HAYYHO-TEXHUYECKMI BECTHUK MH®OPMALIMOHHBIX TEXHOIOM I, MEXAHVKI 1 OMTUKN

° siHBapb—espans 2025 Tom 25 N2 1 http://ntvifmo.ru/ GAviHOo-TExHMuECKuM BECTHMK
I IITMO SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS “Hm“pm““““"hm IEXH“"""'“, MEXAH“K“ “ “"T"m
January-February 2025 Vol.25No 1 http://ntv.ifmo.ru/en/
ISSN 2226-1494 (print) ISSN 2500-0373 (online)

doi: 10.17586/2226-1494-2025-25-1-61-67

Efficient sparse retrieval through embedding-based inverted index construction
Viacheslav Yu. Dobrynin!®>!, Roman K. Abramovich2, Alexey V. Platonov3

1.2.3 ITTMO University, Saint Petersburg, 197101, Russian Federation
1 Shift Lab LTD, London, W3 7XS, Great Britain
2 Payler Ltd, London, E14 4QA, Great Britain

1 vidobrynin@itmo.ru®, https://orcid.org/0009-0004-3056-8403
2 asmetliness24237@gmail.com, https://orcid.org/0009-0005-5397-2772
3 avplatonov@itmo.ru, https://orcid.org/0000-0002-8485-1296

Abstract

Modern search engines use a two-stage architecture for efficient and high-quality search over large volumes of data. In
the first stage, simple and fast algorithms like BM25 are applied, while in the second stage, more precise but resource-
intensive methods methods, such as deep neural networks, are employed. Although this approach yields good results,
it is fundamentally limited in quality due to the vocabulary mismatch problem inherent in the simple algorithms of the
first stage. To address this issue, we propose an algorithm for constructing an inverted index using vector representations
combining the advantages of both stages: the efficiency of the inverted index and the high search quality of vector
models. In our work, we suggest creating a vector index that preserves the various semantic meanings of vocabulary
tokens. For each token, we identify the documents in which it is used, and then cluster its contextualized embeddings. The
centroids of the resulting clusters represent different semantic meanings of the tokens. This process forms an extended
vocabulary which is used to build the inverted index. During index construction, similarity scores between each semantic
meaning of a token and documents are calculated which are then used in the search process. This approach reduces
the number of computations required for similarity estimation in real-time. Searching the inverted index first requires
finding keys in the vector index, helping to solve the vocabulary mismatch problem. The operation of the algorithm is
demonstrated on a search task within the SciFact dataset. It is shown that the proposed method achieves high search
quality with low memory requirements. The proposed algorithm demonstrates high search quality, while maintaining a
compact vector index whose size remains constant and depends only on the size of the vocabulary. The main drawback
of the algorithm is the need to use a deep neural network to generate vector representations of queries during the search
process which slows down this stage. Finding ways to address this issue and accelerate the search process represents a
direction for future research.

Keywords
inverted index, vocabulary mismatch problem, neural networks, vector representations, clusterization

For citation: Dobrynin V.Yu., Abramovich R.K., Platonov A.V. Efficient sparse retrieval through embedding-based
inverted index construction. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025,
vol. 25, no. 1, pp. 61-67 doi: 10.17586/2226-1494-2025-25-1-61-67

VIIK 004.89
¢ dexTUBHBII pa3pe:KeHHbII MOUCK ¢ MOMOIIbIO MOCTPOECHNS
HHBEPTHPOBAHHOIO HHIEKCA HA OCHOBE dIMOE/IUHIOB
Bsiuecaas IOpwesuy {oopbinun!™!, Poman Koncrantunosny AGpaMoBuyZ,
Auekceit Bragumuposuu Iliaronos3

1.23 Vausepcuter U'TMO, Cankr-IletepOypr, 197101, Poccniickas ®enepanust
1 Shift Lab LTD, Jlonnon, W3 7XS, BenukoOpuTtanus
2 Payler Ltd, Jlounon, E14 4QA, Benukobpuranust

1 vidobrynin@itmo.ru™, https://orcid.org/0009-0004-3056-8403
2 asmetliness24237@gmail.com, https://orcid.org/0009-0005-5397-2772
3 avplatonov@itmo.ru, https://orcid.org/0000-0002-8485-1296

© Dobrynin V.Yu., Abramovich R.K., Platonov A.V., 2025

Hay4HO-TexXHU4eCcKnii BECTHUK MHDOPMALMOHHbLIX TEXHOOMMIA, MeXaHUKn 1 ontukun, 2025, Tom 25, N2 1
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 1

61

http://ntv.ifmo.ru/
http://ntv.ifmo.ru/en/
http://V.Yu
mailto:vidobrynin@itmo.ru
https://orcid.org/0009-0004-3056-8403
mailto:asmetliness24237@gmail.com
https://orcid.org/0009-0005-5397-2772
mailto:avplatonov@itmo.ru
https://orcid.org/0000-0002-8485-1296
http://V.Yu
mailto:vidobrynin@itmo.ru
https://orcid.org/0009-0004-3056-8403
mailto:asmetliness24237@gmail.com
https://orcid.org/0009-0005-5397-2772
mailto:avplatonov@itmo.ru
https://orcid.org/0000-0002-8485-1296

Efficient sparse retrieval through embedding-based inverted index construction

AHHOTALMA

Beenenne. CoBpeMEeHHBIE TONCKOBBIE CUCTEMBI HCHOIB3YIOT ABYXATAMHYIO apXUTEKTYPy M d3PPEKTHBHOTO 1
Ka4eCTBEHHOTO MTOMCKA MO OONBIINM 00beMaM AaHHBIX. Ha mepBoM sTare IpUMEHSIOTCS MPOCTHIe U OBICTpBIE
QITOPUTMEI, Takue kak BM25, a Ha BropoM — 0oJiee TOUHBIE, HO PECypCOEMKHE METOJIbI, HallpuMep IIyOoKkue
HelpoHHbIe ceTH. HecMoTpst Ha TO, YTO TakOW ITOJIXO0J] MOKa3bIBAET XOPOIINE PE3YNIbTAaThl, OH (yHIAMEHTAIbHO
OTpaHHMYeH 110 KaueCTBY M3-3a NPOOJIEMbl HECOBIAJCHHUS CIOBapeil, YTO MPUCYIIE MPOCTHIM AITOPUTMaM MEPBOTO
stana. Metoa. /st perienust npo0lieMbl OrpaHNYeHUH KauecTBa MOUCKa, B HACTOSIIIEH paboTe MpeaIaraeTcsi ailrOpuT™
MOCTPOEHHSI HHBEPTHPOBAHHOTO MHJEKCA C MCMONB30BAaHUEM BEKTOPHBIX MpeacTaBiaeHuil. [IpencraBnenHsil moaxon
00BeINHACT MPEUMYIIECTBA 000UX ITANOB: 3PPEKTUBHOCTh HHBEPTUPOBAHHOTO MHAECKCA M BBICOKOE KaYeCTBO
MONCKA TIPH UCIIOIb30BAHNN BEKTOPHBIX Mojeneil. [IpeanoxkeHo co3ganue BEKTOPHOTO MHJCKCA, COXPAHSIONIETO
pa3IHYHbIe CEMaHTHIECKHE 3HAYCHNSI TOKCHOB CIIOBapsl. J{JIs KaX/10ro TOKeHa OIpe/IeIOTCS JOKYMEHTEI, B KOTOPBIX
OH HCIIOJB3YyeTCs, TOCIIE Yero ero KOHTEKCTyaIN3HPOBaHHbIEe SMOEIIHT T KIacTepu3yIoTcsl. L{eHTpon bl oy YeHHBIX
KJIACTEPOB IPEICTABISIOT Pa3INIHbIe CEeMAaHTHYECKUE 3HAYEHNS TOKeHOB. TaknM 00pa3oM, hopMupyeTcst pacIipeHHbINH
CIIOBaph, KOTOPBIH MPUMEHSIETCS TSl TOCTPOSHHUSI HHBEPTHPOBAHHOTO MHJIEKca. [1pH MOCTpOSHNY MH/IEKCa BEIYUCIISIOTCS
OLICHKH 6J'IPISOCTI/I MEXKAY KaXXJAbIM CEMAHTUYECKUM 3HAUYEHUEM TOKCHA U JOKYMEHTAaMHU, YTO 3aTE€M UCIIOJIB3YyETCS B
nporecce MoucKa. DTO MO3BOJSET COKPATUTh KOTMYECTBO BBIYUCIEHHUH JUIs OLIEHKH OJIM30CTH B PEXKHUME PEaTbHOTO
BpemeHH. [lonck o HHBEPTHPOBAHHOMY HHJEKCY TpeOyeT HaX0XKICHHS KITFodeii B BEKTOPHOM MHJEKCE, YTO TTO3BOJISIET
peumTh podneMy HecoBHmaaeHuUs cioBapeil. OCHOBHBbIE pe3yabTaThl. PaboTa anropuTMa mMpoieMOHCTPUPOBAHA HA
3ajade rmorncka B Habope manHbIX SciFact. [Toka3ano, 9To mpemmaraemMslii MeTox 00ecednBaeT BEICOKOE KaueCTBO
MIOMCKa TIPU HU3KHUX TpeOoBaHUAX K 00beMy mamstu. O6cyxaenne. Pa3paboTaHHEIA alrOpUTM IEMOHCTPHPYET
BBICOKOE KaueCTBO IOHCKa, IIPH ATOM OH HOJIEPKUBAET KOMIIAKTHBII BEKTOPHBIH HHJIEKC, pa3Mep KOTOPOTo OCTaeTCs
HEU3MEHHBIM M ONPEeIsIeTCs] HCKIIOYUTEIBHO pa3MepamMu cioBapst. OCHOBHBIM HEJOCTATKOM aJrOpUTMa SIBIISIETCS
HEOOXOIUMOCTh UCIONb30BaHMs IITyOOKOM HEMPOHHOW ceTH Ul reHepallui BEeKTOPHBIX MpEACTaBIEeHUH 3ampoca B
npolecce MoUcKa, UTo 3aMe/UIseT 3ToT dTain. [louck myTeit 1uist penieHus JaHHOM MPOOIEeMbI ¥ COKPAIIEHUS] BpEMEHI
TTONCKA MPECTABISAET COOO0 HaNpaBIeHUE TATbHEHIINX HCCIIETOBAHMUM.

KaroueBbie ci10Ba
MHBEPTHPOBAHHBIN HHJCKC, IPOOIeMa HECOOTBETCTBHSI CIOBApeH, HEHPOHHBIE CETH, BEKTOPHBIE NPEACTABICHNUS,
KJIaCTepU3anus

Ccepuika qius nutupoBanus: 1o6pena B.1O., A6pamosunu P.K., [InatoHoB A.B. DddexTuBHBIN pazpekeHHBIN
MOMCK C TIOMOIIBIO TIOCTPOCHHUSI HHBEPTUPOBAHHOTO MHIEKCA Ha OCHOBE dMOeaanHroB // HaydHO-TeXHUYEe CKHUI
BECTHUK MH(OPMAIIMOHHBIX TEXHOJOTUI, MexaHukH u ontuku. 2025. T. 25, Ne 1. C. 61-67 (ua aur. s3.). doi:

10.17586/2226-1494-2025-25-1-61-67

Introduction

Modern search systems typically use a two-stage
architecture to balance between speed and search quality
while working with massive volumes of data such as the
entire Internet. At the first stage, simple and fast algorithms
are used to reduce the number of candidates to hundreds or
thousands. At the second stage, these candidate documents
are re-ranked using more complex models that provide
high-quality results but require by an order of magnitude
more processing power. Consequently, those models
cannot be efficiently applied to the entire dataset due to
performance constraints. However, this approach has
limitations in search quality, as the algorithm at the first
stage can miss relevant documents by not accounting for
the semantics of the texts.

nd-to-end solutions, such as Contextualized Late
Interaction over Bidirectional Encoder Representations
from Transformers (BERT) (ColBERT), implement
search using a single stage, allowing for significantly
improved search quality. For example, Best Matching
25 (BM25), which is often used as a first-stage ranking
model, achieves a Mean Reciprocal Rank (MRR)@10 of
19.5 on the Microsoft Machine Reading Comprehension
(MS MARCO) dataset, whereas ColBERT (end-to-end)
achieves an MRR@10 of 36.7 [1]. The main innovation in
the ColBERT architecture is the late interaction mechanism
which independently encodes query and document tokens
into vector representations that are used for computing
relevance scores. This approach allows us to independently

pre-compute document embeddings at the offline stage and
store them in a vector index for further retrieval. However,
it also requires a significant amount of resources to store
the indexed documents and process incoming queries,
making it challenging to apply to large-scale datasets.

To address this problem, we propose implementing a
single-stage architecture algorithm that uses an inverted
index as the primary structure for indexing and searching.
However, unlike classical approaches like BM25, our
method constructs an inverted index using deep neural
networks, allowing for a more precise capture of the
context of tokens and their relevance to the documents.

In this paper, we present a new method that leverages
the efficiency of an inverted index while maintaining the
search quality of vector models. Our approach combines
the advantages of inverted index structure with the scoring
provided by deep learning models that deeply understand
token semantics.

Related works

The Sparse Neural Ranking Model (SNRM), introduced
by Zamani et al. in 2018 [2], was one of the first works
that tried to integrate deep neural networks with traditional
inverted indexing. By using sparsity constraints, SNRM is
trained to generate high-dimensional sparse embeddings
for both queries and documents, which can be later used
to construct an inverted index. This model was able to
significantly improve search quality, but, at the same time,
it has certain limitations related to its architecture, such as

62 Hay4HO-TexHM4Yeckunii BECTHUK MHPOPMALMOHHBLIX TEXHONOMMIA, MeXaHMKN 1 onTukn, 2025, Tom 25, N2 1
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 1

VYu. Dobrynin, R.K. Abramovich, A.V. Platonov

loss of token interpretability, fixed dimensionality of output
vectors, and the need to process queries through the model
which significantly increases computational resources at
query time.

SparTerm, introduced by Bai et al. in 2020 [3],
was designed to improve traditional sparse term-based
representations by using deep models like BERT [4]. By
generating dense contextualized embeddings that capture
the semantics of each term and using a gating controller to
sparsify the resulting vectors, SparTerm is able to construct
an inverted index using original vocabulary terms. By doing
so, SparTerm improves semantic matching in the inverted
index, while keeping the interpretability and efficiency of
classical methods.

The Sparse Lexical And Expansion (SPLADE) model
by Formal et al. [5], builds upon SparTerm by simplifying
its architecture. The main idea is that instead of using a
gating controller to achieve sparsity, the authors would
employ a log-saturation function and a sparsifying
regularization at the training stage to induce sparsity in the
output vectors, thus addressing one of the key limitations
of SparTerm, allowing for end-to-end training and reducing
computational complexity.

CoIBERT [1] and ColBERTV2 [6] can be considered an
alternative approach to generating sparse vectors, as instead
of building an inverted index, it focuses on algorithmic
optimizations to reduce computational resources required
for search. In this work, the authors introduce the concept of
“late interaction” which separates the encoding of queries
and documents from computing relevance scores between
them. By employing an Approximate Nearest Neighbor
(ANN) index with the Facebook AI Similarity Search [7]
library and vector compression techniques like Product
Quantization [8], combined with offline indexing, CoIBERT
allows for significantly reducing resources required for
storing and processing search queries. However, despite
achieving high search quality and requiring significantly
fewer resources than traditional vector search methods,
ColBERT still requires more computational resources
during query time and greater storage space for document
embeddings than inverted index models.

The model SparseEmbed [9] was inspired by both
SPLADE and ColBERT. By generating sparse vectors
using the same approach as SPLADE and storing dense
embeddings for each input token, SparseEmbed constructs
an inverted index with original vocabulary terms, where
the values stored in the index are the dense representations
of the tokens. At search time, it uses dense embeddings of
activated tokens to compute relevance scores efficiently.
This approach improves context capture compared to
SPLADE by using dense representations and is more
efficient than ColBERT as it requires linear time relative
to the number of activated terms rather than quadratic time.
SparseEmbed achieved an MRR@10 score of 39.2 on the
MS MARCO dataset, which is slightly the score of 39.7
achieved by ColBERTV2. However, it still requires storing
dense vectors for each token and document and computing
contextualized embeddings at query time, increasing the
computational resources needed during search.

The work Sparse Transformer Matching (SPARTA) [10]
offers an efficient neural ranking method that addresses

the limitations of dense vector search in open-domain
question answering. Unlike similar models that rely
entirely on dense embeddings, SPARTA learns sparse
representations that can be implemented as an inverted
index, allowing for scalable retrieval without the need
for expensive ANN search. SPARTA captures fine-
grained relevance information by focusing on token-level
interactions between queries and documents, allowing
for high-quality matching while maintaining efficiency.
This approach significantly improves retrieval performance
compared to dense models and achieves state-of-the-art
results across multiple open-domain question answering
tasks.

This paper is a continuation of the algorithm proposed
in [11]. The main improvement is in the way we select
contextualized embeddings from documents. Instead of
computing context based on a sliding window algorithm
as in our earlier approach, we now utilize contextualized
vector representations of tokens within the entire document.
This change allows us to perform more effective clustering
and capture different semantic meanings of words. By
constructing an inverted index using these embeddings,
we address the resource-intensive computations required
during search, achieving efficiency comparable to
traditional methods while capturing the semantic richness
highlighted in models like SPARTA and SPLADE.

In the next sections we describe the whole algorithm
with the new upgrades.

Description of the Proposed Algorithm

The usage of transformer models allows for
significantly improved search quality due to their ability
to capture complex semantic relationships between tokens
in the text. However, these models also require substantial
computational resources, making them far less practical to
use directly in large-scale search systems.

In contrast, the usage of inverted indexes is a standard
practice in modern production search systems due to their
scalability, high performance, and relatively low memory
usage.

Inverted indexes are able to efficiently retrieve
documents based on exact query term matching, however,
when queries and documents use different words with
similar meanings, traditional inverted indexes fail
to retrieve relevant documents, which is known as the
vocabulary mismatch problem.

To address this problem, we propose a novel method
of inverted index construction, where the index terms are
selected based on their semantic similarity, rather than
exact term matching. By doing so, we aim to resolve the
vocabulary mismatch problem by incorporating semantic
understanding into the index building process.

Our method involves training a compact vector index
that contains embeddings representing different semantic
meanings for each token in the vocabulary. To generate
these embeddings, we cluster the contextualized token
embeddings across all documents in the dataset. This
allows us to capture the various contexts in which a token
appears, effectively representing its multiple semantic
meanings.

Hay4HO-TexXHU4eCcKnii BECTHUK MHDOPMALMOHHbLIX TEXHOOMMIA, MeXaHUKn 1 ontukun, 2025, Tom 25, N2 1 63
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 1

http://V.Yu

Efficient sparse retrieval through embedding-based inverted index construction

Index construction

As search systems face the requirement to work with
massive data volumes, the efficient implementation of the
indexing stage is a crucial concern. Caching is one of the
most common optimization techniques to speed up data
processing, and the one that we adopted to optimize our
indexing algorithm.

As we build both a compact vector index and an
inverted index using vector representations extracted from
documents, it is a logical step to cache those representations
for both processes. Our vector representations are obtained
using a deep neural network based on the transformer
architecture. More specifically, it is a bidirectional
encoder that considers each token context by looking at
both preceding and following tokens. This allows for a
deeper semantic understanding of words depending on
their context, which is a critical factor for calculating the
relevance score between tokens and documents.

The result of this preparation stage is a collection
that contains mappings of document identifiers to their
corresponding contextualized embeddings, represented as
pairs (doc_id, contextualized _embs), which is later used for
obtaining semantic clusters for tokens, building a vector
index and an inverted index.

The index construction is divided into two main stages:
first, we use vector representations and clustering to build
an expanded vocabulary that captures different semantic
contexts of tokens, and second, we use this expanded
vocabulary to construct the inverted index.

The core idea of the proposed approach is to construct
a fixed Hierarchical Navigable Small World (HNSW) [12]
index that contains vector representations of all vocabulary
tokens in their various semantic contexts across indexed
documents. This index allows us to efficiently distinct
different token contexts at both indexing and query time.
Since a token can have multiple meanings depending on its
usage, capturing these variations is essential for semantic
search.

The first step is quite similar to building a classical
inverted index. For each token, we collect and store all the
document ids in which this token appears, ending up with a
map of token id to the list of document ids. This collection
will later be used to gather contextualized embeddings for
each token across different contexts.

Then, for each token in the map, the following steps
are performed:

1. Collect Contextualized Embeddings from all the
documents that the token appears in. As the token might
have different semantic meanings based on the context,
by collecting token embeddings from all documents we
make sure to account for all of them. At this step, we
use the (doc_id, contextualized embs) map prepared at
the preparation step to speed up the process and avoid
re-calculating embeddings for each document over and
over.

2. Clustering: As soon as we have all token embeddings
from each document it appears in, we perform
clustering on these embeddings using the k-means++
algorithm [13]. As a result, we get a small set of cluster
centroids that group similar embeddings and represent
different semantic meanings that this token has.

3. Store semantic centroids: Finally, we store the
resulting centroids to the HNSW index, where they can
be later used for building an inverted index. With each
centroid, we also store the associated metadata required
for further steps: a source token and a unique cluster
identifier (token_id, cluster_id).

This process is depicted in Fig. 1.

The constructed HNSW index enables efficient nearest
neighbor search based on semantic similarity during both
indexing and query processing. By using those centroids
to build an inverted index we address the vocabulary
mismatch problem and allow for a search based on
semantics and thus more agile, but still interpretable as we
save corresponding token and cluster identifiers with each
embedding in both vector and inverted index.

At this step, we combine the results from all the
previous steps in order to construct the inverted index.

To do so, we iterate over the collection of document ids
mapped to their contextualized embeddings generated at the
preparation step. For each contextualized token embedding
e in the document, we search for its nearest semantic
centroids from the HNSW index built at the previous step.

The relevance score between contextualized
embeddings of a document and retrieved semantic centroids
is calculated using the MaxSim operator as defined in [1].
Thus, in our work, most of the computations of the “late
interaction” mechanism are performed at the indexing
stage, which speeds up the search process compared to
ColBERT. Finally, these relevance scores are then stored in
the inverted index along with the document ids, where the
keys are represented as pairs of token and cluster identifiers
(token_id, cluster id).

The whole inverted index construction process is
presented in Fig. 2.

This algorithm allows us to effectively expand the
vocabulary of the inverted index based on a deep semantic
understanding of the source texts. The vocabulary mismatch
problem is addressed by searching for nearest semantic
clusters for each token, allowing for including semantic
clusters from different tokens to the resulting posting list
even if they do not appear in the document. The inverted
index remains efficient and interpretable, as it still relies on
tokens from the original vocabulary augmented with cluster
identifiers representing different semantic meanings.

HNSW
[token:cluster id:centroid]

T centroids

k-means

T contextualized embs

doc_id contextualized embs
T doc_ids
token doc_ids

Fig. 1. Vector index construction process

64 Hay4HO-TexHM4Yeckunii BECTHUK MHPOPMALMOHHBLIX TEXHONOMMIA, MeXaHMKN 1 onTukn, 2025, Tom 25, N2 1
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 1

VYu. Dobrynin, R.K. Abramovich, A.V. Platonov

token:cluster id (doc_id=score), . ..

scores

MaxSim

centroids

HNSW
[token:cluster id:centroid]

contextualized embs

doc_id contextualized embs

Fig. 2. Inverted index construction process

Search process

The search process begins by encoding the query
with the same encoder used at the indexing stage (e.g., a
pretrained transformer model like BERT). Then, for each
contextualized embedding of the query tokens, we use
a vector index to search for the nearest neighbor tokens.
These nearest tokens represent the semantic variations of
the query tokens captured during the clustering step.

The retrieved tokens and cluster ids are then used to
look up the list of documents and their associated scores
from the inverted index. These scores represent the
relevance between the document and the semantic cluster
of the token.

To compute the overall relevance score for each
document, we aggregate the scores from all matching
tokens by summing them:
scor equery,doc = ztokenEqueiyEclusterﬁidscor etoken:clusterﬁid,dow
where Score, o custer id.doc 15 the Televance score between
the document and the specific semantic variation of the
token.

Finally, we sort the documents in descending order
based on their aggregated scores. This results in a ranked
list of documents ordered by their relevance to the query.
This method leverages the semantic understanding captured
during the indexing process, allowing for effective retrieval
even when there is a vocabulary mismatch between the
query and the documents.

The search process is presented in Fig. 3.

Evaluation of the Proposed Algorithm

To train our model, we performed a k-means clustering
on 300,000 documents from the widely-used ranking
dataset MS MARCO [14] passages. The evaluation was
done using the Benchmarking Information Retrieval (BIER)
framework [15] which provides a variety of datasets and
metrics for assessing the quality of search systems. As a
dataset for rapid quality validation, we selected the SciFact
dataset containing approximately 5,000 documents.

sort(doc_ids) by score and take N

T

sum(scores) by doc_id

T

token:cluster id (doc_id=score), . ..

I [token:cluster id]

HNSW
[token:cluster id:centroid]

T contextualized _embs

Encoder (BERT)

T

Query

Fig. 3. Search process for a given query

The BIER framework provides several standard
metrics that can be used to evaluate search quality, such as
Normalized Discounted Cumulative Gain (NDCG), Mean
Average Precision, MRR, Precision and Recall, etc. To
assess our model, we’ve primarily focused on NDCG and
MRR metrics which are commonly used to measure the
ranking quality of retrieval systems.

As the dense model that would convert our documents
into contextualized embeddings, we used the sentence-
transformers/all-MiniLM-L6-v2, which is a highly efficient
transformer model optimized for semantic search. However,
while this model balances between speed and embedding
quality, it has a considerable limitation, as the maximum
input sequence length is restricted to 256 tokens.

We chose the HNSW algorithm for vector search due to
its high search quality and low search latency in comparison
to other approximate algorithms. However, while HNSW
requires considerable memory resources, this does not limit
our algorithm since the index size depends on the number of
terms in the vocabulary rather than the number of documents
in the corpus, which keeps memory usage optimal.

For comparison, we considered the SPARTA, HNSW,
and ColBERTV2 algorithms. The results of the comparison
are shown in Table.

The results of our study demonstrate that our model
achieves higher search quality compared to SPARTA

Table. Retrieval results on SciFact dataset

Metrics
Algorithm
NDCG@10 MRR@10
SPARTA 0.60 0.57
Our work 0.63 0.60
HNSW 0.64 0.60
ColBERTV2 0.69 0.66

Hay4HO-TexXHU4eCcKnii BECTHUK MHDOPMALMOHHbLIX TEXHOOMMIA, MeXaHUKn 1 ontukun, 2025, Tom 25, N2 1 6
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 1 S

http://V.Yu

Efficient sparse retrieval through embedding-based inverted index construction

-= ColBERTV2
——~HNSW (M = 64, efs = 16, efc = 40)
200 {—* Our work

—_
o
(=]

Index Size, MB

20,000 60,000
Number of Indexed Documents

100,000

Fig. 4. Index size growth with increasing documents

(conceptually similar algorithm), provides comparable
quality to HNSW (one of the best algorithms for ANN
search), and falls behind ColBERT (state-of-the-art in
search quality). However, due to the use of an inverted
index, our model requires less memory than both HNSW
and ColBERT, as illustrated in Fig. 4.

In the figure above, only the size of the inverted index
for our algorithm is shown. The size of our vector index
is constant and, therefore, not included in the calculation.

Discussion of Results

Vector index size

Although our approach requires a separate HNSW
index, the way we construct it makes our algorithm more
efficient than those of ColBERT and SparseEmbed. In
CoIBERT, the number of vectors that need to be stored
increases linearly with the number of documents in the
dataset, as a separate embedding must be saved for each
new document, reducing scalability for large datasets.
SparseEmbed further exacerbates this issue by storing
embeddings of each token within the document as a value
in the inverted index, thus requiring to store dozens of
embeddings per document.

In contrast, the size of our vector index does not depend
directly on the size of the dataset. We store embeddings
of different contextual clusters of tokens within our
vocabulary. Therefore, the dataset size affects the index
size only indirectly: as more documents are added, new
contextual meanings of tokens may appear, potentially
increasing the number of clusters. This means that for
small datasets consisting of a few thousand documents,
our approach might require more memory than ColBERT
as we would store at least one embedding for each token

References

1. Khattab O., Zaharia M. ColBERT: Efficient and Effective Passage
Search via Contextualized Late Interaction over BERT. Proc. of the
43rd [nternational ACM SIGIR Conference on Research and
Development in Information Retrieval, 2020, pp. 39—48. https://doi.
org/10.1145/3397271.3401075

2. Zamani H., Dehghani M., Croft W.B., Learned-Miller E., Kamps J.
From neural re-ranking to neural ranking: Learning a sparse
representation for inverted indexing. Proc. of the 27" ACM
International Conference on Information and Knowledge Management,
2018, pp. 497-506. https://doi.org/10.1145/3269206.3271800

in the vocabulary. However, as the dataset size grows,
the storage requirements for ColBERT and SparseEmbed
increase linearly, while in our approach the size of the
vector index stabilizes and remains constant as soon as new
documents cease to introduce new semantic meanings to
existing clusters.

Moreover, as our vector index stores semantic clusters
for each token in the vocabulary, as long as our vocabulary
does not change, we can train this vector index once and
then reuse it in further iterations of indexing and searching
processes.

Query-processing overhead

A major limitation of our algorithm is the requirement
to process each query through a BERT-like model to
obtain the vector representations of its tokens which are
subsequently used to retrieve semantically similar clusters
from the HNSW index. This step is computationally
expensive and might significantly increase the query-
time latency. In future iterations of the algorithm, we
intend to explore strategies to eliminate this costly model
invocation to enhance the efficiency of our model. In the
current version, it is still possible to perform search queries
using only the inverted index, though it affects the search
quality.

Conclusion

In this work, we proposed a novel algorithm for inverted
index construction, designed to adapt deep neural models
for usage with an efficient data structure widely adopted
in production information retrieval systems. By utilizing
contextualized vector representations, our approach can
effectively address the vocabulary mismatch problem
between documents and queries, leading to significant
search quality improvements.

A key feature of our algorithm is the construction of a
compact vector index used for capturing different semantic
meanings of vocabulary tokens. The resulting index has
a relatively small size which does not linearly depend on
the amount of data in the search system, but rather on the
size of the vocabulary, which is a major advantage of our
algorithm. Additionally, by utilizing the MaxSim operator
during the indexing process, we reduce the computational
load of the search process compared to ColBERT while
maintaining the advantages of the “late interaction”
mechanism in terms of search quality.

Experimental results show the effectiveness of our
approach, achieving strong search quality, which confirms
its potential applicability to real-world information retrieval
tasks.

Jlureparypa

1. Khattab O., Zaharia M. ColBERT: Efficient and Effective Passage
Search via Contextualized Late Interaction over BERT // Proc. of the
43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval. 2020. P. 39—48. https://doi.
org/10.1145/3397271.3401075

2. Zamani H., Dehghani M., Croft W.B., Learned-Miller E., Kamps J.
From neural re-ranking to neural ranking: Learning a sparse
representation for inverted indexing // Proc. of the 27th ACM
International Conference on Information and Knowledge Management.
2018. P. 497-506. https://doi.org/10.1145/3269206.3271800

66 Hay4HO-TexHM4Yeckunii BECTHUK MHPOPMALMOHHBLIX TEXHONOMMIA, MeXaHMKN 1 onTukn, 2025, Tom 25, N2 1
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 1

https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3269206.3271800
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3269206.3271800

VYu. Dobrynin, R.K. Abramovich, A.V. Platonov

3. BaiY,LiX, WangG., Zhang C., Shang L., Xu J., Wang Z., Wang F.,
Liu Q. SparTerm: Learning term-based sparse representation for fast
text retrieval. arXiv, 2020, arXiv:2010.00768. https://doi.
org/10.48550/arXiv.2010.00768

4. Devlin J., Chang M.W., Lee K., Toutanova K. BERT: Pre-training of
deep bidirectional transformers for language understanding. arXiv,
2018, arXiv:1810.04805v2. https://doi.org/10.48550/arXiv.1810.04805

5. Formal T., Piwowarski B., Clinchant S. SPLADE: Sparse lexical and
expansion model for first stage ranking. Proc. of the 44'h International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2021, pp. 2288-2292. https://doi.
org/10.1145/3404835.3463098

6. Santhanam K., Khattab O., Saad-Falcon J., Potts C., Zaharia M.
ColBERTV2: Effective and efficient retrieval via lightweight late
interaction. Proc. of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, 2022, pp. 3715-3734. https://doi.
org/10.18653/v1/2022.naacl-main.272

7. Johnson J., Douze M., Jégou H. Billion-scale similarity search with
GPUs. [EEE Transactions on Big Data, 2021, vol. 7, no. 3, pp. 535—
547. https://doi.org/10.1109/tbdata.2019.2921572

8. Jégou H., Douze M., Schmid C. Product quantization for nearest
neighbor search. [EEE Transactions on Pattern Analysis and Machine
Intelligence, 2011, vol. 33, no. 1, pp. 117-128. https://doi.
org/10.1109/tpami.2010.57

9. Kong W., Dudek J.M., Li C., Zhang M., Bendersky M. SparseEmbed:
Learning sparse lexical representations with contextual embeddings
for retrieval. Proc. of the 46" International ACM SIGIR Conference
on Research and Development in Information Retrieval. 2023.
P. 2399-2403. https://doi.org/10.1145/3539618.3592065

10. Tiancheng Z., Lu X., Lee K. SPARTA: Efficient Open-Domain
Question Answering via Sparse Transformer Matching Retrieval.
Proc. of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, 2021, pp. 565-575. https://doi.org/10.18653/v1/2021.
naacl-main.47

11. Dobrynin V., Abramovich R., Platonov A. Building a full-text search
index using “Transformer” neural network. Proc. of the 2023 IEEE
17 International Conference on Application of Information and
Communication Technologies (AICT), 2023. pp. 1-5. https://doi.
org/10.1109/aict59525.2023.10313200

12. Malkov Y.A., Yashunin D.A. Efficient and robust approximate nearest
neighbor search using Hierarchical Navigable Small World graphs.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
2020, vol. 42, no. 4, pp. 824-836. https://doi.org/10.1109/
tpami.2018.2889473

13. Arthur D., Vassilvitskii S. k-means++: the advantages of careful
seeding. Proc. of the 18" ACM-SIAM Symposium on Discrete
Algorithms Mathematics, 2007, pp. 1027-1035.

14. Bajaj P., Campos D., Craswell N., Deng L., Gao J., Liu X.,
Majumder R., McNamara A., Mitra B., Nguyen T., Rosenberg M.,
Song X., Stoica A, Tiwary S., Wang T. MS MARCO: a human
generated MAchine Reading COmprehension dataset. arXiv, 2016,
arXiv:1611.09268. https://doi.org/10.48550/arXiv.1611.09268

15. Thakur N., Nils R., Riicklé A., Srivastava A., Gurevych 1. BEIR: A
heterogenous benchmark for zero-shot evaluation of information
retrieval models. arXiv, 2021, arXiv:2104.08663. https://doi.
org/10.48550/arXiv.2104.08663

Authors

Viacheslav Yu. Dobrynin — PhD Student, ITMO University, Saint
Petersburg, 197101, Russian Federation; Senior Developer, Shift Lab
LTD, London, W3 7XS, Great Britain, s¢ 57223099701, https://orcid.
org/0009-0004-3056-8403, vidobrynin@itmo.ru

Roman K. Abramovich — PhD Student, ITMO University, Saint
Petersburg, 197101, Russian Federation; Senior Developer, Payler Ltd,
London, E14 4QA, Great Britain, s¢ 58759320100, https://orcid.org/0009-
0005-5397-2772, asmetliness24237@gmail.com

Alexey V. Platonov — PhD, Associate Professor, ITMO University, Saint
Petersburg, 197101, Russian Federation, [s¢ 57197736275, https://orcid.
org/0000-0002-8485-1296, avplatonov@itmo.ru

Received 31.10.2024
Approved after reviewing 10.12.2024
Accepted 22.01.2025

3. BaiY,LiX., WangG., Zhang C., Shang L., Xu J., Wang Z., Wang F.,
Liu Q. SparTerm: Learning term-based sparse representation for fast
text retrieval // arXiv. 2020. arXiv:2010.00768. https://doi.
org/10.48550/arXiv.2010.00768

4. Devlin J., Chang M.W., Lee K., Toutanova K. BERT: Pre-training of
deep bidirectional transformers for language understanding // arXiv.
2018. arXiv:1810.04805v2. https://doi.org/10.48550/arXiv.1810.04805

5. Formal T., Piwowarski B., Clinchant S. SPLADE: Sparse lexical and
expansion model for first stage ranking // Proc. of the 44th
International ACM SIGIR Conference on Research and Development
in Information Retrieval. 2021. P. 2288-2292. https://doi.
org/10.1145/3404835.3463098

6. Santhanam K., Khattab O., Saad-Falcon J., Potts C., Zaharia M.
ColBERTV2: Effective and efficient retrieval via lightweight late
interaction // Proc. of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies. 2022. P. 3715-3734. https://doi.
org/10.18653/v1/2022 naacl-main.272

7. Johnson J., Douze M., Jégou H. Billion-scale similarity search with
GPUs // IEEE Transactions on Big Data. 2021. V. 7. N 3. P. 535-547.
https://doi.org/10.1109/tbdata.2019.2921572

8. Jégou H., Douze M., Schmid C. Product quantization for nearest
neighbor search // IEEE Transactions on Pattern Analysis and
Machine Intelligence. 2011. V. 33. N 1. P. 117-128. https://doi.
org/10.1109/tpami.2010.57

9. Kong W., Dudek J.M., Li C., Zhang M., Bendersky M. SparseEmbed:
Learning sparse lexical representations with contextual embeddings
for retrieval // Proc. of the 46th International ACM SIGIR Conference
on Research and Development in Information Retrieval. 2023.
P. 2399-2403. https://doi.org/10.1145/3539618.3592065

10. Tiancheng Z., Lu X., Lee K. SPARTA: Efficient Open-Domain
Question Answering via Sparse Transformer Matching Retrieval //
Proc. of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies. 2021. P. 565-575. https://doi.org/10.18653/v1/2021.
naacl-main.47

11. Dobrynin V., Abramovich R., Platonov A. Building a full-text search
index using “Transformer” neural network // Proc. of the 2023 IEEE
17th International Conference on Application of Information and
Communication Technologies (AICT). 2023. P. 1-5. https://doi.
org/10.1109/aict59525.2023.10313200

12. Malkov Y.A., Yashunin D.A. Efficient and robust approximate nearest
neighbor search using Hierarchical Navigable Small World graphs //
IEEE Transactions on Pattern Analysis and Machine Intelligence.
2020. V. 42. N 4. P. 824-836. https://doi.org/10.1109/
tpami.2018.2889473

13. Arthur D., Vassilvitskii S. k-means++: the advantages of careful
seeding // Proc. of the 18th ACM-SIAM Symposium on Discrete
Algorithms Mathematics. 2007. P. 1027-1035.

14. Bajaj P., Campos D., Craswell N., Deng L., Gao J., Liu X.,
Majumder R., McNamara A., Mitra B., Nguyen T., Rosenberg M.,
Song X., Stoica A, Tiwary S., Wang T. MS MARCO: a human
generated MAchine Reading COmprehension dataset / arXiv. 2016.
arXiv:1611.09268. https://doi.org/10.48550/arXiv.1611.09268

15. Thakur N., Nils R., Riicklé A., Srivastava A., Gurevych I. BEIR: A
heterogenous benchmark for zero-shot evaluation of information
retrieval models // arXiv. 2021. arXiv:2104.08663. https://doi.
org/10.48550/arXiv.2104.08663

ABTOpBI

Jloopeinnn Bsivecnas FOpreBuy — acnupant, Yausepcuter UTMO,
Cankt-IlerepOypr, 197101, Poccuiickas denepauus; crapmuid pas-
pa6ortuuk, Shift Lab LTD, Jlongon, W3 7XS, Benukobpuranus,
s¢ 57223099701, https://orcid.org/0009-0004-3056-8403, vidobrynin@
itmo.ru

AbpamoBny Poman KoHCTaHTHHOBHY — acIHpaHT, YHUBEPCHTET
WUTMO, Canxr-IlerepOypr, 197101, Poccuiickas denepanns; crap-
muit pazpaborunk, Payler Ltd, Jlonnon, E14 4QA, Benukobpuranus,
s¢ 58759320100, https://orcid.org/0009-0005-5397-2772,
asmetliness24237@gmail.com

IlnaTonoB Auekceii BiiaguMupoBuy — KaHINMAAT TEXHUYECKUX HayK,
nouent, Yausepcurer UTMO, Cankr-IletepOypr, 197101, Poccuiickas
Denepanns, s¢ 57197736275, https://orcid.org/0000-0002-8485-1296,
avplatonov(@itmo.ru

Cmamus nocmynuna 6 peoakyuio 31.10.2024
Oodobpena nocne peyensuposanus 10.12.2024
Ipunsama x nevamu 22.01.2025

http://V.Yu
https://doi.org/10.48550/arXiv.2010.00768
https://doi.org/10.48550/arXiv.2010.00768
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.1109/tbdata.2019.2921572
https://doi.org/10.1109/tpami.2010.57
https://doi.org/10.1109/tpami.2010.57
https://doi.org/10.1145/3539618.3592065
https://doi.org/10.18653/v1/2021.naacl-main.47
https://doi.org/10.18653/v1/2021.naacl-main.47
https://doi.org/10.1109/aict59525.2023.10313200
https://doi.org/10.1109/aict59525.2023.10313200
https://doi.org/10.1109/tpami.2018.2889473
https://doi.org/10.1109/tpami.2018.2889473
https://doi.org/10.48550/arXiv.1611.09268
https://doi.org/10.48550/arXiv.2104.08663
https://doi.org/10.48550/arXiv.2104.08663
https://orcid.org/0009-0004-3056-8403
https://orcid.org/0009-0004-3056-8403
mailto:vidobrynin@itmo.ru
https://orcid.org/0009-0005-5397-2772
https://orcid.org/0009-0005-5397-2772
mailto:asmetliness24237@gmail.com
https://orcid.org/0000-0002-8485-1296
https://orcid.org/0000-0002-8485-1296
mailto:avplatonov@itmo.ru
https://doi.org/10.48550/arXiv.2010.00768
https://doi.org/10.48550/arXiv.2010.00768
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.1109/tbdata.2019.2921572
https://doi.org/10.1109/tpami.2010.57
https://doi.org/10.1109/tpami.2010.57
https://doi.org/10.1145/3539618.3592065
https://doi.org/10.18653/v1/2021.naacl-main.47
https://doi.org/10.18653/v1/2021.naacl-main.47
https://doi.org/10.1109/aict59525.2023.10313200
https://doi.org/10.1109/aict59525.2023.10313200
https://doi.org/10.1109/tpami.2018.2889473
https://doi.org/10.1109/tpami.2018.2889473
https://doi.org/10.48550/arXiv.1611.09268
https://doi.org/10.48550/arXiv.2104.08663
https://doi.org/10.48550/arXiv.2104.08663
https://orcid.org/0009-0004-3056-8403
mailto:vidobrynin@itmo.ru
mailto:vidobrynin@itmo.ru
https://orcid.org/0009-0005-5397-2772
mailto:asmetliness24237@gmail.com
https://orcid.org/0000-0002-8485-1296
mailto:avplatonov@itmo.ru

