpoBaHus. [loaKIroUeHe aBTOMAaTHBIX 0OBEKTOB Yepe3 COOTBETCTBYIOIINE HHTEP(DEHCH
NPOM3BOJIBHBIM 00pa3oM oTpakaeT cxema cBszeil. CeMaHTHUYECKHH Tpad), ONMCHIBAIOIIMN CEMAaHTHKY MOBEACHUS
aBTOMATHOW MPOTPaMMBbl, HCTIONB3YETCs ISl pealn3alii aBTOMaTHYeCKON BepU(pHUKALMH OTHOCHUTEIIBHO HEKOTOPHIX
(hopManbHBIX criennUKaIni.

KaroueBsbie ci10Ba

MOJIeTb TOBEACHHS, aBTOMaTHOE MPOrPaMMUpPOBaHKeE, Tpad MePexon0B COCTOSHUH, YHH(PUIUPOBAHHBIN SI3BIK
Mozenuposanusi, UML, muarpaMMa KOHEYHOTO aBTOMaTa, AnarpaMma KJIaccoB, IapajiebHOe TI0BEICHUE, apXUTEKTypa
IIPOrpaMMHOTO 00ECIICUSHUS], pearnpyomias CHcTeMa

Ccpuika nis nutupoBanusi: Hosuko @.A., ApanacseBa 1.B., ®enopuenko JI.H., Xapucosa T.A. S3bik cnerdukamm
B3aMMOJICHCTBYSI aBTOMATHBIX 00BEKTOB // HaydHO-TEXHUYECKMIA BECTHHK MH()OPMAIIMOHHBIX TEXHOJIOTHIA, MEXaHUKH U
ontuku. 2024. T. 24, Ne 6. C. 1035-1043 (Ha anri. s13.). doi: 10.17586/2226-1494-2024-24-6-1035-1043

Introduction and Historical Background

The automata-based programming paradigm [1]
describes the behavior of technical systems based on an
explicit definition of discrete states and their transitions.
This paradigm dates back to the pioneering work of D.
Harel [2—4] which was significantly advanced in [5, 6]
and is currently being developed by many researchers [7—
11]. Automata-based programming has many undeniable
advantages:

— a reliable mathematical basis for the theory of finite
automata;

— a stable tradition of using the concept of states to
describe the behavior of various devices in many
engineering fields;

— the possibility of simple and efficient implementation
on any software platform developed in the automata-
based programming paradigm.

Many authors have successfully used automata-
based programming in various fields and for different
purposes which has led to the emergence of various forms
of automata-based programming [6]. For example, we
used automata-based programming to implement domain-
specific languages, developed the Cooperative Interaction
of Automata Objects (CIAO) language [8], and used
CIAO v.1 to implement a mission-critical astronomical
data collection and processing system [9]. Based on the
results of its use, some improvements were made to CIAO
v.2, and the language was applied to verify low-level
communication protocols [8] and other tasks [10—13].
Moreover, CIAO v.2 can be used to automatically verify
device control programs [13]. Subsequent research in this
area led us to the need to refine the CIAO behavior model,
improve the graphical notation, and conduct practical
testing of the algorithms.

1036

Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHBLIX TEXHONOMMIA, MEXaHUKN 1 onTukn, 2024, Tom 24, N2 6
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no 6

mailto:fedornovikov51@gmail.com
https://orcid.org/0000-0003-﻿﻿4450-0173
mailto:riv615@gmail.com
https://orcid.org/0000-0003-4225-4124
mailto:lnf@iias.spb.su
https://orcid.org/0000-0002-4008-9316
mailto:tais.harisova@mail.ru
https://orcid.org/0009-0002-3456-﻿﻿0471

F.A. Novikov, |.V. Afanasieva, L.N. Fedorchenko, T.A. Kharisova

The goal of this work is to implement the third version
of the CIAO language which is suitable for automatic
verification of conformance to formal specifications.

Basic Concepts of the CIAO Specification Language

The central concept of all versions of the CIAO
language is the automaton object which is discussed in
[8, 13]. An automaton object has much in common with a
state machine packaged in a component. Here, the terms
“state machine” and “component” are understood in the
sense of the Unified Modeling Language (UML) [14, 15],
but at the same time, they have significant differences. A
state machine is defined by a state transition graph where
for each transition an event is specified that initiates this
transition. A transition can have a guard condition, and an
effect (action) can be achieved due to the transition. We
use the following extensions of the model each of which
derives the proposed model of an automaton object from
the class of finite automata [16]:

— events can have parameters and provide an arbitrary
amount of information to the automaton object;

— guard conditions can depend on the current values of
the local variables of a given automaton object and not
only on the current state;

— effects can have parameters and write an arbitrary
amount of information to the external memory.

A component in the context of the UML language is
a set of provided and required one. A component in the
context of the UML language is a set of provided and
required interfaces. According to B. Meyer’s principle
[17], the operations of the interface of any object should
be divided into queries (designated by the stereotype
“query”) which deliver values and do not change the state
of the object, and commands (designated by the stereotype
“command’’) which change the state of the object but do not
deliver values. In this case, we obtain exactly four kinds of
possible interfaces for interaction between objects:

— provided commands (events);

— required commands (actions);

— provided queries (assertions);

— required queries (conditions).

The list of combinations is exhaustive, and in this
sense the CIAO model is final and considers all possible
interactions between objects satisfying B. Meyer’s
principle.

The basic concept of the CIAO behavior model is
that the behavior of an entire system can be described
as the cooperative behavior of several automaton objects
interacting through strictly predefined interfaces. Complex
technical systems usually consist of many standard parts
that are necessarily connected to each other. Similarly,
software systems consist of instances of classes that interact
with each other. Based on these observations, three new
significant concepts were added to the CIAO v.3 language.

First, the CIAO v.3 language version explicitly
distinguishes between classes and instances of automaton
objects. A class describes the general behavior of a set of
objects. Instances are created from a class by executing a
constructor (instantiation), with the initial values of all local
variables, including the initial state specified. Note that

this method eliminates the erroneous use of uninitialized
variables in the CIAO language.

Second, the connection scheme of automaton objects
which are instances of automaton classes is explicitly
described. Some pairs consisting of the provided interface
of one automaton object and the required interface of
another (or the same automaton object) can be related
in the connection scheme if these interfaces correspond
to each other in terms of type (command or query) and
number and types of parameters. This means that this
pair of interfaces forms an internal connection, in other
words, forms a connection in the system. However, not all
interfaces are related. Unrelated interfaces are considered
free. Free interfaces are necessary to interact with the
external environment. This means that such interfaces are
public. Sometimes there is no need to show all interacting
objects in a single diagram, and some free interfaces are
actually connected to hidden objects. This means that such
interfaces are private.

Third, according to the connection scheme, a semantic
graph is explicitly (fully or partially) defined as a finite
description of the semantics of the behavior of interacting
automaton objects. The task of defining behavioral
semantics is not simple. We mainly followed the ideas
presented in the book [18]. Each specific execution of the
algorithm determines a sequence of performed actions
which is typically referred to as the execution occurrence
protocol. The set of all possible execution occurrence
protocols forms the operational semantics of the system.
A compact representation of sets of sequences (i.e.,
languages), including infinite sets using oriented graphs,
is well known. If we select the initial and final vertices
in the oriented graph, we can easily determine a set of
paths leading from the initial vertices to the final ones.
Each path corresponds to an execution protocol. If the
graph contains contours (loops), the length of paths
passing along the contours is not limited; therefore, the
set of paths is infinite. The method to compactly represent
sets of sequences is not universal. Sets of sequences
(languages) that can be represented in this way are called
regular languages; they are well studied [16, 19]. A regular
language can be described in different ways: grammatically
using generative automaton grammar, algebraically using
a regular expression, and graphically using an oriented
graph. We call a semantic graph an oriented graph that
describes a set of execution protocols, i.e., the semantics
of the behavior of an automaton program.

Fig. 1 shows the main components of the CIAO v.3
language. On the Fig. 1 (a, left) is a diagram of an automata
class, including a state machine, local variables, and a set
of provided and required interfaces. In this example, the
state machine has two states, s and t, and two transitions:
from s to t with event a, guard condition ¢, and effect d
(where a, ¢, d are interfaces of the state machine class),
and the second transition from s to s with event a and
negation of guard condition !c. Here, local variable s is
the name of the current state. The provided interface b
is a Boolean function that returns true if the current state
has the name “s”. The connection scheme in Fig. 1, b,
shows the interfaces through which state machine objects
interact. Both objects p and q are instances of the state

Hay4HO-TexXHU4eCcKuii BECTHUK MHDOPMALIMOHHbLIX TEXHONOM A, MEXaHUKK 1 onTukun, 2024, Tom 24, N2 6
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no 6

1037

Specification language for automata-based objects cooperation

Event
| ~—

Classl
s : String

I AssertionI\']

«command» «query»

b(f‘ -
Dt

— — — State Machine — — —

Automata Class

c r{: .
T Condition.l\"l

«query» | q

Semantic Graph

Initial 7
I vertex

AN

e

| Statement 1\1

b
Connection Scheme
o == = em e e = e e = e = = e — ~

/ \
| p : Classl (“s”) q : Classl (“s”) |
| —— =2 i N }
| | Private 1 | Private 1 ‘
| required | d a | provided | ‘
[| interface | —O— | interface | ‘
I e —— —_

| \ c b r |
I \
I \
\ |

\ /
\%\A__————___———__74%d/
a iy -z

Public T\'1 r Public T\q

| provided | required |

interface | interface |

e —___l el
:_PatH[\'“l
J———

[q:s = “s”] y
/ e ——
< qa N/ ___-—- P
N s

Fig. 1. Automata Class (a), Connection Scheme (b), and Semantic Graph (c¢)

machine class Classl, and the initial state in both cases
has the name “s”. A fragment of the semantic graph is
shown in Fig. 1, c. In this example, the path begins with the
execution of command p.a by the automaton object p (input
action) and possibly ends with the issuance of command
q.d by the automaton object q to the outside world (output
action). Part of the path is shown as a dotted line because
the evaluation of guard condition q.c is not specified by the
provided connection scheme; therefore, the semantic graph
is only partially defined.

Metamodel and Abstract Syntax
of the CIAO Specification Language

Let us consider in more detail all the constructs of
the CIAO v.3 language, focusing on their purpose and
indicating the limitations introduced into the language to
achieve the main goal of this version of the language — the
ability to automatically verify programs. The metamodel in
the form of a UML class diagram is used as the main means
of describing the formal language, allowing us to describe
in detail not only the abstract syntax but also the contextual
conditions of the language [20].

Fig. 2 presents the metamodel of the CIAO v.3 language
which defines metaclasses and relationships between them
for all specific constructs of the CIAO v.3 language. Well-
known concepts such as “named element” (NamedElement
in the metamodel), “typed element” (TypedElement),
“expression” (Expr), “Boolean expression” (BoolExpr)

are mentioned here, but they are not disclosed. These
constructs are naturally defined on the basis of a specific
programming language used in the implementation of the
CIAO language, and there is no need to clutter the diagram
with technical details.

In addition, abstract syntax is duplicated in the form
of familiar productions of context-free grammar in regular
form [21]. Because only abstract syntax is described, the
terminal symbols in the productions are omitted. The
following metasymbols were used:

— colon : to separate the left from the right;
— sign # to denote iteration with a separator, or the

iteration by G.S. Tseytin [21];

— braces { } to denote an unordered set of objects;
— sign + to denote concatenation;

— sign | to denote alternation;

— dot symbol . to denote the end of a rule.

This way of describing the language is preferable in
this case. The CIAO v.3 language has two presentation
formats: a graphical representation in the form of diagrams
in UML notation and a textual representation in the form
of a sequence of symbols. We use the graphical form as a
human-readable representation of an automaton program,
and we use the textual form as a machine-readable form in
tools. Of course, both forms are reducible to each other in
a one-to-one manner.

We provide text explanations for all constructions in
Fig. 2. For ease of comprehension, when comparing the
explanatory text and metamodel diagram, the names of

1038

Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHBLIX TEXHONOMMIA, MEXaHUKN 1 onTukn, 2024, Tom 24, N2 6
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no 6

F.A. Novikov, |.V. Afanasieva, L.N. Fedorchenko, T.A. Kharisova

NamedElement <}
A ZF | <@ CIAO Prog 0—‘
Auto_Class WL et L L LY Auto_Obj
Var > TypedElement Value
to —_—— e] _
A\ l N
| Including name 1
1 A | of initial state |
———— — — — J
Loop P — Interface SR r------ - === == I_Inst
kind: I Kind |[@————i +sort : I Sort
— | (ordered}| FPar =
1 | required T <fprovided
State to
1 Arg K
then to| 1 | else_to 1| from Connection
- - {ordered}
* * «enumerationy
bOdy 1 E Transition i trigger Call I_Sort
BoolExpr A linkqd
public
quard v <> private
Choice Direct Action <_ Assign «enumerationy
1 1 1 * | {ordered} I_Kind
0..1
then event
0..1 Effect |@—— action
] e condition
else ~ Expr assertion

Fig. 2. Metamodel of the Language CIAO v.3

the diagram elements are repeated in the explanatory text
in brackets.

A program in the CIAO v.3 language (class CIAO_
Prog) comprises a set of descriptions of named automata
classes (class Auto_Class) and a connection scheme of
named automaton objects (class Auto_Obj), which are
instances of these automata classes.

Abstract syntax of a program in the CIAO v.3 language:

CIAO_Prog : {Auto_class} + {Auto_Obj} .

For now, we allow only the use of automata classes
in the object relationship diagram described in the given
program. This somewhat old-fashioned restriction will
be lifted when we develop algorithms for the incremental
compilation and construction of semantic graphs.
A program in the CIAO v.3 language is conceived as a
single system of automaton objects interacting with each
other in a single environment. Due to its uniqueness, the
program does not require a personal name; however, it can,
of course, be specified in the comment.

An automaton class (class Auto_Class) has the
following components: a set of interfaces (class Interface),
a set of local variables (class Var), and a set of states (class
State). All of these sets are not empty; the elements of these
sets have names that must be unique to the given program.

Abstract syntax of an automaton class:

Auto_class : {Interface} + {Var} + {State} .

Each interface has a specific kind (I_Kind enumeration)
and can have several formal parameters (Par class) of a
specific type. The positional method is used to identify
parameters; thus, the parameters do not require names.
The use of an interface in an automaton class has its own
specific features for each kind of interface. The features of
all four kinds of interfaces are described below.

The provided command, i.e., the event kind interface
(the first element of the I_Kind enumeration), is a trigger
(trigger role), a “trigger” of the transition between states
(abstract class Transition). An appeal to an interface of the
event kind is a call (Call class), and the call arguments must
be the names of local variables of the automata class. Call

Hay4HO-TexXHU4eCcKuii BECTHUK MHDOPMALIMOHHbLIX TEXHONOM A, MEXaHUKK 1 onTukun, 2024, Tom 24, N2 6
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no 6

1039

Specification language for automata-based objects cooperation

arguments must correspond in number, order, and type to

the formal parameters of the interface. The semantics of

an event is that the transition is initiated, and the values

of actual arguments passed from outside are assigned to

local variables specified as call arguments. Thus, the event

changes the state of an object in a given automaton class.
Abstract syntax for calling an event:

Call : Interface.name + Var.name #.

Here, as in the following, the construction of the
form Class_name.attribute name denotes, as usual, the
value of a class attribute. In this case, the elements of the
Interface and Var classes are named, and the constructions
of Interface.name and Var.name denote the names of the
interface and variable, respectively.

The provided query, i.e., the assertion kind interface
(the fourth element of the I_Kind), is a Boolean function
that delivers the truth value of some assertion relative to
the values of local variables. This function is defined by
a transition loop (class Loop) inherent in the automata
class as a whole, i.e., a transition defined for all states of
the class at once. An assertion kind interface invocation
comprises a call (role trigger) and a logical assertion
(class BoolExpr) which plays the role of the body of the
Boolean function (role body). The arguments of the call
are the names of temporary variables that differ from the
names of all other elements of the automaton class, and
the body of the function is a logical expression in which
the atomic formulas are the comparison operators of local
and temporary variables, as well as calls to conditions, i.e.,
calls to assertions of other objects. The logical expression
is constructed in the usual manner from atomic formulas
using logical connectives. We have omitted the well-
known details of construction here in order not to clutter
the metamodel. The semantics of an assertion is that the
logical expression is evaluated, and the resulting truth
value is returned to the state machine object from which the
assertion is called. Thus, the assertion does not change the
state of the object in the given state machine class.

Abstract syntax of statement definition:

Loop : Interface.name + BoolExpr .

The required command, i.e., the action kind interface
(the second element of the I Kind enumeration), is used
to specify the effect (class Effect) during the transition
between states. The effect during the transition is a finite
sequence of elementary steps each of which is either a
call of the interface (class Call) of the action kind, or
an assignment (class Assign). Note that a sequence may
be empty; in this case, the real effect of the transition is
exhausted by the state change. Arguments in the action
call may be arbitrary expressions over local variables
of the automata class. Call arguments must correspond
to the formal parameters of the interface in terms of
number, order, and type. In the semantics of action, the
values of the arguments are calculated and passed out as
actual arguments of the associated interface of the event
kind. Thus, the action call does not change the state of
an object in the given automata class but may change the

computational state of another object. The semantics of the
assignment is that the value of the expression (class Expr)
is calculated, and this value is assigned to a specified local
variable (role f0). The expression is constructed in the
usual manner from the names of variables and constants
using the signs of operations on the values of built-in types.
We have omitted the well-known details of constructing
expressions here in order not to clutter the metamodel.
Thus, the assignment changes the computational state of
an object in a given automaton class.
Abstract syntax of the effect:

Effect : # Step .
Step : Call | Assign .
Assign : Var.name + Expr .

The required query, i.e., the condition kind interface
(the third element of the I Kind enumeration), is used to
determine the value of the guard condition (role guard)
on the branching transition (class Choice) between states.
An invocation of the condition kind interface is a call,
and the arguments of the call can be expressed using any
local variables of the automata class. The arguments of
the call must correspond to the formal parameters of the
interface in quantity, order, and type. The semantics of the
condition are summarized as follows. The truth value of
the corresponding assertion of another object is calculated,
and the obtained truth value is used to calculate the value
of the guard condition. If the guard condition is met, then
a transition to a new state (role then_to) occurs, and the
effect (class Effect) is performed if provided (role then).
If the condition is not satisfied, then a transition to a new
state (role else_to) occurs, and the effect is performed if it
is provided in this case (role else). Thus, the condition does
not change the state of the object in the given automata
class. Moreover, the branching transition in CIAO v.3
is always executed, and events are never lost (unlike
the UML language where if the guard condition is not
met, the transition simply does not occur and the event is
lost [22]).

Abstract syntax of condition:

Choice : Guard + Effect,.,, + Effect,,, +

+ State.name,, ., + State.name .

Guard : Interface.name + Expr # .

From here on, the subscript on the name of the construct
in the production rule allows us to distinguish between two
occurrences of the same construct in the right part of the
rule.

Thus, all interface-related constructions are described.
Next, variables and states with transitions are introduced.

The construction of variables in the CIAO v.3 language
is extremely simple — only scalar variables of built-in
types are used, local in the automaton class. A variable
has a name and type. Among the local variables, there is a
predefined variable s of the built-in String type, which is
intended to store the name of the current state.

States (class State) in the CIAO v.3 language are
considered only stable; that is, transition to another state

1040

Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHBLIX TEXHONOMMIA, MEXaHUKN 1 onTukn, 2024, Tom 24, N2 6
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no 6

F.A. Novikov, |.V. Afanasieva, L.N. Fedorchenko, T.A. Kharisova

O 01N U b WK —

. CIAO_Prog : {Auto_class} + {Auto_Obj} .

. Auto_class : {Interface} + {Var} + {State} .

. Auto_ODbj : name + Auto_class.name + Vars + Sorts + Links .
. Call : Interface.name + Var.name # .

. Loop : Interface.name + Var.name # .

. State : name + {Transition} .

. Transition : Direct | Choice .

. Choice : Guard + Effect; ., + Effect
. Guard : Interface.name + Expr # .

olse T State.name,, ., + State.name, .

10. Direct : Call + Effect + State.name .

11. Effect : # Step .
12. Step : Call | Assign .

13. Assign : Var.name + Expr .

14. Vars : Value # .

15. Sorts : {Interface.name + I_Sort} .
16. Links : {Interface.name,g.q + Interface.name, iqed} -

Fig. 3. Grammar of CIAO v.3

occurs upon an event (role zrigger). State transitions
(abstract class Transition) are linked in the CIAO v.3
language to the state from which they are carried out (role
from). A state that does not have incoming transitions
can be used as the initial transition and is specified in the
constructor of an automaton object. A state that does not
involve outgoing transitions can be used as the final state.
In the final state, the automaton object does not respond to
events but stores variables and provides assertion values.
A direct transition (class Direct) has one source and one
target state, and a branching transition (class Choice)
has one source and two target states. For a loop (class
Loop), the source and target states do not matter because
the transition along the loop (that is, the evaluation of the
assertion) does not change the state and is executed in any
state in the same manner.

Abstract syntax for describing a state and its transitions:

State : name + {Transition} .
Transition : Direct | Choice .
Direct : Call + Effect + State.name .

Let us now consider the connection scheme, i.e., the set
of automaton objects (class Auto_Obj). Each automaton
object in the relationship diagram includes three sorts of
interconnected constructions.

First, a set of variable values (class Value). The initial
values of all variables must be specified when executing
the constructor of each object [23, 24].

Second, for each interface of each object, it is necessary
to specify its sort (attribute + sort). This indicates the sort
of interface as follows:

1) public, i.e., intended to interact with the external
environment (the second element of the I_Sort
enumeration);

2) private, i.e., hidden in this relationship diagram (the
third element of the I_Sort enumeration);

3) linked, i.e., intended to interact with automaton objects
(the first element of the I_Sort enumeration).

Third, it is necessary to specify the connections (class
Connection), that is, to indicate which required interface
of one object (role required) is linked to which provided
interface of another object (role provided). The linked

interfaces must match in type (action — event, condition —
statement), and number and types of parameters. The
relationships are described with reference to an automaton
object on the side of the required interface.

Abstract syntax of an automaton object in a connection
scheme:

Auto_obj : name + Auto_class.name +

+ Vars + Sorts + Links .
Vars : Value # .
Links : {Interface.name,,;..q + Interface.name

Sorts : {Interface.name +1_Sort} .

proVided} .

A complete list of CIAO v.3 abstract syntax rules is
shown in Fig. 3.

Discussion and Conclusions

The CIAO language has been tested in practice many
times and has shown good applicability. The new version
of the CIAO language v.3 has retained the main competitive
advantages of the previous versions. To simplify the
language, some constructions (“syntactic sugar”) were
removed and three fundamental innovations were added:
automaton classes, automaton objects, a scheme link, and
a semantic graph.

Automaton classes and objects allow including all
the advantages of object-oriented programming in the
automaton-based programming paradigm.

Due to the introduction of a scheme link, it became
possible to link automaton objects through arbitrary
corresponding interfaces. The provided interface of one
automaton object can be linked to the required interfaces of
several other automaton objects, while the first automaton
object will “obey several commanders”. And vice versa —
the required interface of one automaton object can be
linked to the provided interfaces of several other automaton
objects, while the first automaton object will “command
several subordinates”. Finally, it is possible to link the
interfaces recursively with the interfaces of the same object,
and send events to itself. The introduction of the concept
of a semantic graph made it possible to develop and
implement automatic verification of automaton programs
with respect to formal specifications (example in [22]).

Hay4HO-TexXHU4eCcKuii BECTHUK MHDOPMALIMOHHbLIX TEXHONOM A, MEXaHUKK 1 onTukun, 2024, Tom 24, N2 6
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no 6

1041

Specification language for automata-based objects cooperation

10.

12.

16.

17.

18.

19.
. Novikov F.A., Tikhonova U.N. An automata based method for domain

21.

22.

References

Shalyto A.A. Software implementation of the control automata.
Sudostroitel ’'naja promyshlennost’. Serija «Avtomatika i
telemehanika», 1991, vol. 13, pp. 41-42. (in Russian)

Harel D. Statecharts: a visual formalism for complex systems. Science
of Computer Programming, 1987, vol. 8, no. 3, pp. 231-274. https://
doi.org/10.1016/0167-6423(87)90035-9

Harel D., Pnueli A. On the development of reactive systems. Logics
and Models of Concurrent Systems. Berlin, Heidelberg, Springer,
1985, pp. 477-498. https://doi.org/10.1007/978-3-642-82453-1_17
Harel D., Feldman Y.A. Algorithmics: The Spirit of Computing.
London, Pearson Education, 2004, 513 p. https://doi.org/10.1007/978-
3-642-27266-0

Shalyto A.A. Switch-Technology. Algorithmization and Programming
of the Logical Control Problems. St. Petersburg, Nauka Publ., 1998,
617 p. (in Russian)

Polikarpova N.I., Shalyto A.A. Automata-Based Programming. St.
Petersburg, Piter Publ., 2011, 176 p. (in Russian)

Shalyto A. Automata-based programming paradigm. Scientific and
Technical Journal of Information Technologies, Mechanics and
Optics, 2008, vol. 53, pp. 3-23. (in Russian)

Novikov F.A., Afanasieva 1.V. Cooperative interaction of automata
objects. Information and Control Systems, 2016, no. 6, pp. 50-64. (in
Russian). https://doi.org/10.15217/issn1684-8853.2016.6.50
Afanasieva 1.V. Data acquisition and control system for high-
performance large-area CCD systems. Astrophysical Bulletin, 2015,
vol. 70, no. 2, pp. 232-237. https://doi.org/10.1134/
S$1990341315020108

Levonevskiy D., Novikov F., Fedorchenko L., Afanasieva I.
Verification of internet protocol properties using cooperating
automaton objects. Proc. of the 12t International Conference on
Security of Information and Networks (SIN’19), 2019, pp. 1-4. https:/
doi.org/10.1145/3357613.3357639

. Afanasieva I., Novikov F., Fedorchenko L. Methodology for

development of event-driven software systems using CIAO
specification language. SPIIRAS Proceedings, 2020, no. 19, no. 3,
pp. 481-514. (in Russian). https://doi.org/10.15622/sp.2020.19.3.1
Novikov F., Fedorchenko L., Vorobiev V., Fatkieva R.,
Levonevskiy D. Attribute-based approach of defining the secure
behavior of automata objects. Proc. of the 10" International
Conference on Security of Information and Networks (SIN’17),2017,
pp. 67-72. https://doi.org/10.1145/3136825.3136887

. Novikov F.A., Ivanov D.Iu. UML Modeling. Theory, Practice, and

Video Course. St. Petersburg, Professional’naja Literature Publ.,
2010, 649 p. (in Russian).

. Afanasieva I.V., Novikov F.A., Fedorchenko L.N. Verification of

event-driven software systems using the specification language of
cooperating automata objects. Scientific and Technical Journal of
Information Technologies, Mechanics and Optics, 2023, vol. 23,
no. 4, pp. 750-756. https://doi.org/10.17586/2226-1494-2023-23-4-
750-756

. Rumbaugh J., Jacobson ., Booch G. The Unified Modeling Language

Reference Manual. 2" ed. Addison-Wesley Professional, 2010.
Hopcroft J.E., Motwani R., Ullman J.D. Introduction to Automata
Theory, Languages, and Computation. 3' ed. Boston, Addison-
Wesley, 2006, 535 p.

Meyer B. Object-Oriented Software Construction. 214 ed. Prentice-
Hall, 1997, 1254 p.

Lavrov S.S. Programming. Mathematical Foundations,
Instrumentation, Theory. St. Petersburg, BHV-Petersburg Publ., 2001,
320 p. (in Russian)

Friedl J.E.F. Mastering Regular Expressions. 31 ed. O’Reilly, 2006.

specific languages definition. Part 3. Information and Control
Systems, 2010, no. 3, pp. 29-37. (in Russian).

Fedorchenko L., Baranov S. Equivalent Transformations and
Regularization in Context-Free Grammars. Cybernetics and
Information Technologies, 2015, vol. 14, no. 4, pp. 29-44. https://doi.
org/10.1515/cait-2014-0003

Novikov F.A., Afanasieva 1.V., Fedorchenko L.N., Kharisova T.A.
Application of conditional regular expressions in the problems of
verification of control automata programs. Proc. of the XIV All-
Russian Conference on Management Problems (VSPU-2024),
Moscow, V.A. Trapeznikov Institute of Control Sciences of Russian
Academy of Sciences, 2024, pp. 2960-2964. (in Russian)

19.

20.

21.

22.

23.

Jluteparypa

aneito A.A. TlporpamMmHas peaau3anus ynpasisiolX aBTOMa-
ToB // CygocTpouTenbHast IPOMBIIUICHHOCTE. Cep. ABTOMaTHKa U
tesnemexanuka. 1991. Ne 13. C. 41-42.

Harel D. Statecharts: a visual formalism for complex systems //
Science of Computer Programming. 1987. V. 8. N 3. P. 231-274.
https://doi.org/10.1016/0167-6423(87)90035-9

Harel D., Pnueli A. On the development of reactive systems // Logics
and Models of Concurrent Systems. Berlin, Heidelberg: Springer,
1985. P. 477-498. https://doi.org/10.1007/978-3-642-82453-1_17
Harel D., Feldman Y.A. Algorithmics: The Spirit of Computing.
London: Pearson Education, 2004. 513 p. https://doi.org/10.1007/978-
3-642-27266-0

lansito A.A. Switch-TexHONOrUsI. AITOPUTMHU3ALHS U TPOTPAMMU-
poBaHue 3amad jorudeckoro ynpasnenus. CI16.: Hayka, 1998. 617 c.
TTonmkapriosa H.1., Hlansito A.A. ABTOMaTHOE pOrpaMMHPOBAHHE.
CII6.: ITurep, 2011. 176 c.

[lansito A.A. Tlapagurma aBTOMaTHOrO HPOrpPaMMUpPOBAHUS //
Hayuno-rexanueckuii Bectauk Cankr-IlerepOyprckoro rocymap-
CTBEHHOTO yHHBEPCHTETA HHYOPMAIIMOHHBIX TEXHOJIOT Ui, MEXaHUKH
u ortuku. 2008. Ne 53. C. 3-23.

Hosukor ®.A., Apanacsesa 1.B. KoorniepatuHoe B3anuMoieiicTBre
ABTOMATHBIX 00beKTOB // UH(OpMAIMOHHO-YIIPABISIOME CHCTEMBI.
2016. Ne 6. C. 50-63. https://doi.org/10.15217/issn1684-
8853.2016.6.50

Afanasieva [.V. Data acquisition and control system for high-
performance large-area CCD systems // Astrophysical Bulletin. 2015.
V. 70.N 2. P. 232-237. https://doi.org/10.1134/S1990341315020108

. Levonevskiy D., Novikov F., Fedorchenko L., Afanasieva I.

Verification of Internet protocol properties using cooperating
automaton objects // Proc. of the 12th International Conference on
Security of Information and Networks (SIN’19). 2019. P. 1-4. https://
doi.org/10.1145/3357613.3357639

. Adanaceepa U1.B., Houkor ®.A., ®enopuenko JI.H. Meroauka

[OCTPOCHHS COOBITHITHO-YTIPABISIEMBIX TPOTPAMMHBIX CHCTEM C
ucnosnb3oBaHueM s3bika cenudukann CIAO // Tpyast CITIMAPAH.
2020. T. 19. Ne 3. C. 481-514. https://doi.org/10.15622/sp.2020.19.3.1

. Novikov F., Fedorchenko L., Vorobiev V., Fatkieva R.,

Levonevskiy D. Attribute-based approach of defining the secure
behavior of automata objects // Proc. of the 10th International
Conference on Security of Information and Networks (SIN*17). 2017.
P. 67-72. https://doi.org/10.1145/3136825.3136887

. HoukoB ®.A., UBanos JI.}O. MoznenupoBanue Ha UML. Teopus,

npaxtuka, Bueokypc. CII6.: [Tpopeccnonanshas aureparypa, 2010.
640 c.

. Afanasieva I.V., Novikov F.A., Fedorchenko L.N. Verification of

event-driven software systems using the specification language of
cooperating automata objects // Hay4HO-TeXHHYECKHUI BECTHHK HH-
(hOpMaMOHHEIX TEXHOJIOTUH, MeXaHUKH 1 onTuku. 2023. T. 23. Ne 4.
C. 750-756. https://doi.org/10.17586/2226-1494-2023-23-4-750-756

. Rumbaugh J., Jacobson I., Booch G. The Unified Modeling Language

Reference Manual / 20d ed. Addison-Wesley Professional, 2010.

. Hopcroft J.E., Motwani R., Ullman J.D. Introduction to Automata

Theory, Languages, and Computation / 314 ed. Boston: Addison-
Wesley, 2006. 535 p.

. Meyer B. Object-Oriented Software Construction / 2nd ed. Prentice-

Hall, 1997. 1254 p.

. JlaBpos C.C. [IporpammupoBanue. MarematiHueckue OCHOBBI, Cpe/-

ctBa, Teopust. CI16.: BXB-IlerepOypr, 2001. 320 c.

Friedl J.E.F. Mastering Regular Expressions / 31 ed. O’Reilly, 2006.
Hosuko @.A., TuxonoBa Y.H. ABroMaTHBIII METO/ ONpeIeICHHS
npo6IEMHO-OPHEHTHPOBAHHBIX A3bIKOB. Y. 3 // MHdopManmnoHHo-
ympasistiomue cucteMsl. 2010. Ne 3. C. 29-37.

Fedorchenko L., Baranov S. Equivalent transformations and
regularization in context-free grammars // Cybernetics and
Information Technologies. 2015. V. 14. N 4. P. 29-44. https://doi.
org/10.1515/cait-2014-0003

HoukoB ®.A., AdpanacseBa 1.B., ®enopuenko JI.H., Xapucosa T.A.
IIprMeHeHNe YCIOBHBIX PETYIISIPHBIX BRIPKCHHIT B 3a/1a4ax BepHpu-
Kal{K yIpaBiIsONMX aBTOMATHbIX rporpamm // COOpHUK TPYHOB
XIV Bcepoccuiickoro coBemanus 1o npobiemMam yrpaBieHUs
(BCIIY-2024). M.: MIITY PAH, 2024. C. 2960-2964.

Meyer B. Touch of Class: Learning to Program Well with Objects and
Contracts. Berlin: Springer, 2009. 876 p. https://doi.org/10.1007/978-
3-540-92145-5

1042

Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHBLIX TEXHONOMMIA, MEXaHUKN 1 onTukn, 2024, Tom 24, N2 6
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no 6

https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1007/978-3-642-82453-1_17
https://doi.org/10.1007/978-3-642-27266-0
https://doi.org/10.1007/978-3-642-27266-0
https://doi.org/10.15217/issn1684-8853.2016.6.50
https://doi.org/10.1134/S1990341315020108
https://doi.org/10.1134/S1990341315020108
https://doi.org/10.1145/3357613.3357639
https://doi.org/10.1145/3357613.3357639
https://doi.org/10.15622/sp.2020.19.3.1
https://doi.org/10.1145/3136825.3136887
http://D.Iu
https://doi.org/10.17586/2226-1494-2023-23-4-750-756
https://doi.org/10.17586/2226-1494-2023-23-4-750-756
https://doi.org/10.1515/cait-2014-0003
https://doi.org/10.1515/cait-2014-0003
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1007/978-3-642-82453-1_17
https://doi.org/10.1007/978-3-642-27266-0
https://doi.org/10.1007/978-3-642-27266-0
https://doi.org/10.15217/issn1684-8853.2016.6.50
https://doi.org/10.15217/issn1684-8853.2016.6.50
https://doi.org/10.1134/S1990341315020108
https://doi.org/10.1145/3357613.3357639
https://doi.org/10.1145/3357613.3357639
https://doi.org/10.15622/sp.2020.19.3.1
https://doi.org/10.1145/3136825.3136887
https://doi.org/10.17586/2226-1494-2023-23-4-750-756
https://doi.org/10.1515/cait-2014-0003
https://doi.org/10.1515/cait-2014-0003
https://doi.org/10.1007/978-3-540-92145-5
https://doi.org/10.1007/978-3-540-92145-5

F.A. Novikov, |.V. Afanasieva, L.N. Fedorchenko, T.A. Kharisova

23. Meyer B. Touch of Class: Learning to Program Well with Objects and
Contracts. Berlin, Springer, 2009, 876 p. https://doi.org/10.1007/978-
3-540-92145-5

24. Weisfeld M. The Object-Oriented Thought Process. 5t ed. Addison-
Wesley Professional, 2019.

Authors

Fedor A. Novikov — D.Sc., Senior Researcher, Professor, Peter the Great
St. Petersburg Polytechnic University (SPbPU), Saint Petersburg, 195251,
Russian Federation; s¢ 16441904500, https://orcid.org/0000-0003-4450-
0173, fedornovikov51@gmail.com

Irina V. Afanasieva — PhD, Head of Laboratory, Special Astrophysical
Observatory of the Russian Academy of Sciences (SAO RAS), Nizhny
Arkhyz, 369167, Russian Federation, s¢ 57210431774, https://orcid.
org/0000-0003-4225-4124, riv6 1 5@gmail.com

Ludmila N. Fedorchenko — PhD, Senior Researcher, St. Petersburg
Federal Research Center of the Russian Academy of Sciences, Saint
Petersburg, 199178, Russian Federation, s¢ 36561350100, https://orcid.
org/0000-0002-4008-93 16, Inf@iias.spb.su

Taisia A. Kharisova — Engineer, loffe Institute, Saint Petersburg,
194021, Russian Federation, https://orcid.org/0009-0002-3456-0471,
tais.harisova@mail.ru

Received 02.05.2024
Approved after reviewing 30.10.2024
Accepted 25.11.2024

[©Nolel

24. Weisfeld M. The Object-Oriented Thought Process / 5th ed. Addison-
Wesley Professional, 2019.

ABTOpBI

HoBukoB ®exop AjleKcaHIPOBHY — JOKTOP TEXHUYECKUX HAyK, CTap-
LK HaY4HBIH COTPYAHUK, podeccop, CankT-IlerepOyprekuii momurex-
amdeckuil yausepcuret Iletpa Bennxoro, Cankr-IletepOypr, 195251,
Poccuiickas ®enepanns, s¢ 16441904500, https://orcid.org/0000-0003-
4450-0173, fedornovikov51@gmail.com

AdanacreBa Upuna BukTopoBHa — KaHIUAAT TEXHUYCCKUX HAYK,
3aBe/yroluit maboparopueii, CrienmanbHas acTpodusnyeckas ooceppa-
topust Poccuiickoit akagemun Hayk, KapadaeBo-Uepkecckas PecryOnmka,
3enenuykckuil p-H, moc. Hmxuuit Apxsiz, 369167, Poccuiickas
Denepanns, s¢ 57210431774, https://orcid.org/0000-0003-4225-4124,
rivo 1 S@gmail.com

®Denopuenko Jlrogmuiaa HukonaeBHa — KaHAWIAT TEXHUYECKUX HayK,
cTapunii Hay4HbIH coTpyaHuK, CankT-IleTepOyprekuit DenepaabHbII Hc-
ciesioBarenbekuii neHTp Pocceuiickoit akagemun Hayk, Cankr-IlerepOypr,
199178, Poccuiickas Denepars, [s¢ 36561350100, https://orcid.org/0000-
0002-4008-9316, Inf@jiias.spb.su

Taucust AHBapoBHa Xapucoa — urxeHep, PU3HKO-TeXHUUECKUN WH-
ctutyT uM. A.®. Hodde Poccuiickoit akanemun Hayk, Cankr-IlerepOypr,
194021, Poccuiickas ®eneparns, https://orcid.org/0009-0002-3456-0471,
tais.harisova@mail.ru

Cmamwst nocmynuna ¢ pedaxyuro 02.05.2024
0oobpena nocne peyensuposanus 30.10.2024
Ipunama x newamu 25.11.2024

Pa6oTta gocTynHa no nuueHsnm
Creative Commons
«Attribution-NonCommercial»

Hay4HO-TexXHU4eCcKuii BECTHUK MHDOPMALIMOHHbLIX TEXHONOM A, MEXaHUKK 1 onTukun, 2024, Tom 24, N2 6
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no 6

1043

https://doi.org/10.1007/978-3-540-92145-5
https://doi.org/10.1007/978-3-540-92145-5
http://D.Sc
https://orcid.org/0000-0003-4450-0173
https://orcid.org/0000-0003-4450-0173
mailto:fedornovikov51@gmail.com
https://orcid.org/0000-0003-4225-4124
https://orcid.org/0000-0003-4225-4124
mailto:riv615@gmail.com
https://orcid.org/0000-0002-4008-9316
https://orcid.org/0000-0002-4008-9316
mailto:lnf@iias.spb.su
https://orcid.org/0009-0002-3456-0471
mailto:tais.harisova@mail.ru
https://orcid.org/0000-0003-4450-0173
https://orcid.org/0000-0003-4450-0173
mailto:fedornovikov51@gmail.com
https://orcid.org/0000-0003-4225-4124
mailto:riv615@gmail.com
https://orcid.org/0000-0002-4008-9316
https://orcid.org/0000-0002-4008-9316
mailto:lnf@iias.spb.su
https://orcid.org/0009-0002-3456-0471
mailto:tais.harisova@mail.ru

