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Abstract

Image smoothing is vital in image processing as it attenuates the texture and unnecessary high-frequency components
and provides a smooth image with a preserved structure to facilitate subsequent operations or analysis. Smoothed
images are required in many image processing applications, such as details boost, sharpening, High Dynamic Range
imaging, edge detection, stylization, abstraction, etc. Still, not all existing smoothing methods are successful in this
task, as some undesirable problems may be introduced, such as removing significant details, introducing excessive
blurring, processing flaws, halos, and other artifacts. Thus, the opportunity still stands to provide a new algorithm that
smooths an image efficiently. This study concisely explores smoothing via the Directional Variances (DV) concept.
The proposed algorithm leverages the DV concept to minimize energy, seeking a balance between essential structural
preservation and smoothness. The proposed algorithm iteratively smooths the image using DV, diffusion, regularization,
and energy minimization. A thorough evaluation is conducted on diverse images, showcasing the effectiveness of the
developed algorithm. The results demonstrate that the developed DV-based algorithm has superb abilities in smoothing
different images while preserving structural details, making it a valuable tool for various applications in digital image
processing.
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AHHOTANMSA

TexHonorHs Crila)XMBaHUSI U300paKEHUH NMpUMEHseTcs Tpu 00paboTke n3o0paxkeHni. Mcnonap3oBanne naHHON
TEXHOJIOTUH OCJIA0NISAET TeKCTYPY M HEHY)KHbIE BHICOKOUACTOTHBIE KOMIIOHEHTBI, 00ECIIeUMBAET MOTyYSHUE IJ1aJKOTO
M300paXKeHHsI C COXPAHEHHOM CTPYKTYPOii [Uisi 00JIerdeHns MOCIeIyIOMNX ONepaluii KOPPEKTUPOBKH MM aHAIH3a.
IMonyueHue CriuaxeHHbIX U300paXkeHHH TpeOyeTcss BO MHOTUX MPUIOKEHUsAX npu obpaborke, Hampumep, High
Dynamic Range n3o0paskeHnii, mpy yCUJICHHN ETaleH, OBBIIICHUH PE3KOCTH, OOHAPYKEHUN KpaeB, CTHIM3AINH,
abctpakuuu u T. A. [Ipu 3TOM, HE BCe CyIIECTBYIOIINE METOAbI CTIIaKMBAHNS N300pa’keHUH YCIICITHO CIPABISIOTCS
C TOCTaBICHHOHN 3ajadeil. B pesynaprare MOTyT BOSHHUKHYTH HeXeJaTelIbHBIE MPOOIEMBI, TAKHEe KaK yHajJeHHe
CYIIECTBEHHBIX JeTayel, BBEJeHHE Ype3MEPHOT0 pa3MbITHs, Ae(eKTsl 00paboTKH, OPEOIbl U Apyrue apTedaKThl.
B pabote mpezcraBieH HOBBIH alropuT™, KOTOPBIH d((QEKTHBHO CIIaKHBaeT n300pakeHue. AJIITOPUTM OCHOBAaH Ha
KOHIIEMIMHK HarpaBlieHHbIX qucnepceuii (Directional Variances, DV) 1yist MUHEMH3a1[My SHEPT UM ¥ TIOJyYeHHUs OanaHca

© Zohair Al-Ameen, 2025

78 Hay4HO-TexHM4Yeckunii BECTHUK MHPOPMALMOHHBLIX TEXHONOMMIA, MeXaHMKN 1 onTukn, 2025, Tom 25, N2 1
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 1


http://ntv.ifmo.ru/
http://ntv.ifmo.ru/en/
mailto:qizohair@uomosul.edu.iq
https://orcid.org/0000-0003-3630-2134
mailto:qizohair@uomosul.edu.iq
https://orcid.org/0000-0003-3630-2134

Zohair Al-Ameen

MEXK1y COXPAaHEHHEM CTPYKTYpPbI U aKoCThi0. C IOMOIIBI0 KOHIeNHKH DV npeacTaBneH bl alropuT™ HTEpaTHBHO
criaknBaeT u3odpaxenue, 1udGdy3un, oCymecTBIsIeT PErysipru3aniio 1 MUHIMH3AINIO SHeprui. BeinomHeHHast
OLICHKA TIOJYYCHHBIX PE3yJIbTATOB Ha Pa3THIHBIX H300paKEHHX MOKa3ana 3G(peKTHBHOCTh pa3paboTAHHOTO AITOPUTMA.
Anroput™ Ha ocHOBe DV 00agaet mpeBOCXOIHBIMEI BOSMOKHOCTSMH CIIIaXKHBAHUST H300PaKEHUI, COXPAHSS [IPH 3TOM
CTPYKTYPHBIE IETAIH, YTO JeTAeT ero IEeHHBIM HHCTPYMEHTOM JUTSI TIPHIIOKEHHUH, IPUMEHIEMBIX B 0071acTH [H(pPOBOIT

00paboTKH N300paKEHHH.

KiioueBble c10Ba

merox Yan-Bese, perymsapuzanus, criiaxuBanue H300paxeHui, auddysus, HarpaBIeHHAs TUCIEPCUS

Baaronapuoctu

ABTOp OaromapeH COTpyIHHKAaM KOMIbIOTepHOro nentpa [Ipesunentcrsa YauBepcutera Mocyna 3a IOMOIIb B

3aBCPUICHUHN UCCIECNO0BAHUA.

Ccplaka uist TUTHPOBaHHs: 30Xxaup Anb-AMUH. AJITOPUTM CIIIQXKUBaHHS H(POBEIX N300pa’keHUH HAa OCHOBE
JIMCIIepCHU HanpaBieHunii / Hayuno-TexHnueckuii BeCTHUK HH()OPMALIMOHHBIX TEXHOJIOT U, MEXaHUKH U ONTHKH. 2025.
T. 25, Ne 1. C. 78-86 (na anru. 513.). doi: 10.17586/2226-1494-2025-25-1-78-86

Introduction

Various real-life imaging applications demand the
attenuation of insignificant information while maintaining
significant structural details of an image, called image
smoothing [1]. Smoothed images are required in many
image processing applications, such as details boost,
sharpening, pattern recognition, High Dynamic Range
(HDR) imaging, edge detection, stylization, abstraction,
matrix completion, image restoration, and more [2]. Image
smoothing has been an active research topic for many
years due to its importance in image processing, computer
graphics, and computer vision. Its main goal is attenuating
high-frequency components and textural information and
maintaining the significant edges and structural information
[3]. Because of its importance, dissimilar approaches
have been developed in recent years. In 2016, a random
walks-based algorithm was presented [4] which initiates
by getting the selected image and the related parameters.
Next, the weights for the image edges are determined using
a Gaussian weighting approach. After that, the weighted
adjacency array of the input image is constructed along
with the diagonal array containing the degree of every
used node. A particular minimization function is applied
to smooth and generate the output image using this
predetermined datum.

In 2017, a truncated total variation algorithm was
introduced [5], starting by receiving the input image and
the needed parameters. Next, the iteration begins, and
the image is updated using the Euler-Lagrange approach
followed by applying a unique minimizer to shrink the
unwanted energies. After that, the image is modified using
fixed solvers and total variation. This process is repeated
until the iterations are finished and the output image is
produced. In 2018, a sparse high-frequency gradient-based
algorithm was created [6], wherein it initially decomposes
the input image into high-frequency and constant
components, in that the high-frequency is the non-smooth
information and the constant is the smooth information.
Next, the non-smooth information is eliminated if it has
gradients with high frequency, and the other information
is smoothed and combined with the sparse constraint to
generate the resulting image.

In 2019, a 4th-order partial differential-based algorithm
was proposed [7], starting by getting the input image and
the required parameters related to the Gaussian kernel,

fidelity, contrast, number of iterations, and the time step.
A preprocessing phase begins by computing the diffusion
tensor for every pixel, calculating the intensity change
for each pixel, and updating the image accordingly. Next,
the preprocessed image is fed to another iterative process
which begins by computing the boundary conditions for
each pixel, calculating two unique functions, and updating
the image accordingly. The final image from the aforesaid
iterative process is the resulting image. In 2020, a two-stage
smoothing algorithm that depends on patch decomposition
and histogram equalization was delivered [8], aiming
to decrease the gradients of the textural details while
increasing the gradient of significant structural edge details.
The algorithm starts by dividing the input image into
different patches, where the edge and textural information
are concerted using a specialized segmentation process.
The histogram equalization procedure is then applied to
edge patches to improve the gradient of edges. Next, an L
gradient minimization approach is implemented to smooth
each patch, and then an inverse equalization process is
applied to ensure the edge boundary continuity. Finally,
the overall image is filtered by an L, gradient minimization
approach to attenuate the remaining textures and create the
outcome.

In 2021, a multi-scale selective texture attenuation
bested algorithm was developed [9], as it initially generates
three scales of the image and applies Breadth-First Search
(BFS) to purify the edges of the mid-scale. In addition, a
mask that signifies non-texture and texture areas is extracted
using BFS and an intuitive texture locator. This mask is
then utilized to preserve structural information on the low
scale and performs complete texture smoothing on the high
scale. The output image is created by blending the outcomes
of the masking operations. In 2022, a decomposition with
a total variation-based algorithm was introduced [10], as
it begins by increasing the difference between textural
and structural details by applying a specialized filtering
procedure. Next, the image is decomposed in the frequency
domain with a limited multidirectional gradient, and the
smooth elements are extracted. After that, the relative total
variation approach is implemented on the smooth elements
depending on the structural differences to attenuate the
textural information while keeping the structural details.
By iteratively performing these operations at different
scales, the image is smoothed, and the resulting image
is returned when the iterations end. In 2023, a weighted
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sparse gradient-based algorithm was proposed [11], starting
by suppressing gradients with low amplitude via an edge-
aware mapping process. Next, the filtered gradients are
sent to a weighted L, gradient remodeling phase to impose
sparsity on the resulting gradients and enable the edge-aware
feature. The resulting image is generated using a blend of
Fourier optimization and augmented Lagrange multipliers.

The methods reviewed show that different processing
concepts were used, but most are of high complexity and
involve numerous computations. Still, the chance remains
to introduce an algorithm that can smooth an image while
preserving its main structure without using colossal
computations. Thus, a Directional Variances (DV) based
algorithm is developed to perform proper image smoothing
while keeping structural details. The proposed algorithm
iteratively smooths the image using DV, diffusion,
regularization, and energy minimization. It has been tested
by applying it on various images, checking the smoothing
correctness visually and via the help of gradient maps and
image evaluation methods through different iterations.
The results obtained are promising, and an innovative
processing concept for image smoothing has proved valid.

Proposed Algorithm

Digital images consist of two parts: color variations
and structural details. The structural details are represented
as edges in between the smooth variations. The color
variations are termed Low-Frequency (LF) components,
whereas the structural details are termed High-Frequency
(HF) components. The LF components establish the base
of the image, while the HF components are added to the
image, providing the image details [12]. Hence, the HF
components are more significant as they provide visible
details to the image. The proposed algorithm is developed
based on this notion by utilizing the DV concept to detect
the overall HF information of the image so that such
information is reduced to get the smoothed image that
maintains the original structure of the input image.

The DV is a concept that has a tremendous ability to
detect HF components in that it has different forms and
methodologies to do so. The idea of the DV concept is to
calculate differences between neighboring pixels in various
directions to get the variance information which is deemed
the HF components, then attenuate such components and
create a simplified image representation. The Chan-Vese
(CV) detectors (1, X2- X3- and x4), which were initially
designed for image segmentation, can provide reasonable
performance in detecting the HF information by capturing
the intensity differences and gradients. These detectors
measure the differences in intensity and gradient magnitude
in different directions, and they are expressed in [13] as:
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where uk ; is the processed image at every iteration k; o is a
unique welght that is used to tune the detectors, in that it is
set by default to @ = 0.25; € = 10-5 small constant used to
avoid division by zero; i ] are image coordinates; f; ; is the
1nputted image, in that u = fi; 1s set at the first iteration;
;é’ is the image in the or1g1na1 position; ”z+l j shifted up;
, 1,; shifted down; ul el sh1fted right; u .1 shifted left;
uk | j+1 shifted down right; uk | -l shlfted down left, and
zﬁl,;—l shifted up left. These four CV detectors utilize
the DV concept, wherein each CV detector is sensitive to
intensity differences in a particular direction. Accordingly,
13 in Eq. (3) and yy in Eq. (4) capture differences in the
horizontal direction, while y; in Eq. (1) and y, in Eq. (2)
capture differences in the vertical direction. Next, the
output of the four CV detectors is refined by providing
HF information reduction while preserving the edges
using a Non-Linear Diffusion (NLD) procedure. The
NLD helps maintain structural information, which is
paramount, wherein regions with vital details undergo less
smoothing, while areas with fewer details are more strongly
smoothed. Those described above can be accomplished
through exponential weighting that modulates the diffusion
procedure. The standard NLD function can be expressed
asin [14]:

\Y%
DVI) = exp( VI ) )

o

where in Eq. (5) V represents the gradient operator, o
represents a diffusion parameter, and / represents the
filtered image. This function is applied to the four CV
detectors to refine their output, as discussed earlier, as
defined below:

X1 = X1exp<— @)’ ©

X2 = X26Xp< @) (7

X = X3exp<— @)’ ®

XA_WP<_—_I> ©)
a

where in Eq. (6) to Eq. (9), a controls the strength of the
diffusion (i.e., smoothness level), given that a higher value
leads to more pronounced smoothness, a smaller value
makes the diffusion procedure more sensitive to intensity
variations. This scenario helps preserve fine details and
edges since diffusion less influences adjacent pixels. Thus,
using a lower o is preferable since, in this work, its value is
set to (o = 0.5). Next, the overall variance () is computed,
which represents all the HF information of the image is
determined as each of the four detectors has a definite
role in acquiring the variations. By computing yx,, the
influence of all four detectors is combined, allowing for
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a balanced process between regularization and smoothing.
The variance ), is calculated as follows [13]:

A=K T X T T e (10)

After that, the projection (p{‘J) is computed to guide
the diffusion of pixel intensities during each iteration.
Accordingly, in regions with significant intensity
differences between the central pixel and its adjacent pixels,
the component p{f,- has significance, aiding in adjusting the
value of the central pixel with the aid of the non-linearly
diffused detectors. Those mentioned above can be done by
using the following equation [15]:

pEi= Quuka )+ Gauby ) + Qaulie) + Gl ). (11)

Computing plkJ ensures that the smoothed areas
retain similarity to the original structure which is an
essential aspect of image smoothing. This is achieved by
incorporating information from nearby pixels, including
gradient and intensity information, allowing the local image
structure to be considered when determining how pixel
intensities should be modified. Next, a proper shrinking
method must reduce the HF information while preserving
essential details. The discrete forward update step of the
CV segmentation method mentioned in [13] utilizes several
aspects to refine the segmentation process. The update step
is mathematically expressed as follows:

ukt! = (12)
uly+ g + MW u + opuly+ xsulia + oxaulia]
L+ AU + 2+ %3 + 1)

>

where (uf/!) is the output of each iteration; g(u¥) and

d(uk) are parameters related to CV segmentation; At
is responsible for the stability of segmentation, and
parameter A is accountable for the curve smoothness.
Eq. (12) is used in image segmentation and needs to be
modified to be more suitable for image smoothing. The part
[y + xoubfyy + Xauf + xaufiy] of Eq. (12) is
like the projection mentioned in Eq. (11), and this part
(0 + %2 T 13 + 1) of Eq. (12) is like Eq. (10) above. Thus,
the components related to the segmentation are deleted,
and Eq. (12) is remodeled to refine the image effectively
and shrink the HF energy. With the refinement, a Laplacian
regularization is applied to promote smoothness while
reducing the built-up blur and preserving structural
details. Moreover, it aims to prevent edges from being
distorted when shrinking HF information. Edges are abrupt
changes in intensity, and the Laplacian term is sensitive to
these changes, helping to maintain them. The Laplacian
regularization is the discrete Laplacian differential operator
[16] that can be described using the following equation:

)= (( byt >> . (3)

4 "

The shrinking function is mainly utilized to determine
how to update the pixel intensities for every iteration to
achieve the desired level of smoothness. The remodeled

shrinking function can now be described using the
following formula:

g1 = M+ 00— Oy (14)
N L+ 0

where A is a smoothness factor that satisfies (A = 0.1), Eq.
(14) balances the influence of non-linear diffused detectors
X1> %2> X3» X4 With the Laplacian regularization term by
ensuring both data fidelity (as captured by the non-linear
diffused detectors) and structural coherence (as facilitated
by Laplacian regularization) are considered during the
smoothing (update) process. Likewise, Eq. (14) enables
adaptive smoothing by adapting to the local context.
Accordingly, it allows for more controlled updates to
preserve features for regions with high-intensity variations
such as edges. In contrast, it will enable substantial updates
for regions with low-intensity variations, helping to reduce
unwanted variations and enabling better smoothness.

Moreover, updating intensities based on a balance
between the data-driven term (diffused detectors) and
regularization term (Laplacian regularization) allows for
preserving the coherence and consistency of the image
shape. The algorithm iteratively updates the image by
considering the local image properties. The loop stays
for a given number of iterations, and after all iterations
end, the smoothed image (u{f/ﬂ) is returned. The final step
involves the application of the standard median filter [17]
to eliminate some speckle-like artifacts and deliver the final
output image.

To methodically explain how the developed algorithm
works, it starts by getting image f; ; as input, and the number
of iterations, which signifies a user-defined parameter
controlling the smoothing amount, where a higher value
results in more robust smoothing. Next, it sets the values
of a, o, A, &, and (uf; = f; ). The algorithm core lies in
the iterative loop that starts by computing the four CV
detectors via Eqs (1)—(4). Next, the non-linear diffused
CV detectors are calculated via Eqs (6)—(9), along with
the overall variance using Eq. (10). Afterwards, the
projection is determined using Eq. (11), the Laplacian
regularization term is calculated via Eq. (13) followed by
the implementation of the shrinking function via Eq. (14).
These computations are repeated, the loop continues until
all iterations are completed, wherein the standard median
filter is applied once on the resulted image (uf‘}l) as a last
step to generate the output image. Lastly, the structural
outline of the developed algorithm is given in Fig. 1.

Results and Discussion

This section is dedicated to the dataset, evaluation
methods, experimental results, and the needed analysis. The
dataset used in this study is Microsoft Common Objects
in Context (COCO) [18]. The COCO dataset is intended
for object detection, containing more than 330k images
of various scenes with different sizes, wherein more than
three hundred images from this dataset were used in this
study. Visual and objective assessment methods were used
in addition to CPU runtimes for quality evaluation. All
developments and experiments were conducted using a
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Input: RGB Image,
No. of Iterations

]

Set the values of o, ®, A, €,
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p
w | Compute the four CV detectors via
-

L Egs (1)-(4) )

¢

s N
Calculate the non-linear diffused
CV detectors via Egs (6)—(9) )

3
Compute the overall variance
L with Eq. (10) )
Iteration = Max? ¢
( )
Determine the projection
L with Eq. (11) )
Yes ¢ N
Calculate the Laplacian
L regularization term via Eq. (13) )
{Apply the standard median ﬁlterj ¢
( )
\ Implement the shrinking function
NE L via Eq. (14) )
Output:

End Smoothed Image

J

Fig. 1. Structural outline of the introduced DV-based algorithm

laptop with an AMD Ryzen 7 Pro 4750U 1.70 GHz CPU
and 32.0 GB of RAM. As for visual assessment, the
gradient maps of the output images with a jet color scheme
are utilized to better represent structural information and the
variations by assigning colors to different values [8]. This
can be helpful in visually highlighting the various levels of
structural information and variations in an image. The jet
color scheme has been utilized in scientific visualization
for a long time and has become standard. For objective
evaluation, the Average Local Binary Pattern (ALBP) [19]
and Mean Gradient Magnitude (MGM) [20] measures have

been used to evaluate the textural and HF information of
the algorithm across different iterations. ALBP is used to
measure textural details as it could provide insights into the
impact of smoothing on texture, in that the more texture the
algorithm attenuates, the more smoothness occurs.

MGM evaluates the HF information, indicating the
gradient strength over the entire image. When an image
is smoothed, the gradient magnitude is indirectly affected,
resulting in a reduction in gradient magnitude. ALBP and
MGM are no-reference assessment methods, wherein a
lower value indicates less texture and HF information

d f

Fig. 2. Experimental results with gradient maps. Original images (a, ¢, e); gradient maps of the original images (b, d, f); smoothed
images using different iteration values (70, 50, 60) (g, i, k); gradient maps of the smoothed images (4, j, /)

82

Hay4HO-TexHM4Yeckunii BECTHUK MHPOPMALMOHHBLIX TEXHONOMMIA, MeXaHMKN 1 onTukn, 2025, Tom 25, N2 1
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 1



Zohair Al-Ameen

Fig. 3. Experimental results of smoothing different images (Batch 1). Original images (a—); the smoothing results using different
iteration values (50, 80, 60, 70, 50, 80), respectively (g—/)

appearance in the smoothed images. As for CPU runtime,
it is used to show the computational complexity of the
proposed algorithm [21]. The results of the experiments
can be seen in Fig. 2 to Fig. 6 and the given Table. As
seen in Fig. 2, different images with dissimilar textures
have been smoothed by the DV algorithm, where the HF
components of the images were significantly reduced, and
the output images contain the vital structural components
as demonstrated by the before and after gradients maps
of each considered image. The gradient maps highlighted
the structural information of the smoothed images clearly,
helping to identify and describe their essential patterns,
wherein their discriminative features clearly show the
success of the algorithm in reducing the HF information
while retaining the critical image details as the bright areas
represent regions with high variations, while darker areas
correspond to smoothed regions.

Fig. 3 and Fig. 4 show the results of smoothing different
images using the developed algorithm. As observed, the
proposed algorithm is successful in smoothing images with
various textures and details, attenuating the HF information

and retaining their fundamental structures. To further
investigate the performance of the developed DV-based
algorithm, an experiment that includes smoothing an image
with different iterations and providing the corresponding
gradient map for each output is delivered to comprehend
various behavioral issues regarding the required time,
the amount of texture and HF information attenuation
when increasing the iterations. Fig. 5 demonstrates the
experiment outcome with the related gradient maps. The
Table provides the assessment readings and runtimes
through different iterations. Fig. 6 shows a graphical
representation of iterations vs quality evaluation readings.

From the experiments conducted, it can be observed
that the runtimes increase almost linearly when the iteration
number increases. Moreover, the readings of the ALBP
indicate that the developed algorithm can attenuate the
texture even after more iterations are utilized, and the
decrease in textural information is somewhat straight.
As for MGM, the readings indicate that the ability of the
developed algorithm to reduce HF information is strongly
present. The significant processing happens in the first 150

Fig. 4. Experimental results of smoothing different images (Batch 2). Original images (¢—); the smoothing results using different
iteration values (35, 60, 30, 30, 40, 50), respectively (g—/)
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N t u v w X

Fig. 5. Showing the proposed algorithm smoothing abilities with the gradient maps via different numbers of iterations. Original
image (a); images (b—f) and (m—r) are smoothed images starting at 25 iterations and ending at 275 iterations with an increase of 25;
the gradient maps (g—/) of images (a—f); the gradient maps (s—x) of images (m—r)

Table. Quality evaluation and runtimes via iterations

Iterations ALBP MGM Runtimes, s
25 0.0976 0.058585 2.159024
50 0.0950 0.047315 4.066738
75 0.0910 0.041448 5.986797
100 0.0869 0.037540 7.933668
125 0.0825 0.034665 9.804604
150 0.0780 0.032452 11.739654
175 0.0738 0.030690 13.633869
200 0.0699 0.029532 15.600377
225 0.0664 0.028549 17.460385
250 0.0634 0.027893 19.526623
275 0.0609 0.027189 21.328536

iterations and begins to decrease after that due to structural
preservation supported by the algorithm.

As seen in the gradient maps in Fig. 5, g-/, and
Fig. 5, s—x, the effect of attenuating textural and HF
information can be seen. The processing ability of the
developed algorithm is evident in that the structural,
textural, and HF information are mixed in the gradient
map in Fig. 5, g. Throughout the iterations, the primary
structural details began to be distinguished as textural, and
HF information was attenuated. The last gradient map in
Fig. 5, x shows only the primary structural details of the
image, indicating that the proposed algorithm is successful
in its smoothing task.

0.10 : : : :
—o— ALBP
i —A— MGM | |
0.08 1

o

£0.06 1

§

2 L ]
0.04f 1
0.02 | | . |

0 100 200 300

Iterations

Fig. 6. Readings of the quality evaluation methods through
different iterations

Conclusion

This paper presents a Directional Variances (DV) based
algorithm for image smoothing that iteratively refines the
image via the DV concept, diffusion, regularization, and
energy minimization. The DV is used to capture the High-
Frequency (HF) information, the diffusion is applied to
facilitate the smoothing process, the regularization reduces
the built-up blur, and the energy minimization utilizes
those as mentioned earlier to reduce the HF and textural
information. The iterative feature allows for continuous
refinement until the anticipated level of smoothness is
attained. The developed algorithm has been tested with
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different images checked using various numbers of
iterations with gradient maps and two assessment methods.
The results showed promising abilities as the DV algorithm
enabled adequate textural and HF information attenuation
through a computationally efficient algorithm, in that
the output images showed efficiency in reducing the
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