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Abstract

The paper addresses the problem of adaptive frequencies estimation for multisinusoidal Time-Varying (TV) parameter
of a discrete linear system of the first order. It is assumed that the amplitudes, frequencies, and phases of the harmonics
in the TV parameter are unknown, however the number of harmonics is known. The novelty of the proposed approach
consists in the fact that the frequencies identification is possible even if the system output crosses zero when the
information about the TV parameter is inaccessible. In this case, when the proposed solution is used in a problem
of adaptive control of the system considered, the frequencies identification and the work of TV parameter observer
are independent, what increases the rate and precision of controller parameters tuning. The problem is solved by
transformation of the plant model into a regression model linear with respect to unknown frequencies and used for design
of identification algorithms. In the paper, two identification algorithms are applied. The first one is the standard gradient
algorithm, while the second one is the algorithm with improved parametric convergence achieved by accumulation
of regressor over past period of time and referred to as algorithm with memory regressor extension. The problem of
control is solved with the use of: certainty equivalence principle; internal model principle according to which the TV
parameter is represented as the output of dynamic autonomous model (exosystem) and involving of this model into the
structure of the control law; observer of the exosystem state; one of the proposed frequencies identifier; and a formula
of recalculation of the frequencies estimates into the controller adjustable parameters. A procedure of transformation of
the TV system into a regression linear with respect to unknown frequencies used for design of identification algorithms
is represented. The obtained solution is applied to the problem of indirect (identification-based) adaptive control of the
TV system considered in the paper. The main distinguishing feature of the solution proposed consists in independence
of the obtained identifiers from the observation property of the TV parameter what increases the transient performance
and precision of the indirect adaptive control algorithms designed for the considered class of TV systems. The proposed
solution can be used in problems of control of parametric resonance systems.
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AHHOTaNMA

BBeHeHHe. PaCCMOTpeHa 3aja4a aJaliITUBHOI'O OLCHUBAHUA YaCTOT MYJIBTUCUHYCOUAAJIBHOI'0O IIEPEMEHHOTO BO
BPEMEHHU MapaMeTpa AUCKPETHOW JTMHEHHOW CHCTEMbI MEPBOrO MOpPsAKAa C MIPUMEHEHHEM pe3ylbTaTa B 3ajade
a/IalTUBHOTO ympaBineHus. IIpeamnonaraercs, 4To aMIIUTY/bI, YaCTOTHI U (a3bl TAPMOHUK ITEPEMEHHOTO MapaMeTpa
HEU3BECTHBI, OJHAKO M3BECTHO YHCIO 3THX rapMoHuK. HoBH3HA mpeqmaraeMoro moaxoja 3aKiIiouaeTcsl B TOM,
YTO MJCHTH(PHUKANNSI 9aCTOT IMPOUCXOAUT JIaXKe IPU IePECeUeHNH BBIXOJJOM CHCTEMBI HyIIs, KOTJa HEZOCTYIHA
nH(pOpMAaIHs 0 HeCTAIIMOHAPHOM IapaMeTpe. B 9ToM ciryuae mpu Mcnons30BaHNH IPEJIOKCHHOTO PEIICHUS B 3a/1a4e
aJIaIITUBHOTO YIIPABJICHUS] PacCMaTpHUBaeMbIM 00BEKTOM HICHTH(UKALUS YacTOT ¥ paboTa HaOIro#aTeNs JUHAMUAKA
[IEPEMEHHOI0 TapaMeTpa IMPOUCXOIAT HE3aBUCUMO, YTO MOBBIIIAET CKOPOCTh U TOUHOCTb aBTOHACTPOUKU I1apaMeTpPOB
perymsitopa. Meroa. 3azadya penraetcsi myTeM npeodpa3oBaHus MOJCIH 00bEKTa K JIMHCHHON MO HEU3BECTHBIM
YacTOTaM PETrpeccuu, Ha 6a3e KOTOPOH CHHTE3UPYIOTCSl alrOpUTMbl HAeHTH(GUKaK. B pabore mpumenseTcs 1Ba
anroputMa uaeHTudukanun. [lepsrlil npeacTaBiseT co0Ol cTaHAAPTHBINA IPAAMECHTHBIA alTOPUTM, B TO BPEMs Kak
BTOPOH — aITOPUTM AAANTALUH C YIyYIICHHOW CXOAMMOCTBIO, 00ECIICUCHHON 3a CUeT HAKOIUICHHS MPEIBIIYIIIX
3HAYECHUH perpeccopa, U Ha3bIBAaCTCSI aITOPHTMOM AIANTallK C TAMATBHIO perpeccopa. 3a1ada yrnpaBlIeHUs pelIeHa ¢
KCIOJIb30BAHUEM: IPUHIIUIIA HEIIOCPEACTBCHHON KOMIICHCALUY; IPUHIUIIA BHYTPEHHEH MOJIENIHU, COIIACHO KOTOPOMY
NepeMEeHHBIH apaMeTp MPEACTABISCTCS B BUJAE BBIX0OJA JUHAMUYECKOI aBTOHOMHOW MOJeIH (3K30CHCTEMBI) 1
BHEJIPCHUH JTOH MOJIENN B CTPYKTYpY 3aKOHA YIpaBJICHHs; HAOIIOAaTe sl COCTOSHUS DK30CHCTEMBI; OJHOTO U3 JBYX
HPEIOKEHHBIX HICHTH(PHUKATOPOB YACTOTHI; (POPMYIIBI [IEpecUeTa OIIEHOK YacTOT B BEKTOP HACTPAUBACMBIX [TAPAMETPOB
perynastopa. OcHoBHBIe pe3y bTaThl. [IpuBenena nporenypa cBeleHUs HECTALIMOHAPHON CUCTEMBI K JTUHEHHOMN
110 HEM3BECTHBIM YacCTOTaM PErpecCHOHHOI MomenH, Ha 06a3e KOTOPOi MOCTPOEHB! aATOPUTMBI HAECHTH(OUKAIIH.
[TomyueHHOe pemnreHne MCIONb30BaHO B 3a7ade HEMPSIMOTo (MACHTH(UKAMOHHOTO) aJallTHBHOTO YIIPAaBICHUS
paccmarpuBaeMoil HecTallMOHApHOHM cucTeMbl. O0cy:kaeHue. [T1aBHON OTIMYUTENHHON YEePTON MPEAI0KEHHOTO
peIICHHUS SBISETCS HE3aBUCHUMOCTD MOJIYUYEHHBIX aJIFOPUTMOB UACHTH(GHKAINK OT CBOHCTBA HAaOIIOZaeMOCTH
HECTAIMOHAPHOTO ITapaMeTpa, YTO MOBBIIIAET OBICTPOJCHCTBHE H TOYHOCTH aJTOPUTMOB HENPSIMOTO aJalTHBHOTO
yIpaBJICHHs paccMaTPHBaEMbIM KJIACCOM JIMHEHHBIX HECTAallMOHAPHBIX chcTeM. [IpencraBieHHoe peeHe MOKeT ObITh
HCIIOJIb30BAHO TPH PELICHUH 3aa4 YIIPABICHUS CUCTEMaMH C TapaMEeTPUYECKUM PE30HAHCOM.
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neprogndeckue kKod(GOUIUCHTDI, afanTUBHAs HACHTUGHUKALMS, aAaNTalUs C YAY4IIEHHONH CXOMUMOCTBIO
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Introduction

In this paper, we develop an adaptive estimation
technique for a class of discrete linear Time-Varying (TV)
systems with uncertain multi-sinusoidal parameters and
without disturbance.

Attempts of extension of identifiers and controllers
design to TV systems made for the last decades are very
challenging; however there exist potentials for increasing
the scope of practical applications. One of the ways of
such an extension is based on the Internal Model Principle
(IMP) [1, 2] consisting in representation of the system TV
parameters as the outputs of autonomous models (referred
to as exosystems) with constant parameters and suitable
incorporation of the structure of these models into the
problem solution to completely compensate the effects
caused by the TV parameters changing. In this case, as

shown in [2], the exosystems can generate multisinusoidal
functions of time, and, as a result, the corresponding
design methods can be successfully used for systems with
multisinusoidal TV parameters and then applied to different
real-life systems [3—-6].

From the practical point of view, assumption about
the complete knowledge of the system TV parameters
is hardly feasible, hence the interest of adaptive control
and identification theory application. At the same time, as
the literature survey showed, the overwhelming majority
of identification based on direct adaptive controllers for
systems with multisinusoidal or just periodic coefficients
assume that the amplitudes and phases of the coefficients
are unknown; however the periods or frequencies of the
parameters variation are known [3, 7—12] or partially known
(in [13] the frequency is factorized by an unknown integer
and a known constant, in [10, 12] the frequency is unknown
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within a known interval). In [14], the authors propose an
estimation technique for a linear system with sinusoidal
parameters with completely unknown amplitudes, phases,
and frequencies, however under assumptions that the plant
state is bounded away from zero and the TV parameters
contain only one harmonic. In [15, 16], the authors propose
an approach of direct adaptive control for similar class of
continuous time and discrete time linear systems with the
state matrix containing multisinusoidal TV parameters on
the main diagonal. The main drawback of the proposed
method consists in dependence of controller parameters
estimation (adaptation) on the plant state. So, if at least one
element of the state vector crosses zero, the TV parameter
is no longer to be observable and, as a result, the adaptive
estimator being dependent on the TV parameters observers
is not able to estimate the controller parameters.

Thus, in this paper we make an effort to overcome
this problem by conversion of plant model into a linear
regression with the regressor that is independent from the
observer estimates and admits the state zero crossing. The
regression is used for design of two frequencies estimators.
The first estimator is based on the standard gradient
adaptation algorithm, while the second one uses modified
Kreisselemeier-like adaptation algorithm referred to as
adaptation algorithm improved parametric convergence
achieved by Memory Regressor Extension (MRE)
[2, 17, 18]. Both estimators are applied to the proposed
scheme of indirect (identification based) adaptive control.

In order to focus the readers’ attention on the main idea
and simplify the paper presentation, we start considering
a discrete TV linear system of the first order with one
multisinusoidal parameter in which, besides the unknown
frequencies of the harmonics, the amplitudes and phases
of these harmonics are assumed unknown. Then, it is
shown how the proposed method can be straightforwardly
extended to the more general class of linear systems
considered in [16].

The remaining of the paper is organized as follows.
In the second section, the problem of the frequencies
identification is formulated. In the third section, the
parameterization of plant model is presented. In the fourth
section, the adaptive frequencies estimators are designed.
In the fifth section, the identification algorithms are applied
to the scheme of indirect adaptive control.

For the sake of completeness of the paper presentation,
we represent the definition of the Persistent Excitation (PE)
condition crucial for systems identification.

Definition 1. A bounded function (k) € RV is
persistently exciting (i.e., € PE) if there exist such
constants o, K € R, such that:

KK
> 9()eT() = al, Vk=0. (1)

JekH1
Notations: z! is the delay operator; k is the sampling
time; )V is the set of natural numbers; R, is the set of
positive real numbers; PE is the set of persistently exciting
functions satisfying (1); I, is the n x n identity matrix;

L, is the space of squared summable functions; L is the
: N!
space of bounded functions; Cy = ————— is the binomial
il(N=10)!
coefficient.

Problem statement

Consider a discrete-time system
x(k + 1) = y(k)x(k) + u(k), 2

where x(k) € R is the state with the initial condition
x(0), u(k) € R is the control signal, & is the sampling time,
y(k) € R is the uncertain time-varying parameter given by
the function

N
y(k) = Ya;sin(0AT + ¢;) 3)
i=1
with a priori unknown constant amplitudes a;, phases
¢;, and frequencies ®; of harmonics, however known
maximum number of harmonic N and the discrete time
interval T1.

For the plant, we accept the following assumptions.

Assumption 1.

— Al.1. The frequencies o, are different (distinguishable)
and satisfy the conditions w;T € (0; «];
— A1.2. None of the frequencies w; is zero, i.e., the signal

(3) is not biased.

Assumption Al.1 allows us to identify the frequencies
and is typical for harmonic identification problems.
Assumption A1.2 is introduced for the sake of simplicity
and can straightforwardly be extended to biased (i.e., with
zero frequency) multisinusoidal parameters.

The objective is to design an identifier that under the PE
condition generates estimates ®;(k) such that

lim (®; — ®(k)) = 0. 4
k—o0

It is necessary to note that compared to the identifier
(adaptation algorithm) proposed in [16], this problem
statement admits that the state x(k) can cross zero arbitrary
number of times; therefore the solution presented below is
less restrictive.

The solution proposed is based on linear
parameterization of the plant model (2) superposition of
measurable variables multiplied by constant parameters
dependent from ;. Before to propose the general
solution to the problem, we clarify the main idea of the
parameterization considering the particular case of single
harmonic parameter (3) with N = 1 and then extend this
case to arbitrary N > 1.

Model parameterization

Single harmonic case
Assuming that

y(k) = asin (0kT + o),

where a, ®, and ¢ are constant unknown parameters, and
applying the IMP we represent y(k) as the solution of the
linear discrete equation

P@Ly()] =0 )

with the operator B(z) = 1 — cz~! + z-2; the initial conditions
y(0) = asin (¢); (1) = asin (o7 + ¢) and the constant
c=2cos(oT).

I Hereafter, we will omit the dependence from  for the sake
of brevity and if is not in contrary to the context.
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From (2) we obtain
x(k+ 1)y u(k)
- x(T .
Replacing y(k) from the latter in (5), we have
x(k+1)— u(k)_ cx(k) —u(k—1) N x(k—1)—u(k—2) _
x(k) x(k—1) x(k—2)

(k) (6)

Multiplying this equality by x(k)x(k — 1)x(k — 2),
applying the shift backward operator z-!, and rearranging
terms, we obtain the parameterized model of the plant in
the form of linear regression

y(k) = B9(k), ()

where 0 = ¢ = 2cos(w7),

y(k) = x(k — 2)x(k — 3)(x(k) — u(k— 1)) +
+ x(k— Dx(k—2)(x(k—2) — u(k - 3)),

o(k) = x(k — Dok — 3) ek — 1) — u(k — 2)).

Remark 1. The form (7) can be used for identification

. 1 1,
of the frequency estimate ® = ;a cos 56 , Where

0 is the estimate of 0 generated by an identifier, under
Assumption 1.1 since the function cos(-) is invertible in
the interval (0, =].

Now, extend the presented result to arbitrary number
of harmonics.

Multiharmonic case

Now, assume that y(k) is represented in the general
form (3). In this case, the operator form of discrete equation
generating (k) takes the form

N
[1B@Nw(k)] =0 ®)
i=1
with the operators Bi(z) = 1 — ¢;z'! + z72, the initial
N
conditions y(j) = ¥ a;sin (0;T+¢,) G=0,1,...,2N-1),
=1
and the constants lci =2 cos (w;7).
Replacing y(k) from (6) in (8) after straightforward but
routine algebraic transformations we obtain the following
result.

Lemma 1. The plant (2) with the parameter (3) can be
transformed into the form of linear regression

(k) = 0To(k), 9)

where @ = [@[, 03, ..., 0] is the regressor with the
elements

x(k p))(x(k —2-1)-
JFON-i\  p=1

A2+t (10)
—u(k—2j—i-1)),

N-i jf 2N+
e=% c| 11

2N+1

voif 11
y(k) = ZC<J,1 . X(kj)>(X(k2i) —u(k=2i—1)), (11)

=N\

is the regression output; 8 = [0, 6, ... 6,]T is the vector
obtained using c; via the Vieta’s formulas

91=Cl+02+...+cN,

62:*(C1C‘2+C1C3+...+CN71CN) (12)

Oy =(CDMlcie,y ... cp

The linear regression (9) can be used for identification
of the parameters 0, (i = 1, 2, ..., N) and, as a result, of the
frequencies ;.

Adaptive frequencies identification

In order to estimate 0 in (9), we use the gradient
adaptation algorithm [19, 20] and the adaptation algorithm
with improved parametric convergence based on the
Kreisselmeier’s like scheme and referred to as algorithm
with MRE [17, 18].

Gradient algorithm

The algorithm takes the form

0k+ 1) =0k +y_2R0'® ¢y (13
1+ vo (Dol

where g(k) = y(k) — (pT(k)ﬁ(k), v > 0 is adaptation gain.
The algorithm (13) yields the parametric error model

P(k)o" (k)

————" k), (14
1+Y(PT(k)(P(k)> w0

Ok +1)= (IN—

where é(k) =0- é(k) is the parametric error vector. This

model can be used for the proof of the following properties.
Proposition 1. The identification system closed by the

algorithm (13) with ¢ defined in (10) and y defined by (11)

has the following properties: .

— PL.1.0(k) € L, N L,. If p(k) € L, then k), 0(k+ 1) —
-0k e L, N Ly X .

— P1.2. If (k) € L, then g(k), 0(k + 1) — 0(k) — 0 as
ke — o0,

— P1.3. 0(k) — 0 exponentially fast as k — o if and only
if o(k) € PE. As a result, the objective (4) is achieved;

— P1.4. If 0(k) — 0 as k — o, then there exists an
optimal value of y for which the rate of convergence is
maximum.
The proposition can be proved using the Lyapunov

function

V(k) = ZiyéT(k)é(k) (15)

and evaluating its shift forward value V(k + 1) in view of
(14) [19].

Unfortunately, the algorithm suffers from the drawback
defined in Property P1.4 according to which the maximum
rate of parametric convergence can be arbitrarily small and
inacceptable from the practical point of view. In order to
overcome this problem, in the next subsection we represent
the adaptation algorithm with MRE that under the PE
condition dramatically increases the rate of parametric
convergence [18].
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Scheme with MRE
We introduce an asymptotically stable positive transfer
function of the form

M1 —d,
L@): =] , (16)
=12 —d;

where 0 < d; < 1 are the constant design parameters,
M € NV'. Premultiplying (9) by ¢(k) and then applying
the operator L(z) we get the memory extended regression
model

Y(k) = Q(k)0 (17)

with the memory extended output Y(k) = L(z)[@(k)y(k)]
and the memory extended regressor matrix Q(k) =
= LO9RPTHR)].

The regression model (17) allows us to design the
adaptation algorithm with MRE

Ok + 1) = (k) + y(Iy + Q) 'E(K),  (18)
where E(k) = Y(k) — Q(k)0(k).

The algorithm (18) yields the parametric error model

0k + 1) = (Iy— y(Iy + yQ(K) 'Q(k)OK)  (19)
which can be used for the proof of the following properties.

Proposition 2. In the closed-loop identification system,
the algorithm (18) with ¢ defined in (10), y defined by (11),
and L(z) given by (16) provides Properties P1.1, P1.2, P1.3
and:

— P2.1. I 0(k) — 0 as k — oo, then the rate of parametric

convergence can be increased by increasing v.

The proposition is proved via the Lyapunov function
(15) and its shift forward value V(k + 1) in view of (19)
[18].

Frequencies estimation

Replacing in (12) 6, and ¢; (i = 1, 2, ..., N) by their
estimates 0; generated by the algorithm of adaptation (13) or
(18) and the estimates ¢;, respectively, we obtain the system
of algebraic equations

0=ci Tyt ... Ty

0,=—(810) +010x+ ... +Cp g0
2 (12 1‘3 NlN)’ (20)

Oy=(CDVIE e, ... &y
Solving the latter, we get ¢; and taking into account
Assumption 1 calculate the frequencies ®;(k) via the
following equalities:
. 1
(k) = ;arccos (¢i(k)). 2n
Now, discuss the obtained result according to the
properties defined by Propositions 1 and 2.
Remark 2.
— R2.1. As shown in the next section, the boundedness of
(k) can be provided via suitable design of input u(k);
— R2.2. According to the properties of discrete-time
systems, for the adaptation algorithm with MRE (18)

the rate of parametric convergence can be increased up
to N steps;

— R2.3. The PE property of @(k) depends on the input
signal u(k). As discussed in the next section, the certainty
equivalent control law provides the PE condition for
x(#) # 0 in the interval of excitation [k + 1, k + K]
(see Definition 1) even if the reference signal is zero;

— R2.4. Transient solution of the system (20) always
exists as a result of the Vieta’s theorem, however can be
complex. Therefore, in order to implement ®,(k) instead
of (21), we use

o, (k) = %arccos (Real{¢(k)}),

where Real{-} is the real part of a complex number.

In the next section, we demonstrate the application of
the proposed identifier in the identification-based adaptive
control of the plant (2).

Application: identification-based adaptive control

Problem statement

The problem is to design a control law that being
applied to the plant (2) will ensure the boundedness of all
the closed-loop signals in the system and:

O1. if [x(k)| > x for all k> Ny (N, € N'), where x; € R,
is a predefined threshold, then it will guarantee the limiting
equality

lime(k) = lim (x,,(k) — x(k)) = 0 22)
k-

k—o0 —00

in which x,,(k) is a bounded reference signal with known
next step value x,,(k + 1);
02. otherwise it will guarantee the limiting inequality

lim [s(k)| <A,

k—o0

(23)

where A € R, is a maximum steady state error that is

assumed to be reduced by changing design parameters.
Below, we represent the design of identification-

based adaptive controller for the plant (2). The key
distinguishable property of this controller compared to
the existing one from [16] consists in separate design of
adaptive identifier tolerant to the state zero crossing and
an adjustable controller. The problem solution is calculated
in three steps:

1. Design of an observer of the TV parameter y(k) required
to recover some information about the parameter
dynamics;

2. Design of an adjustable control law;

3. Recalculation of the estimates 0 given by the identifier
obtained in the previous and its replacement in the
control law designed.

TV parameter observer

In order to design a control law, it is needed to recover
the information about the TV parameter dynamics. To this
end, we, first, apply the IMP and represent the parameter

y(k) as the output of the exosystem given by the partial

case of the canonical form recently presented in [16].
Lemma 2. The TV parameter can be represented as the

output of the linear regression

y(k) =8TE(K), 24
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where (k) € R2V is the state of the filter
Sk + 1) = G&(k) + Iy (k) (25)

with the initial condition &(0) = [y(0), y(1), ..., y2N - 1)],
the matrix

G- Oon-iy«1 Toa
0 O1xn-1y
m-dimensional vector I = [0, 0, ..., 0,1]T selected so that

the pair (G, I) is controllable, and the vector of unknown
parameters ¥ € R2VN given by

9=[9],9], ..., 8] (26)
with
3. = -1
1 el >
A e
-C t3Yy Cby
N ELON2ZE Lif2i< N+,
J J1
> C 051
P =1 N-2itl .
/_< [ 1 N+l i 27)
-+ C 0y
Nyt N LN+ <2 <2N,
C 071
| S ve2irl

j=2,3,...,N,0; are defined by the harmonics frequencies
via (12).

The lemma is proved by defactorization of the discrete
equation (8) shifted forward by 2N steps and introduction
of the notations (k) =wy(k—i+ 1)i=1,2, ..., 2N).

Remark 3. Due to the symmetry of combination, i.e.,
Joi=l Neigitl j-i  N-ij+l

C = C and C = (C ,N-1clementin the vector
N-2i  N-=2i N-2i+1  N-2i+1
¥ are duplicated. Namely, it is seen from (26), (27) that

'ﬂ = [—1, 192, ﬁ3, cees ﬂN+1’ ﬁN’ ey ﬂz]T.

—_——

2N elements

This fact will allow us to simplify the recalculation
from the estimates of 0, given by (20) (dependent from the
frequencies ) into the estimates of 8 used by the control law.

Remark 4. The function 4(0) is linear and can be
represented in the compact form

9 =m + M6, (28)
where
m, M
™ T
m=|™|erN, M=[M2|ervN (29
my My,

are the vector and matrix given by

J-1
m; = —C land
N
J-1 il
Yy Cok
fj.‘ j{’lle‘ if2/<N+1,
Y C &y
oo Lol N2k ] 30
TN TN+ i ] (30)
_Z C &
N if N+1<2j <2N,
Y C gy
| =1 N-2i+1

respectively, j =1, 2, ..., N, g, =[0, ..., 0, 1,0, ..., 0]T

(k=1,2, ..., N) is the N-th dimensional coordinate vector.
Since the TV parameter y(k) is unknown, the state &

of the filter (25) is not measurable. However, it can be

recovered via the observer recently proposed in [16].
Lemma 3. The observer

(k- 1)x(k)
X(k—1)+c*(k—1Y)

&(k) = ¢(k) + 1 31)

x(k — Dx(k)
Rk-1)+o2k-1)
x(k)
I u
X2(k) + oX(k)

gk + 1) = Gi(k) + GI
(32)
(),

where é is the estimate of &,
0 ifx(k)| = x,

33
o, otherwise, (33)

o(k) = {
Xg, 69 > 0 are constant design parameters, provides the
following properties:
1. For any initial conditions §(0), §;(0) the error
€(k) £ &(k) — &(k) satisfies the equality

o’(k)

e(k) = G*¢(0) + (z1 - G)I m

v(k)[. (34)

2. The norm ||€(k)||,, is bounded and can be reduced by

reduction of the gain 6, and/or x,.

The equality (34) is proved by calculation of the
next step value e(k + 1) =&k + 1) — &k + 1) in view of
(25), (31), (32), and (2). The boundedness of ||e(k)||,, is
followed from (34) and the boundedness of the function

o’ (k) ‘
2®+ oy 'Y

Applying the result of Lemma 3, we represent the TV
plant parameter in the form

w(k) = 8TE(K) + 9T e(k). (35)

Now, using the parameterization (35), in the next
section we propose the adaptive controller.

Control law

Replacing (35) in the plant equation (2), we obtain the
expression suitable for controller design:
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x(k+1)= ﬂTé(k)x(k) +u(k) + flk), (36)

where f(k) = 8Te(k)x(k) is considered as an additive
disturbance satisfying the property defined by the following
lemma.

Lemma 4. f(k) € L Vk>0.

Proof. Using the notion of £ -norms of functions in
view of (34), we have

1)l =
87| G*¢(0) + (zI - G) 1 i k DIl <
SORICROR emwwern (Gl XO) IS

< Gk k ﬂ k k
< Bl GO+ || 50w IR |

Here, we keep in mind that ||(zI - G)'T||,, = 1 and

B ol oo O
P+ || Ol = bl

Since the matrix G is nilpotent and G2V =
while ||x(k)||., <o forall k=0, 1, ..., 2N, then

(k
AR = W(iz(k)”ﬁhomj(kﬂw Vk=2N. (37)

As a result, ||f(k)||,, is bounded Vk > 0. This completes
the proof.

Using (36), we select the adjustable control law in the
form

O2N><2N9

u(k) =— ﬁT(k)é(k)x(k) —Ag(h) +x,(k+1), (38)

where A € R is a constant design parameter such that
A <1, 9 E ]RZN is the estimate of ¥ given by replacement
of 9 (z .., N) instead of 0 in (28):

3 =m + M6. (39)

In the later, the elements of @ are defined by the
estimated frequencies of harmonics via (20) and generated
by the adaptation algorithm (13) or (18).

Replacing (38) in (36) in view of (28) and (39), we
obtain the error model

e(k+ 1) =Ae(k) + éT(k)MTé(k)x(k) —flk),  (40)

where 0 = 0 — 0 is the identification error.

Now, using the error model (40) we are in position to
formulate out main result.

Proposition 3. Under Assumption 1, the adaptive
controller consisting of the adjustable control law (38),
observer (31)—(33), identification algorithm (13) or (18),
and the recalculation rule (29), (30), (39) being applied to
the plant (2) ensures the following properties:

— P3.1 the boundedness of all the closed-loop signals in
the system;
— P3.2 the objectives O1 and O2 according to the limits

(22), (23);

— P3.3 8(k) = 0 — 0(k) and o; — &,(k) tend to zero
exponentially fast, and for the system closed by the
identifier (18) the rate of the convergence d(k) — 0.
Proof. Let us rewrite plant model (2) with the

parameterization (24) (see Lemma 2) and recalculation

formula (28) in the following form:

y=0To, (41)

where y = x(k) — u(k — 1) —mTgk — Dx(k — 1), ¢ =
= MTE(k)x(k). Using these notations and the notation of

k), the model (40) can be represented as

e(k+ 1) = he(k) — &(k) — OT(MTe(bx(k),  (42)

where & £ 7 — 0¢ = 07§ is the identification error.
Using the arguments of Lemma 4 we can see that the
signal 0TMex in (42) is bounded and satisfies the inequality

2
[0TMTex(k)|,, < \/ﬁlmwnwllw(k)ll@
Vk > 2N, (43)

where (k) is given by (33).

For the regression (9), in accordance with Properties
P1.1 and P1.2 of Propositions 1 and 2, both estimation
schemes (13) and (18) ensure that e(k) = y(k) — B(k)(p(k) =
= OT(k)(p(k) 0k+1)—0(ky €L, n L, and e(k), 0(k+ 1) —
- G(k) — 0 as k — . Since the regressions (9) and (41)
representing the same plant model have the same structure,
then the estimators (13) and (18) additionally ensure that
e(k) = (-)T(k)q)(k) € L, N L, and é(k) — 0 as k — oo.

Since according to Propositions 1 and 2, G(k) € L, and,
as shown above, the inequality (43) holds, then g(k) € L.
As a result, x(k), u(k) € L. This completes the proof of
Property P3.1.

If pe(k)| > x, for all k> Ny (N € V), then o(k) = 0, €(k) =
= &(k) — &(k) —0 as k — . Therefore, e(k) — 0 as k — o
according to (42). Otherwise, €(k), f(k) € L, according to
(23). As seen from (37), A can be reduced by decreasing
6(0p). This proves Property P3.2.

To prove Property P3.3, we take into account the
equivalence of the regressors @(k) and ¢ for x(k) # 0.
Since the generator (25), (24) is not redundant due to the
knowledge of the number of harmonics N, (k) € PE.
As a result, ¢, ¢ € PE for x(k) # 0. Therefore, Property
P3.3 is provided by the estimators (13) and (18) according
to Propositions 1 and 2. This completes the proof of the
proposition.

Now concluding the main result, we make the following
remarks:

Remark 5.

— R5.1. As seen from the proof of Proposition 3, the
problem objectives O1 and O2 do not require exact
identification of the harmonics frequencies ;, however
require convergence é(f) — 0. At the same time, since
the exact number of harmonics is known, then the
regressor @ € PE, and the parametric errors 0(¢) as
well as the frequencies estimation errors converge to
zero exponentially fast. As a result, the control error
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g(t) converge to zero according to objective Ol or to
the residual set according to objective O2 exponentially
fast;

R5.2. As seen from the structure of the plant (2), if
the state x(k) crosses zero, then the state (k) of the
TV parameter model (25), (24) is no longer to be
observable. In order to overcome this problem, the
threshold x is suitably involved into the observer.
At the same time, in contrast to the method of direct
adaptive control recently reported in [16], the proposed
algorithm of frequencies estimation is independent from
the value of x(k) and the property of observability.

Simulation results

Consider the plant (2) with the uncertain time-varying
parameter y(k) = a;sin(w kT + @;) + asin(w,kT + ¢,), in
which a, a,, ®{, ®,, ¢1, and @, are unknown constants set
to the following values: a; =0.2; a, =0.3; ©; =2; 0, = 3;
¢ = 3; and ¢, = 4. The interval of discretization T is set
to 0.1 (sec).

The problem is twofold:

— calculate the estimates ®;(k) (i =

lim (o; — (k) = 0;

1, 2) such that

— design a control law ensuring the boundedness of all
the closed-loop signals and driving the tracking error
(k) = x,,(k) — x(k) to zero, where x,,(k) is generated by
the reference model x,,(k + 1) = 2 + sin(2k7).

In the simulation, we select the estimator with MRE

(18), for which we select the first-order filter L(z) =

z—0.7
For the TV parameter observer, we select
01 0 O 0
10 0 1 0 10
oo o 1[0
00 00 |

xy=0.01, and 6, = 0.01, while for the control law given by
(38) we choose A =0.1.

All initial conditions in the scheme are set to zero.

The simulation results are presented in Fig. 1 and
Fig. 2 and demonstrate the convergence of the frequencies
estimates @; (i = 1, 2) to the original values ®; and, as a
result, the convergence of the tracking error to zero. As
shown by Fig. 2, the rate of estimation and, as a result, the
rate of reference tracking can be increased by increasing
the coefficient gamma.

k—o0
b c
x(k), x,,(k) (k) u(k)
4 4
—x(k) —x,,(k)
| 4t
2
0 iy
% 5 10k 0 5 10x % 5 10 k

Fig. 1. Transients in the system closed by the estimator with MRE (18) with y = 100. Transients of: the state x(k) and the reference
model output x,,(k) (a); the tracking error £(k) (b); the control signal u(k) (c)

) a . b c
(k) (k) e(k)
10 18 1
— =01 —v=01] oo * —v=0.1
—Y= —y= ' ||l|l|| — =
6 y=10 y=10 0 ‘ y=10
—Y=100- 11 — y=100] 0.1 0 2 — =100
M 01
2 ; A
0 . .
0 50 100 % %0 50 100k 0 50 100 k

Fig. 2. Response frequency estimates @ (@), @, () and the tracking error (k) (c) in the system closed by the estimator with MRE
(18) for different y

Conclusion

In the paper, two adaptive frequencies estimators
for the first order linear discrete system with uncertain
multisinusoidal TV parameter are designed. The first
estimator is based on the gradient scheme of adaptation,
while the second one uses the discrete version of the

adaptation algorithm with MRE. Then, the indirect

(identification-based) adaptive control laws using these

estimators are proposed, and their properties are analyzed.
The estimation algorithms together with the control

laws are supposed to be developed toward the following

axes:

— solution to the problem for extended class of plants [16]

Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHBLIX TEXHONOMMIA, MEXaHUKKN 1 onTukn, 2025, Tom 25, N2 2

250

Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 2



D.H. Ngo, D.N. Gerasimov

Xk + 1) = yi(Rxk) + x4, (K),
X,k + 1) =y, (k)x, (k) + u(k),
(k) = x,(K),

wherei=1,2, ..., n—1, x; € R(G=1,2,...,n) are the
elements of the state vector X = [x|, X,, ..., x,,]T with the
initial condition x(0), y € R is the plant output, u(k) € R
is the control signal, y;(k) are A}he unknown parameters

given by the functions (k) = zaj,isin(mj’ikT + ;). with

=1
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