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Abstract
Image smoothing is vital in image processing as it attenuates the texture and unnecessary high-frequency components 
and provides a smooth image with a preserved structure to facilitate subsequent operations or analysis. Smoothed 
images are required in many image processing applications, such as details boost, sharpening, High Dynamic Range 
imaging, edge detection, stylization, abstraction, etc. Still, not all existing smoothing methods are successful in this 
task, as some undesirable problems may be introduced, such as removing significant details, introducing excessive 
blurring, processing flaws, halos, and other artifacts. Thus, the opportunity still stands to provide a new algorithm that 
smooths an image efficiently. This study concisely explores smoothing via the Directional Variances (DV) concept. 
The proposed algorithm leverages the DV concept to minimize energy, seeking a balance between essential structural 
preservation and smoothness. The proposed algorithm iteratively smooths the image using DV, diffusion, regularization, 
and energy minimization. A thorough evaluation is conducted on diverse images, showcasing the effectiveness of the 
developed algorithm. The results demonstrate that the developed DV-based algorithm has superb abilities in smoothing 
different images while preserving structural details, making it a valuable tool for various applications in digital image 
processing.	
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Аннотация
Технология сглаживания изображений применяется при обработке изображений. Использование данной 
технологии ослабляет текстуру и ненужные высокочастотные компоненты, обеспечивает получение гладкого 
изображения с сохраненной структурой для облегчения последующих операций корректировки или анализа. 
Получение сглаженных изображений требуется во многих приложениях при обработке, например, High 
Dynamic Range изображений, при усилении деталей, повышении резкости, обнаружении краев, стилизации, 
абстракции и т. д. При этом, не все существующие методы сглаживания изображений успешно справляются 
с поставленной задачей. В результате могут возникнуть нежелательные проблемы, такие как удаление 
существенных деталей, введение чрезмерного размытия, дефекты обработки, ореолы и другие артефакты. 
В работе представлен новый алгоритм, который эффективно сглаживает изображение. Алгоритм основан на 
концепции направленных дисперсий (Directional Variances, DV) для минимизации энергии и получения баланса 
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между сохранением структуры и гладкостью. С помощью концепции DV представленный алгоритм итеративно 
сглаживает изображение, диффузии, осуществляет регуляризацию и минимизацию энергии. Выполненная 
оценка полученных результатов на различных изображениях показала эффективность разработанного алгоритма. 
Алгоритм на основе DV обладает превосходными возможностями сглаживания изображений, сохраняя при этом 
структурные детали, что делает его ценным инструментом для приложений, применяемых в области цифровой 
обработки изображений.	
Ключевые слова
метод Чан-Везе, регуляризация, сглаживание изображений, диффузия, направленная дисперсия
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Introduction

Various real-life   imaging applications demand the 
attenuation of insignificant information while maintaining 
significant structural details of an image, called image 
smoothing [1]. Smoothed images are required in many 
image processing applications, such as details boost, 
sharpening, pattern recognition, High Dynamic Range 
(HDR) imaging, edge detection, stylization, abstraction, 
matrix completion, image restoration, and more [2]. Image 
smoothing has been an active research topic for many 
years due to its importance in image processing, computer 
graphics, and computer vision. Its main goal is attenuating 
high-frequency components and textural information and 
maintaining the significant edges and structural information 
[3]. Because of its importance, dissimilar approaches 
have been developed in recent years. In 2016, a random 
walks-based algorithm was presented [4] which initiates 
by getting the selected image and the related parameters. 
Next, the weights for the image edges are determined using 
a Gaussian weighting approach. After that, the weighted 
adjacency array of the input image is constructed along 
with the diagonal array containing the degree of every 
used node. A particular minimization function is applied 
to smooth and generate the output image using this 
predetermined datum. 

In 2017, a truncated total variation algorithm was 
introduced [5], starting by receiving the input image and 
the needed parameters. Next, the iteration begins, and 
the image is updated using the Euler-Lagrange approach 
followed by applying a unique minimizer to shrink the 
unwanted energies. After that, the image is modified using 
fixed solvers and total variation. This process is repeated 
until the iterations are finished and the output image is 
produced. In 2018, a sparse high-frequency gradient-based 
algorithm was created [6], wherein it initially decomposes 
the input image into high-frequency and constant 
components, in that the high-frequency is the non-smooth 
information and the constant is the smooth information. 
Next, the non-smooth information is eliminated if it has 
gradients with high frequency, and the other information 
is smoothed and combined with the sparse constraint to 
generate the resulting image. 

In 2019, a 4th-order partial differential-based algorithm 
was proposed [7], starting by getting the input image and 
the required parameters related to the Gaussian kernel, 

fidelity, contrast, number of iterations, and the time step. 
A preprocessing phase begins by computing the diffusion 
tensor for every pixel, calculating the intensity change 
for each pixel, and updating the image accordingly. Next, 
the preprocessed image is fed to another iterative process 
which begins by computing the boundary conditions for 
each pixel, calculating two unique functions, and updating 
the image accordingly. The final image from the aforesaid 
iterative process is the resulting image. In 2020, a two-stage 
smoothing algorithm that depends on patch decomposition 
and histogram equalization was delivered [8], aiming 
to decrease the gradients of the textural details while 
increasing the gradient of significant structural edge details. 
The algorithm starts by dividing the input image into 
different patches, where the edge and textural information 
are concerted using a specialized segmentation process. 
The histogram equalization procedure is then applied to 
edge patches to improve the gradient of edges. Next, an L0 
gradient minimization approach is implemented to smooth 
each patch, and then an inverse equalization process is 
applied to ensure the edge boundary continuity. Finally, 
the overall image is filtered by an L0 gradient minimization 
approach to attenuate the remaining textures and create the 
outcome. 

In 2021, a multi-scale selective texture attenuation 
bested algorithm was developed [9], as it initially generates 
three scales of the image and applies Breadth-First Search 
(BFS) to purify the edges of the mid-scale. In addition, a 
mask that signifies non-texture and texture areas is extracted 
using BFS and an intuitive texture locator. This mask is 
then utilized to preserve structural information on the low 
scale and performs complete texture smoothing on the high 
scale. The output image is created by blending the outcomes 
of the masking operations. In 2022, a decomposition with 
a total variation-based algorithm was introduced [10], as 
it begins by increasing the difference between textural 
and structural details by applying a specialized filtering 
procedure. Next, the image is decomposed in the frequency 
domain with a limited multidirectional gradient, and the 
smooth elements are extracted. After that, the relative total 
variation approach is implemented on the smooth elements 
depending on the structural differences to attenuate the 
textural information while keeping the structural details. 
By iteratively performing these operations at different 
scales, the image is smoothed, and the resulting image 
is returned when the iterations end. In 2023, a weighted 
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sparse gradient-based algorithm was proposed [11], starting 
by suppressing gradients with low amplitude via an edge-
aware mapping process. Next, the filtered gradients are 
sent to a weighted L1 gradient remodeling phase to impose 
sparsity on the resulting gradients and enable the edge-aware 
feature. The resulting image is generated using a blend of 
Fourier optimization and augmented Lagrange multipliers. 

The methods reviewed show that different processing 
concepts were used, but most are of high complexity and 
involve numerous computations. Still, the chance remains 
to introduce an algorithm that can smooth an image while 
preserving its main structure without using colossal 
computations. Thus, a Directional Variances (DV) based 
algorithm is developed to perform proper image smoothing 
while keeping structural details. The proposed algorithm 
iteratively smooths the image using DV, diffusion, 
regularization, and energy minimization. It has been tested 
by applying it on various images, checking the smoothing 
correctness visually and via the help of gradient maps and 
image evaluation methods through different iterations. 
The results obtained are promising, and an innovative 
processing concept for image smoothing has proved valid.

Proposed Algorithm

Digital images consist of two parts: color variations 
and structural details. The structural details are represented 
as edges in between the smooth variations. The color 
variations are termed Low-Frequency (LF) components, 
whereas the structural details are termed High-Frequency 
(HF) components. The LF components establish the base 
of the image, while the HF components are added to the 
image, providing the image details [12]. Hence, the HF 
components are more significant as they provide visible 
details to the image. The proposed algorithm is developed 
based on this notion by utilizing the DV concept to detect 
the overall HF information of the image so that such 
information is reduced to get the smoothed image that 
maintains the original structure of the input image. 

The DV is a concept that has a tremendous ability to 
detect HF components in that it has different forms and 
methodologies to do so. The idea of the DV concept is to 
calculate differences between neighboring pixels in various 
directions to get the variance information which is deemed 
the HF components, then attenuate such components and 
create a simplified image representation. The Chan-Vese 
(CV ) detectors (χ1, χ2, χ3, and χ4), which were initially 
designed for image segmentation, can provide reasonable 
performance in detecting the HF information by capturing 
the intensity differences and gradients. These detectors 
measure th e differences in intensity and gradient magnitude 
in different directions, and they are expressed in [13] as:

	 χ1 = 
1

ε2 + (ui+1,j – ui,j)2 + ω(ui,j+1 – ui,j–1)2k k k k
,	 (1)

	 χ2 = 
1

ε2 + (ui,j – ui–1,j)2 + ω(ui–1,j+1 – ui–1,j–1)2k k k k
,	 (2)

	 χ3 = 
1

ε2 + ω(ui+1,j – ui–1,j)2 + (ui,j+1 – ui,j)2k k k k
,	 (3)

	 χ4 = 
1

ε2 + ω(ui+1,j–1 – ui–1,j–1)2 + (ui,j – ui,j–1)2k k k k
,	 (4)

where ui,j
k  is the processed image at every iteration k; ω is a 

unique weight that is used to tune the detectors, in that it is 
set by default to ω = 0.25; ε = 10–5 small constant used to 
avoid division by zero; i, j are image coordinates; fi,j is the 
inputted image, in that ui,j

k  = fi,j is set at the first iteration; 
ui,j

k  is the image in the original position; ui+1,j
k  shifted up; 

ui–1,j
k  shifted down; ui,j+1

k  shifted right; ui,j–1
k  shifted left; 

ui–1,j+1
k  shifted down right; ui–1,j–1

k  shifted down left, and 
ui+1,j–1

k  shifted up left. These four CV detectors utilize 
the DV concept, wherein each CV detector is sensitive to 
intensity differences in a particular direction. Accordingly, 
χ3 in Eq. (3) and χ4 in Eq. (4) capture differences in the 
horizontal direction, while χ1 in Eq. (1) and χ2 in Eq. (2) 
capture differences in the vertical direction. Next, the 
output of the four CV detectors is refined by providing 
HF information reduction while preserving the edges 
using a Non-Linear Di ffusion (NLD) procedure. The 
NLD helps maintain structural information, which is 
paramount, wherein regions with vital details undergo less 
smoothing, while areas with fewer details are more strongly 
smoothed. Those described above can be accomplished 
through exponential weighting that modulates the diffusion 
procedure. The standard NLD function can be expressed 
as in [14]:

	 D(| I|) = exp�– 
I

α
�,	 (5)

where in Eq. (5)  represents the gradient operator, α 
represents a diffusion parameter, and I represents the 
filtered image. This function is applied to the four CV 
detectors to refine their output, as discussed earlier, as 
defined below:

	 χ1 = χ1exp�– 
α

|ui,j – ui+1,j|k k
�, 	 (6)

	 χ2 = χ2exp�– 
α

|ui,j – ui–1,j|k k
�, 	 (7)

	 χ3 = χ3exp�– 
α

|ui,j – ui,j+1|k k
�, 	 (8)

	 χ4 = χ4exp�– 
α

|ui,j – ui,j–1|k k
�, 	 (9)

where in Eq. (6) to Eq. (9), α controls the strength of the 
diffusion (i.e., smoothness level), given that a higher value 
leads to more pronounced smoothness, a smaller value 
makes the diffusion procedure more sensitive to intensity 
variations. This scenario helps preserve fine details and 
edges since diffusion less influences adjacent pixels. Thus, 
using a lower α is preferable since, in this work, its value is 
set to (α = 0.5). Next, the overall variance (χΛ) is computed, 
which represents all the HF information of the image is 
determined as each of the four detectors has a definite 
role in acquiring the variations. By computing χΛ, the 
influence of all four detectors is combined, allowing for 
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a balanced process between regularization and smoothing. 
The variance χΛ is calculated as follows [13]:

	 χΛ = χ1 + χ2 + χ3 + χ4. 	 (10)

After that, the projection (pi,j
k ) is computed to guide 

the diffusion of pixel intensities during each iteration. 
Accordingly, in regions with significant intensity 
differences between the central pixel and its adjacent pixels, 
the component pi,j

k  has significance, aiding in adjusting the 
value of the central pixel with the aid of the non-linearly 
diffused detectors. Those mentioned above can be done by 
using the following equation [15]:

	 pi,j
k  = (χ1ui+1,j

k ) + (χ2ui–1,j
k ) + (χ3ui,j+1

k ) + (χ4ui,j–1
k ). 	(11)

Computing pi,j
k  ensures that the smoothed areas 

retain similarity to the original structure which is an 
essential aspect of image smoothing. This is achieved by 
incorporating information from nearby pixels, including 
gradient and intensity information, allowing the local image 
structure to be considered when determining how pixel 
intensities should be modified. Next, a proper shrinking 
method must reduce the HF information while preserving 
essential details. The discrete forward update step of the 
CV segmentation method mentioned in [13] utilizes several 
aspects to refine the segmentation process. The update step 
is mathematically expressed as follows:

	 ui,j
k+1 = 	 (12)

	 =
1 + ∆tδ(uk)λ(χ1 + χ2 + χ3 + χ4)

ui,j + g(uk) + λδ(uk)[χ1ui+1,j + χ2ui–1,j + χ3ui,j+1 + χ4ui,j–1]k k k k k

,

where (ui,j
k+1) is the output of each iteration; g(uk) and 

δ(uk) are parameters related to CV segmentation; Δt 
is responsible for the stability of segmentation, and 
parameter λ is accountable for the curve smoothness. 
Eq. (12) is used in image segmentation and needs to be 
modified to be more suitable for image smoothing. The part  
[χ1ui+1,j

k  + χ2ui–1,j
k  + χ3ui,j+1

k  + χ4ui,j–1
k ] of Eq. (12) is 

like the projection mentioned in Eq. (11), and this part  
(χ1 + χ2 + χ3 + χ4) of Eq. (12) is like Eq. (10) above. Thus, 
the components related to the segmentation are deleted, 
and Eq. (12) is remodeled to refine the image effectively 
and shrink the HF energy. With the refinement, a Laplacian 
regularization is applied to promote smoothness while 
reducing the built-up blur and preserving structural 
details. Moreover, it aims to prevent edges from being 
distorted when shrinking HF information. Edges are abrupt 
changes in intensity, and the Laplacian term is sensitive to 
these changes, helping to maintain them. The Laplacian 
regularization is the discrete Laplacian differential operator 
[16] that can be described using the following equation:

	 Li,j
k  = �

4
(ui+1,j + ui–1,j + ui,j+1 + ui,j–1)k k k k

� – ui,j
k  .	 (13)

The shrinking function is mainly utilized to determine 
how to update the pixel intensities for every iteration to 
achieve the desired level of smoothness. The remodeled 

shrinking function can now be described using the 
following formula:

	 ui,j
k+1 = 

1 + (λχΛ)
ui,j + (λpi,j) – (λLi,j)k k k

, 	 (14)

where λ is a smoothness factor that satisfies (λ = 0.1), Eq. 
(14) balances the influence of non-linear diffused detectors 
χ1, χ2, χ3, χ4 with the Laplacian regularization term by 
ensuring both data fidelity (as captured by the non-linear 
diffused detectors) and structural coherence (as facilitated 
by Laplacian regularization) are considered during the 
smoothing (update) process. Likewise, Eq. (14) enables 
adaptive smoothing by adapting to the local context. 
Accordingly, it allows for more controlled updates to 
preserve features for regions with high-intensity variations 
such as edges. In contrast, it will enable substantial updates 
for regions with low-intensity variations, helping to reduce 
unwanted variations and enabling better smoothness. 

Moreover, updating intensities based on a balance 
between the data-driven term (diffused detectors) and 
regularization term (Laplacian regularization) allows for 
preserving the coherence and consistency of the image 
shape. The algorithm iteratively updates the image by 
considering the local image properties. The loop stays 
for a given number of iterations, and after all iterations 
end, the smoothed image (ui,j

k+1) is returned. The final step 
involves the application of the standard median filter [17] 
to eliminate some speckle-like artifacts and deliver the final 
output image. 

To methodically explain how the developed algorithm 
works, it starts by getting image fi,j as input, and the number 
of iterations, which signifies a user-defined parameter 
controlling the smoothing amount, where a higher value 
results in more robust smoothing. Next, it sets the values 
of α, ω, λ, ε, and (ui,j

k  = fi,j). The algorithm core lies in 
the iterative loop that starts by computing the four CV 
detectors via Eqs (1)–(4). Next, the non-linear diffused 
CV detectors are calculated via Eqs (6)–(9), along with 
the overall variance using Eq. (10). Afterwards, the 
projection is determined using Eq. (11), the Laplacian 
regularization term is calculated via Eq. (13) followed by 
the implementation of the shrinking function via Eq. (14). 
These computations are repeated, the loop continues until 
all iterations are completed, wherein the standard median 
filter is applied once on the resulted image (ui,j

k+1) as a last 
step to generate the output image. Lastly, the structural 
outline of the developed algorithm is given in Fig. 1.

Results and Discussion

This section is dedicated to the dataset, evaluation 
methods, experimental results, and the needed analysis. The 
dataset used in this study is Microsoft Common Objects 
in Context (COCO) [18]. The COCO dataset is intended 
for object detection, containing more than 330k images 
of various scenes with different sizes, wherein more than 
three hundred images from this dataset were used in this 
study. Visual and objective assessment methods were used 
in addition to CPU runtimes for quality evaluation. All 
developments and experiments were conducted using a 
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laptop with an AMD Ryzen 7 Pro 4750U 1.70 GHz CPU 
and 32.0 GB of RAM. As for visual assessment, the 
gradient maps of the output images with a jet color scheme 
are utilized to better represent structural information and the 
variations by assigning colors to different values [8]. This 
can be helpful in visually highlighting the various levels of 
structural information and variations in an image. The jet 
color scheme has been utilized in scientific visualization 
for a long time and has become standard. For objective 
evaluation, the Average Local Binary Pattern (ALBP) [19] 
and Mean Gradient Magnitude (MGM) [20] measures have 

been used to evaluate the textural and HF information of 
the algorithm across different iterations. ALBP is used to 
measure textural details as it could provide insights into the 
impact of smoothing on texture, in that the more texture the 
algorithm attenuates, the more smoothness occurs.

MGM evaluates the HF information, indicating the 
gradient strength over the entire image. When an image 
is smoothed, the gradient magnitude is indirectly affected, 
resulting in a reduction in gradient magnitude. ALBP and 
MGM are no-reference assessment methods, wherein a 
lower value indicates less texture and HF information 

Fig. 1. Structural outline of the introduced DV-based algorithm

Fig. 2. Experimental results with gradient maps. Original images (a, c, e); gradient maps of the original images (b, d, f); smoothed 
images using different iteration values (70, 50, 60) (g, i, k); gradient maps of the smoothed images (h, j, l)
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appearance in the smoothed images. As for CPU runtime, 
it is used to show the computational complexity of the 
proposed algorithm [21]. The results of the experiments 
can be seen in Fig. 2 to Fig. 6 and the given Table. As 
seen in Fig. 2, different images with dissimilar textures 
have been smoothed by the DV algorithm, where the HF 
components of the images were significantly reduced, and 
the output images contain the vital structural components 
as demonstrated by the before and after gradients maps 
of each considered image. The gradient maps highlighted 
the structural information of the smoothed images clearly, 
helping to identify and describe their essential patterns, 
wherein their discriminative features clearly show the 
success of the algorithm in reducing the HF information 
while retaining the critical image details as the bright areas 
represent regions with high variations, while darker areas 
correspond to smoothed regions. 

Fig. 3 and Fig. 4 show the results of smoothing different 
images using the developed algorithm. As observed, the 
proposed algorithm is successful in smoothing images with 
various textures and details, attenuating the HF information 

and retaining their fundamental structures. To further 
investigate the performance of the developed DV-based 
algorithm, an experiment that includes smoothing an image 
with different iterations and providing the corresponding 
gradient map for each output is delivered to comprehend 
various behavioral issues regarding the required time, 
the amount of texture and HF information attenuation 
when increasing the iterations. Fig. 5 demonstrates the 
experiment outcome with the related gradient maps. The 
Table provides the assessment readings and runtimes 
through different iterations. Fig. 6 shows a graphical 
representation of iterations vs quality evaluation readings.

From the experiments conducted, it can be observed 
that the runtimes increase almost linearly when the iteration 
number increases. Moreover, the readings of the ALBP 
indicate that the developed algorithm can attenuate the 
texture even after more iterations are utilized, and the 
decrease in textural information is somewhat straight. 
As for MGM, the readings indicate that the ability of the 
developed algorithm to reduce HF information is strongly 
present. The significant processing happens in the first 150 

Fig. 3. Experimental results of smoothing different images (Batch 1). Original images (a–f); the smoothing results using different 
iteration values (50, 80, 60, 70, 50, 80), respectively (g–l)

Fig. 4. Experimental results of smoothing different images (Batch 2). Original images (a–f); the smoothing results using different 
iteration values (35, 60, 30, 30, 40, 50), respectively (g–l)
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iterations and begins to decrease after that due to structural 
preservation supported by the algorithm.

As seen in the gradient maps in Fig. 5, g–l, and 
Fig. 5, s–x, the effect of attenuating textural and HF 
information can be seen. The processing ability of the 
developed algorithm is evident in that the structural, 
textural, and HF information are mixed in the gradient 
map in Fig. 5, g. Throughout the iterations, the primary 
structural details began to be distinguished as textural, and 
HF information was attenuated. The last gradient map in 
Fig. 5, x shows only the primary structural details of the 
image, indicating that the proposed algorithm is successful 
in its smoothing task.

Conclusion

This paper presents a Directional Variances (DV) based 
algorithm for image smoothing that iteratively refines the 
image via the DV concept, diffusion, regularization, and 
energy minimization. The DV is used to capture the High-
Frequency (HF) information, the diffusion is applied to 
facilitate the smoothing process, the regularization reduces 
the built-up blur, and the energy minimization utilizes 
those as mentioned earlier to reduce the HF and textural 
information. The iterative feature allows for continuous 
refinement until the anticipated level of smoothness is 
attained. The developed algorithm has been tested with 

Table. Quality evaluation and runtimes via iterations

Iterations ALBP MGM Runtimes, s

25 0.0976 0.058585 2.159024
50 0.0950 0.047315 4.066738
75 0.0910 0.041448 5.986797
100 0.0869 0.037540 7.933668
125 0.0825 0.034665 9.804604
150 0.0780 0.032452 11.739654
175 0.0738 0.030690 13.633869
200 0.0699 0.029532 15.600377
225 0.0664 0.028549 17.460385
250 0.0634 0.027893 19.526623
275 0.0609 0.027189 21.328536

Fig. 5. Showing the proposed algorithm smoothing abilities with the gradient maps via different numbers of iterations. Original 
image (a); images (b–f) and (m–r) are smoothed images starting at 25 iterations and ending at 275 iterations with an increase of 25; 

the gradient maps (g–l) of images (a–f); the gradient maps (s–x) of images (m–r)

Fig. 6. Readings of the quality evaluation methods through 
different iterations
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different images checked using various numbers of 
iterations with gradient maps and two assessment methods. 
The results showed promising abilities as the DV algorithm 
enabled adequate textural and HF information attenuation 
through a computationally efficient algorithm, in that 
the output images showed efficiency in reducing the 

irregularities in images. This is uneasy as many existing 
image-smoothing algorithms have high computational 
costs. Finally, the future directions regarding this study 
can be the autonomous determination of required iterations 
so that it becomes a self-regulating algorithm.
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