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Abstract

The paper studies the problems of automatic verification of the behavior of a reactive system in accordance with
formalized requirements, i.e., automatic verification. The reactive system is described by interconnected automaton
objects. Formalized requirements are written as conditioned regular expressions. In this case mathematically reliable
verification of the system is possible. The proposed solution is based on the use of the CIAO (Cooperative Interaction of
Automaton Objects) language to specify the interaction of automaton objects. This paper considers the third version of
the language, CIAO v.3, which defines the means of describing automaton classes, the means of instantiating automaton
objects, and linking these objects to the system using a link diagram. The requirements to be verified are specified
using the so-called conditioned regular expressions constructed over a set of elementary actions and conditions defined
in the system. A software tool has been developed that, using a link diagram, builds a semantic graph, i.e., a directed
graph, where all paths from the initial nodes represent the execution protocols of the automata-based program, thereby
specifying the semantics of the reactive system. Then, it is checked whether the automata-based program complies with
the requirement defined by the conditioned regular expression. If a discrepancy is detected, the tool shows the place
where the semantic graph exactly does not comply with the requirement. Algorithms have been developed that allow
automatic verification of reactive systems with respect to the formalized requirements of a certain class. An example
of a program is given that demonstrates elevator control in the CIAO v.3 language, and the constructed reactive system
is verified for compliance with formally specified requirements. The purpose of the article is to demonstrate software
implementation of the tool for automatic verification of a program in the CIAO v.3 language.
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AHHOTALUA

Bgenenne. B pabote mccrieoBaHbl MpoOIeMbl aBTOMATHIECKOH TIPOBEPKH COOTBETCTBUSI TIOBEICHHS pearnpyromen
CHCTEMBI ()OpPMaTH30BaHHBIM TPeOOBAHUSIM, a HIMEHHO, aBTOMAaTH4ecKoi Bepupukanuu. Pearupyromas cucrema
OIUCHIBaeTCsl B (hOpMe B3aMMOCBSI3aHHBIX aBTOMAaTHBIX 00beKTOB. DopMaIn30BaHHBIE TPEOOBAHMS 3aIHCHIBAIOTCS B
BHJIE 00YCIIOBIICHHBIX PEryJISIPHBIX BhIpaykeHHH. [Toka3zaHo, 4TO B 9TOM Cilydae BO3MOXKHA MaTEMaTHIECKH JOCTOBEpHAs
Bepudukanus cucremsl. Merod. [IpennoxkeHHOe pelIeHne OCHOBAHO HA NMPUMEHEHUH S3bIKa CHeuH(UKaAUK
B3auMO/IeHicTBHs aBTOMaTHBIX 00bekToB Cooperative Interaction of Automaton Objects (CIAO). B nannoit padore
paccMarpuBaeTcs TpeThs Bepcus s3bika, CIAO v.3, B KOTOpOM onpeenieHbl CpeICTBa OMUCAHUS aBTOMATHBIX KJIACCOB,
CpeaCTBa MHCTAHIMAIINY ABTOMATHBIX OOBEKTOB U CBSA3BIBAHUS ITHX OOBEKTOB B CHCTEMY C TIOMOIIIBIO CXEMBI CBSI3EH.
Bepudumupyemsie TpeboBaHMs 3a1aHBI ¢ TOMOIIBIO TaK HA3bIBAEMBIX 00YCIOBIEHHBIX PETYISIPHBIX BBIPAKEHHH,
MTOCTPOSHHBIX HaJ MHOXECTBOM JJIEMEHTAPHBIX JACHCTBUI M yCIOBHI, ONpENEIeHHBIX B cucTeMe. Pa3paboran
MIPOrpaMMHBIH MHCTPYMEHT, KOTOPBIH, NCIIOJIB3Ysl CXEMY CBSI3eH, CTPOUT CEMaHTUUECKHUH rpad) — OpPUEHTHPOBAHHBIN
rpad, B KOTOPOM BCE€ ITyTH W3 HAYaJIbHBIX Y3JIOB MPEACTABISIOT IPOTOKOJIBI BBHITOJHEHHsI aBTOMAaTHOW MPOTPaMMBI,
3a7aBasi TEM CaMbIM CEMAHTUKY peampylomef/'l cucTeMbl. BrinmoyiHeHa IIPOBEPKaA COOTBETCTBUSA aBTOMATHOM porpaMmal
TpeboBaHMIO, OTPEAEIIeMOMY 00yCIOBIEHHBIM PETYIAPHBIM BhIpaxkeHHeM. B ciydae oOHapyKeHHs HECOOTBETCTBUS
HWHCTPYMEHT MOKa3bIBaeT MECTO, T/I€ MIMEHHO CEMaHTHUYeCKUi rpad He coOTBETCTBYeT TpeboBaHuio. OCHOBHBIE
pe3yabTaThl. Pa3paboTaHbl aATOPUTMEI, MO3BOJSIONINE MPOBOAUTH ABTOMATHIECKYIO BEPU(MHUKAIIUIO PearnpyoIinx
CHCTEM OTHOCHTEIFHO (hOPMAIN30BAaHHEIX TPEOOBAHUH OMPEIEIICHHOTO Kiacca. PaccMOTpeH mpuMep MporpaMmel,
JNIEMOHCTPUPYIONIHH yrpaBieHue padoroi iudra Ha s3pike CIAO v.3 u npoBeneHa Bepu(HUKAIHS TOCTPOCHHOMN
pearupyrolei CHCTeMbI Ha COOTBETCTBHE (hOPMaIIbHO 3aJJaHHBIM TpeboBaHmsIM. Obcyxaenne. [IpogemoHcTprpoBana
HporpaMMHasi pealn3alui HHCTPYMEHTa aBTOMaTHYeCKOi Bepudukanuy nporpammsl Ha sizsike CIAO v.3.

Kirouesble cii0Ba

aBTOMaTu4eckas BepupuKanus, o0yCIOBICHHbIE PETYJISPHbIC BBIPAXKCHUS, MOJIE]Ib MOBEACHUS, aBTOMAaTHOE
nporpaMMupoBaHue, rpad) nepexomsoB COCTOSHHUM, YHUPHUINPOBAHHbIH 36K MofgenupoBanus UML, nuarpamma
KOHEYHOTO aBTOMATa, MapauielibHOE MOBEACHHE, apXUTEKTypa MPOrPaMMHOTO 00eCIIeUeH s, pearnpyomas CHcTeMa

Ccpliaka pas nurupoBanusi: HosukoB ®@.A., AdanacseBa 1.B., ®enopuenxo JI.H., Xapucosa T.A. IIpoBepka
COOTBETCTBHUA MOBEJEHUS CHCTEMBl HA OCHOBE aBTOMATHBIX 00BEKTOB (opManbHBIM TpeboBanusM // HaydHo-
TEXHHUYECKUI BECTHUK WH(POPMAIIMOHHBIX TEXHOIOTHH, MeXaHUKU U onTuku. 2025. T. 25, Ne 2. C. 328-338 (na aHII.
513.). doi: 10.17586/2226-1494-2025-25-2-328-338

Introduction and relationship to previous studies

The article discusses a special case of the general
concept of verification and defines an automaton object,
in comparison with other cases of using the word
“automaton”.

The process of checking the compliance of the system
behavior with the requirements imposed on it is referred to
as verification!. Typically, such verification is performed
by conducting a finite number of tests, which is called

1 GOST R ISO/IEC 25010-2015. Information technology.
Systems and software engineering. Systems and software Quality
Requirements and Evaluation (SQuaRE). System and software
quality models. Moscow, Standartinform, 2015, 36 p. (in Russian)

testing. Testing cannot ensure absolute reliability because,
for most complex software systems, the set of possible
behavior scenarios is infinite, and exhaustive testing is
impossible. Reliability is desirable in all cases; however,
in some cases, unreliability is unacceptable. Software with
unacceptable failures is usually referred to as responsible
(life-critical). Among the various methods for ensuring
the reliability of responsible systems, formal verification
methods for software are more promising than traditional
testing methods. Verification, as a check for compliance
with requirements, allows for various explanations and
interpretations [1]. If the requirements are formalized and
the system behavior is specified algorithmically, automatic
verification is possible. We share the concepts outlined in
[2] and believe that responsible software requires the use
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Verification of the formal requirements for the system behavior based on automaton objects...

of mathematical methods to verify software conformity to
formal specifications.

Numerous formal verification methods coexist and are
used that allow automation, and for the implementation of
automatic verification; the choice of software design tools
and software requirement specification tools is critically
important.

In the most general case, when a general purpose
programming language is used to construct programs,
and a first-order predicate calculus language is used to
define formal specifications, formal automatic verification
of complex systems appears to be an insurmountably
difficult or even practically insoluble task [3]. In addition,
a remarkable study [4] presented examples of manual
(non-automatic) verification of fairly complex algorithms.
The constructions in this book are perfect in the sense
that the postconditions considered there are complete, i.e.,
exhaustive specifications of programs. Therefore, programs
verified in this way are indeed valid by construction.
However, it is unlikely that Dijkstra’s method can be
fully automated at present — the “poles” of verification
are too far apart: declarative specification and imperative
program.

The next step towards verification automation was the
Model Checking method. In this method, the requirement
(specification) being verified is defined by a temporal logic
formula, and it is not the program itself that is verified,
but its model, the so-called Kripke automaton (Kripke
structure) [5]. At present, this method is sufficiently
advanced, supported by industrial tools and widely used,
including in the discussed area of reactive systems [6].
Note that the success of the Model Checking method,
in our opinion, is to some extent due to the convergence
of the verification “poles”: the Kripke structure is much
more formalized than the program text in a programming
language, and temporal logic formulas have significant
expressive power when specifying processes that
develop over time. The Model Checking method itself
is impeccable, but two questions remain outside the
scope of the method: how to ensure the completeness of
specifications by means of temporal logic and how to
ensure the adequacy of the program and its Kripke model.

The question of how to ensure the completeness of
formal specifications remains open and nothing better than
private ad hoc methods have been proposed so far. The
question of the correspondence between the verified model
and original program has received a satisfactory solution
within the framework of the automata-based programming
paradigm [7, 8]. The fact is that the automata-based
programming paradigm, along with other advantages,
has the property that the description of behavior in the
form of interacting automata is unambiguously and
formally translated, on the one hand, into general-purpose
programming languages and, on the other hand, translated
into the Kripke structure. Thus, if we begin developing
a system by fixing the description of its behavior in the
automata-based programming paradigm, the question
of the adequacy of the model used and the program
being verified is removed. Taking this circumstance into
account, our constructions are based on the automata-based
programming paradigm.

Another approach to ensuring the feasibility of
automatic verification methods is to use a language (or
more precisely, a family of languages) for constructing
reactive systems, which we call Cooperative Interaction
of Automata Objects (CIAO). The history of the language
has undergone several stages of development. In particular,
the first version of the CIAO language was used to create
an automata-based method for determining domain-
specific languages [9-11]. The second version of the CIAO
language [12, 13] was used to implement a critical system
for collecting and processing astrometric data [14]. In the
process of using the language, a number of improvements
were made, as a result of which it became possible to use
it to verify low-level communication protocols [15] and
to solve other problems [16]. The results obtained showed
that the CIAO language can be successfully used for the
automatic verification of device control programs [17, 18].
Subsequent research in this area led us to the need to clarify
the behavior model that underlies the language and to
improve the graphical notations.

As a result, the CIAO v.3 language [19] was developed
for which automatic verification algorithms were
implemented. Note that the CIAO v.3 language is designed
in such a way that, based on a system of interacting
automaton objects, it is possible to uniquely and efficiently
(with linear complexity by the total number of transitions
in the system) construct a semantic graph [17] in which
all paths from the initial states define all possible system
execution protocols. The so-called Conditioned Regular
Expressions (CREs) [20] are used as a means of specifying
formal specifications. In fact, CREs specify a pattern that
must match the paths in the semantic graph. Checking
that the specified elements in a given sequence occur in
a certain relative order is a well-known task in syntactic
analysis (pattern matching). Note that a sequence pattern is
a weaker specification tool compared to temporal logic. Of
course, specifying permissible sequences of actions is only
a partial, not a complete description of system requirements.
However, such requirements can be effectively verified
automatically. Thus, it was possible to bring the “poles”
of verification even closer together in comparison with
the Model Checking method. The next important concept
is the automaton object. We have taken this term from
the lexicon of automata-based programming [19], but it
should not be identified with the concept of an “automated
object” [7]. Although the concept of an automaton object
used here was developed on the basis of the concept of an
automated object, the differences are significant, especially
from the point of view of verification. There are three most
important differences:

— firstly, automaton objects are endowed with internal
memory in the form of local variables where it is
possible to store information obtained in the parameters
of events (input actions), calculate new information and
transfer information to the outside in the parameters of
effects (output actions). Thus, automaton objects fall
out of the class of finite automata which have only finite
internal memory;

— secondly, automaton objects are instances of automaton
classes in the sense that objects are instances of classes
in object-oriented programming. Automaton objects
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receive the initial values of all variables, including the

initial state during instantiation, and interact exclusively

by accessing the provided interfaces. The fact that the
internal behavior of an automaton object is specified by

a state transition graph is not essential for verification

and is not even mandatory. We prefer the automaton-

based programming style described in the fundamental
book [21], but we do not insist on its use;

— thirdly, the behavior of automaton objects is non-
deterministic since they coexist in parallel, interact
asynchronously, and are completely equal in rights. No
central control automaton is assumed.

Cooperative interaction is the “zest” that ensures the
feasibility of automatic verification in this case. Automaton
objects are absolutely equal and interact with each other
in accordance with the connection scheme [19] which
connects them in the provided and required interfaces
coordinated by types and kinds. An elementary act of
interaction begins with the fact that in one automaton
object (or in the external environment) an action (effect)
is called which is transmitted through a connected pair of
interfaces to another automaton object (or to the external
environment) where the transmitted action is perceived as
an event that triggers a transition. During the transition, the
automaton object goes to another state (or remains in the
same state) and, possibly, causes an effect. Calling an effect
starts a new elementary interaction, and so on, the process
continues. If there is no effect in the automaton object or
if there is no transition in this state for the incoming event,
then the event is lost and the process (thread) is terminated.
In the proposed approach, the behavior of the system is a
sequence (more precisely, a partially ordered set) of such
elementary interactions. The proposed verification method
allows us to check whether the behavior of the system
corresponds to a given pattern or not.

Many researchers have considered the issues of
verification of automata-based programs, which is reflected
in various publications, from pioneering articles [22] to
textbooks [23]. A natural question arises: why do we need
another study and how does our work differ from the
previous ones? A comparison is necessary. For comparison,
we chose the article [24] in which the verification issue
is covered as thoroughly and strictly as possible. In the
approach [24], reactive systems defined by a hierarchy of
finite automata are subject to verification. In the approach
to verification that we are developing, the class of systems
under consideration is the same: reactive systems. The
methods for describing reactive systems differ somewhat in
notation and the constructions used, but both methods are
equally powerful since they are Turing complete [16]. The
semantic graph that we introduced is also a state transition
model, like the Kripke structure, but does not have a
load in the form of temporal logic formulas. Conditioned
regular expressions, which we use as a specification tool,
are logically a weaker formalism than all temporal calculi.
Thus, the approach we develop never goes beyond the
limits outlined in the article [24]. The difference has
another nature, and this difference is much more important
than the differences in notation. The difference is in the
motivation and goals of the study. In the case of verification
of automata-based programs using the method [24], a

method is chosen (model checking), an object is specified
(an automata-based program), and a study is conducted
to determine what can be obtained from this object using
this method. Since the article [24] obtained the maximum
of what can, in principle, be obtained, we can conclude
that the study has achieved its goal, the problem is solved,
and further manipulations are inappropriate. In our case,
everything is the other way around. The goal is to achieve
the ability to automatically guarantee error-free behavior
of the system, the object is pointwise designated (a set of
examples of reactive systems), and it is necessary to find a
minimum of means that ensure the achievement of the goal.
Note that the side effect of the minimality of the means
used is, as a rule (in this case, this is true), the efficiency of
the resulting algorithms and the scalability of the approach.
In such a formulation of the problem, the study should
not be declared complete, since new examples and new
interpretations of infallibility appear in life — there is no
limit to perfection.

This study demonstrated the capability of automatic
verification of conformity to formal program specifications
using the CIAO v.3 language.

Using the CIAO v.3 specification language

Let us consider an example of constructing a behavior
specification for a fragment of an elevator control
system which we started to consider in the article [16]
and continued in the articles [17-20]. This example
demonstrates the expressive power of the CIAO v.3
language and the benefits of introducing the concept of
automata classes and a connection scheme. The fragment
of the system under consideration consists of a control
device and several actuators: a cabin, doors, and lighting.
Technical details are omitted; our focus is on describing the
interactions between the system components.

The behavior of the control device (the Controller
class) is shown in Fig. 1, on the left.

Let us assume that there are four possible types of
influence from the external environment on the system:

1. The user may want to use the system (press the door
handle if the door has a handle, or press the door opening
button, or show a QR code, etc). The system processes
any such event as a provided command (in event).

2. The user may enter the elevator cabin if the doors are
open and the light is on (enter event).

3. The user may want to stop using the system (press the
door handle or press the door opening button from the
inside, etc.). Such an event is designated as out.

4. The user may exit the elevator via open doors (exit
event).

The actions performed during transitions from one
state to another determine the behavior of the system.
The reasons for transitions in the CIAO v.3 language are
limited to two cases: a transition by a call event which
is designated by calling the provided interface with the
“command” stereotype, and a transition by a timer event
which is designated by the after keyword (Fig. 1). We do
not use changing or signaling events that are provided for
in UML. In addition, the CIAO v.3 language does not use
unmotivated (spontaneous) transitions upon completion [21].
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Tin ?out Tenter (rexit

Tor  Ton Jison

Controller J

[! occupied]
/ switch_on ;
open_door

occupy
after(t1)

/ close_door ;
switch_off

out

/ open_door
exit
/ close_door ;
switch_off ; afer()
- / close_door

free
B2l

Device J isOn := (s=+On”) @
o X

door : Device(“Off”) J
open_door on

-
close_door  Off

light : Device(“Off”) J
switch_on . on
=

switch_on~  off

[®)

N

N

occupied isON | cabine : Device(“Off”))

occupy

oD O O

free

Fig. 1. Example description of an elevator control system fragment in the CIAO v.3 language

From the perspective of interaction description, it can 05 out
be seen that the behavior of the actuators is very similar. 06 enter
In other words, each device is either ‘on’ and performsa ~ 07 exit
function or is ‘off” and does not perform a function. In 08 effects // required commands
addition, all devices can report what state they are ‘in’atthe 09 open door
moment: ‘on’ or ‘off”. Therefore, in the CIAO v.3 language, 10 close door
it is sufficient to describe one automata class (the Device 11 switch_on
class, Fig. 1) which implements the behavior of the trigger ~ 12 switch off
[22], and then use three objects (the door, light, and cabin 13 occupy
objects) in the connection scheme, linking their provided — 14 free
on and off interfaces with the required interfaces of the 15 conditions // required queries
control system, as shown in Fig. 1. 16 occupied

In this example, we demonstrate the convenience 17 states
and flexibility of the proposed connection scheme in the 18 Idle -> in[occupied] -> Idle
CIAO v.3 language. The proposed system involves only [else] / switch on; open door -> I2B
one instance of the Controller class and three instances 19 I2B -> after(tl) / close_
of the Device class (Fig. 1). In such cases, the CIAOv.3 ~ door; switch off -> Idle
language allows us to treat a class with one instance asa 20 I2B -> enter / close door;
“singleton” class [17], and not explicitly create a separate occupy -> Busy
instance by specifying the instantiation parameters directly 21 Busy -> out / open door ->
in the class description (initial state Idle). B2I

As stated in a previous article [19], the CIAO v.3 22 B2I -> after(t2) / close_door
language exists in two forms: graphical (shown above in ~ —> Busy
Fig. 1) and textual (Listing 1). When using the developed 23 B2I -> exit / close door;
software tools for automatic verification, the textual form  switch off; free -> Idle
is still used, and the graphical form is an illustration of 24 class Device // description of
human perception. the Device class

25 events
Listing 1. Description of the elevator control system in 26 off
the CIAO v.3 language 27 on
28 assertions // provided queries

01 ciao Elevator // program Elevator 29 is0n
in CIAO language 30 states // states and
02 class Controller // description transitions
of the Controller class 31 Off -> on -> On
03 events // provided commands 32 Off -> off -> Off
04 in 33 On -> on -> On
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34 On -> off -> Off

35 scheme // connection scheme

36 objects // instantiation of
automaton objects

37 controller = new

Controller (Idle)

38 door = new Device (Off)

39 light = new Device (Off)

40 cabin = new Device (Off)

41 links // linked interfaces

42 controller.open door <- door.
on

43 controller.close door <-
door.off

44 controller.switch on <-
light.on

45 controller.switch off <-
light.off

46 controller.occupy <- cabin.on
47 controller.free <- cabin.off
48 controller.occupied <- cabin.
is0n

49 public // public interfaces

50 controller.in

51 controller.out

52 controller.enter

53 controller.exit

54 . // end of program

The example presented in this paper covers only a
small part of elevator control problems. In particular, the
reliability of the elevator control system can be increased
by providing for the handling of exceptional situations
or failures. For example, it is easy to make the doors not
open if the light fails to turn on (the bulb burns out), and
instead escalate the malfunction to the appropriate level
(for example, send an emergency signal to the dispatcher
of the building in which the elevator is installed). For
simplicity, we exclude all such subtleties. The purpose
of this example was to demonstrate the sufficiency of the
CIAO v.3 language tools in the automatic verification of a
reactive system.

Construction of a semantic graph based
on the connection scheme

Having a connection scheme, it is possible to create a
semantic graph, i.e., a directed graph in which all paths
from the initial nodes represent all possible protocols
for executing an automaton program; thus, it defines
semantics.

There are various ways to create a semantic graph. In
particular, in [17, 18], we placed the actions to be performed
in the graph nodes and the conditions to be checked on the
arcs. The software implementation showed that it is more
convenient to place actions with the conditions on graph
arcs, with one action or condition per arc. This slightly
increases the number of nodes but simplifies the machine-
processing algorithm of the graph.

In such agreements, the algorithm for constructing a
semantic graph identifies initial events based on the analysis

of the connection scheme, i.e., events whose arrival from
an outside world can trigger the operation of the system,
and then tracing all possible paths in the state transition
graphs of automaton objects, using the connection diagram
to move from one state transition graph to another. In fact,
constructing a semantic graph is a symbolic execution of an
automaton program [22-27].

In this case, the analysis of the connection diagram
yields an unambiguous result. The system has four external
interfaces (in, out, enter, exit, the remaining interfaces are
connected), and of these, only the in event can be processed
in the initial state; thus, there is a single initial node (it is
indicated by the black circle with an arrow in Fig. 2, a,
bottom), from which a transition is possible by the in event.

Next, in accordance with the state transition graph
(Fig. 2, a, top), the guard condition [occupied] is checked.
If the elevator is occupied, then service is impossible and a
return to the initial state occurs; otherwise, actions switch_
on and open_door are performed (Fig. 2, a, bottom).

Then, two possible scenarios are possible: either the
passenger enters the elevator cabin (enter event) or the
passenger does not dare to do so. Then, after time t1, the
doors are closed, the light is released, and the system
returns to the initial state. All other transitions in Fig. 1
are processed similarly, and the semantic graph is built
automatically by tracing the paths in the state transition
graphs and moving from one automaton object to another
according to the connection scheme. The final result is
shown in Fig. 2, b.

Conditioned regular expressions
as requirement formalization

All possible sequences of actions performed during
the operation of a reactive system determine the overall
behavior of the entire system. Each sequence of actions
is called an execution occurrence protocol. In this case,
protocols may include both acceptable sequences satisfying
the system requirements and unacceptable sequences that
must be classified as erroneous. Our view is that formalized
requirements (specifications) must be provided in the form
of a description of acceptable sequences of events/actions.
Regular expressions with guard conditions (we refer to
them as CREs) can be used to mathematically describe
such specifications.

Various versions of regular expression languages are
currently in use and co-exist [28]. We used the regular
expression language with the operations of union (notation
A|B), concatenation (notation 4AB), and Tseitin iteration
(notation {A#B}) [29]. In addition to the binary operation
of Tseitin iteration, defined by the Kleene iteration as
A#B = A(BA)*, it is also possible to use the unary Kleene
operation where the expression 4# is equivalent to the
expression AA4*, and the expression #4 is equivalent to the
expression A*. Here A and B are arbitrary regular expressions.

A special feature of the CRE is the composition of the
elementary languages used. Firstly, these are the names
of the events and effects that appear on transitions in
the semantic graph (Fig. 2, ). Secondly, it is the guard
conditions which are written in square brackets. Thirdly, it
is the symbol ‘4’ (from the word any) which denotes any
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a

Controller(“Idle”) I

[! occupied
switch_on ;
open_door

after(t1) /
close_door ;
switch_off

[occupied]

switch_off

switch_off

Fig. 2. Fragment of the transformation of the program state graph into a semantic graph (a) and a complete semantic graph
constructed automatically ()

event, effect, or guard condition other than those explicitly
used in the given CRE.

The syntax rules of the CRE language are written in
the same conventions as those used in the article [19]. The
terminal symbols in the rules are underlined. Metasymbols
and nonterminals are highlighted in bold. CRE syntax
diagrams are presented in the Table.

CRE : (SYMBOL | UNION | ITERATION ) #,.
UNION : (CRE #]).
ITERATION: {#CRE } | {CRE#} | { CRE#CRE }.
SYMBOL : name | CONDITION | A.

CONDITION : [ ! name | name ] .

For example, CRE

{#A4},switch_on,{# 4 },open_door,{# A },close
door, {# A },switch_off,{# 4 }

describes the set of all sequences in which actions
switch_on, open_door, close_door, and switch_off occur
exactly once and strictly in the specified order.

Verification of the Automaton Objects Behavior

Verification, i.e., checking that the behavior of an
automaton program corresponds to formal requirements,
is performed automatically. However, the formalization
of requirements, i.e., composing conditioned regular

A:4.
Table. CRE syntax diagram
SYMBOL
CONDITION
_name | 2a |
-OyE
' LA ]
UNION ITERATION
: —~{0 4 A
e p+{5] 4
()
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expressions describing acceptable sequences of actions
and statements, is not performed automatically. This is a
creative, trial-and-error method.

Here, we provide an example illustrating the capabilities
of the proposed verification method. Let the elevator
control system satisfy the natural informal requirement
given below.

Informal requirement. When a passenger enters the
elevator, 1. e., he/she is in the elevator cabin, and exits the
elevator, the light must be switched on. At all other times
the light may be switched off.

This requirement must be formalized, i.e., the
permissible sequences of actions performed to turn on and
off the light, open, and close the doors must be written
down as a regular expression. As an example, we provide
a possible scenario for formalizing the requirement using
the “successive approximation” method.

The first approximation is as follows: to enter the
elevator and exit the elevator, the doors must be open. This
is how the first version of formalization is obtained.

Formal requirement (option 1). The actions of turning
on/off the light and opening/closing the doors must be
performed once in the established order.

This requirement is input to the verification program as
expressed in the sequence

{#4}, switch_on,{#A4}, open_door, {#4}, close
door, {#4}, switch_off, {#4}

switch_off

entergafter(t1)

U 2

7/
close_door close_door,
P

1
\ close_door Lopen_door
‘ t

/ aﬁer(t2) exit

5ose_door
1

. /
\ switch_off ,
N - s

O

I
I
I
I
I
I
I
1
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I free
|
I
I
I
1
I
I
1
I
I
1
I
I
1
I
1
I
I
1
I
I
1

Result: False, i.c., the requirement is not met (Fig. 3, @).

The door-opening action open_door is encountered
after the door-closing action close_door. The transition
along the arc open_door and all subsequent transitions are
considered erroneous and are marked red in the semantic
graph; the transition along the arc switch_off also does not
satisfy the following requirement: the arc closes the cycle,
and in this requirement all actions are performed once
outside the cycle.

Second approximation: it is necessary to consider the
cyclic nature of the process.

Formal requirement (option 2). The actions of turning
on/off the light and opening/closing the doors must be
performed cyclically in the established order:

{#({#A4}, switch_on,{#4 },open_door,{#4 },close
door, {#4 },switch_off,{#4 })}

Result: False (Fig. 3, b). The door-opening action
open_door is encountered after the door-closing action
close_door; the transition along the arc open_door and all
subsequent transitions are considered erroneous and are
marked red in the semantic graph.

In the third attempt to formalize formal requirement
(option 1), the shortcomings of the first two were
eliminated.

Formal requirement (option 3). The actions of
turning on/off the light and opening/closing the doors must

switch_off

‘\ close_door Lopen_door
\
e
\
/ aﬂer(tZ) exit
Sose_door

‘\switch_off i

\AO,’

Fig. 3. Verification result of requirement: option 1 (a) and option 2 (b)
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be performed cyclically in the established order, while
between the actions of turning on/off the light there may be
an arbitrary number of actions of opening/closing the doors
(but not less than one).

{#({#4 },switch_on,{#4 },{({#A4 },open_door,{#4 },
close_door,{#4 })#},{#A },switch_off,{#4 })}

Result: True.

In other words, the fulfillment of the formal requirement
is verified: all sequences defined by the semantic graph
satisfy the regular expression.

How adequate is the formalization? This is a legitimate
and a difficult question. Informal inductive reasoning
shows that if a passenger was outside the elevator cabin at
the initial moment, he/she would enter the elevator, stay in
the cabin, and exit the elevator only when the light is on,
and the immutable requirement “the light must be on” is
fulfilled.

A passenger may act in bad faith: call the elevator
but do not enter it and leave for another business. In this
case, the light is turned on for some time (namely, t1) in
vain. After the timeout, the light is turned off; therefore,
the optional requirement “the light may be turned off” is
fulfilled.

Discussion and prospects for further research

The proposed automatic verification method was tested
on several examples and demonstrated good applicability.
In future research, we plan to expand the scope of the
proposed method and the CIAO v.3 language in at least the
following five directions.

1. The concept of a connection scheme between interacting
automaton objects allows for both statically and
dynamic interactions between automaton objects. This
capability is especially important for reactive systems
whose behavior changes according to environmental
conditions.

2. Automaton objects allow for unlimited structural
decomposition while maintaining object-oriented
encapsulation. The concept of private interfaces
allows us to detail both the connection scheme and

References

1. Kulyamin V.V. Software Verification Methods. Moscow, ISP RAS,
2008, 111 p. (in Russian)

2. Shalyto A.A. Validation of state machine specifications. Scientific and
Technical Journal of Information Technologies, Mechanics and Optics,
2023, vol. 23, no. 2, pp. 436-438. (in Russian). https://doi.
org/10.17586/2226-1494-2023-23-2-436-438

3. Lavrov S.S. Programming. Mathematical Foundations, Tools, Theory.
St. Petersburg, BHV Petersburg Publ., 2001, 320 p. (in Russian)

4. Dijkstra E.W. 4 Discipline of Programming. Prentice Hall, 1976, 217 p.

5. Karpov Iu.G. Model Checking. Verification of Parallel and Distributed
Software Systems. St. Petersburg, BHV-Petersburg, 2010, 560 p. (in
Russian)

6. Vinogradov R.A., Kuz’min E.V., Sokolov V.A. Verification of automata
programs using CPN/Tools. Modelirovanie i analiz informacionnyh
sistem, 2006, vol. 13, no. 2, pp. 4-15. (in Russian)

7. Shalyto A. Automata-based programming paradigm. Scientific and
Technical Journal of Information Technologies, Mechanics and Optics,
2008, vol. 53, pp. 3-23. (in Russian)

the formal specification of behavior at nested levels.

This capability is necessary for verifying complex

reactive systems which often consist of many relatively

independent subsystems.

3. The provided queries can be generalized so that they
deliver results not only of Boolean types, but also of
any other enumerated types. In terms of conventional
programming languages, this means using not only
branching by condition (the “if” operator) but also
branching by value (the “switch” operator). This feature
is very useful in various discrete control systems. It is so
useful thatit carries the main semantic load of the book [21].

4. The capabilities of the link diagram can be expanded so
that the provided command interface of one automaton
object can be linked to the required command interfaces
of several other automaton objects at once. This feature
allows us to exploit the competitive advantages of the
client-server architecture within the framework of
automaton programming.

5. It is also possible to link the required command
interface of a single automaton object with the provided
command interfaces of other automaton objects. This
implies the concurrent launch of several interacting
processes. It is difficult to overestimate this feature if
the execution of the responsive system is assumed to be
on multiprocessor hardware.

These priority improvements listed above do not
exhaust the potential capabilities of the proposed
model. The provided interfaces can be linked with the
required interfaces of the same state machine, and the
automaton object sends events to itself. Note that the
capabilities of the model are not limited. The proposed
behavior model is essentially asynchronous, parallel, and
nondeterministic. It is quite easy to obtain a conventional
sequential deterministic computation scheme: simply pull
the automaton objects into a chain, linking the required
interfaces of the previous object with the provided
interfaces of the next object. However, if sequential
execution is not required, the proposed model enables the
construction of natural parallel schemes that are effective
on modern platforms.

Jluteparypa

1. Kymsamus B.B. Metozs! BepuHKanuy mporpaMMHOro 00eCIeIeHHsL.
M.: UCIT PAH, 2008. 111 c.

2. Ianeito A.A. Banunanus apromatHbix crenudukanuii / HayuHo-
TEXHUYCCKUIl BECTHUK MH()OPMAOHHBIX TEXHOJIOTUH, MEXaHUKH U
onruku. 2023. T. 23. Ne 2. C. 436-438. https://doi.org/10.17586/2226-
1494-2023-23-2-436-438

3. JlaBpos C.C. IIporpammupoBanue. MaremMaTHueCKUe OCHOBBI, Cpe/l-
ctBa, Teopus. CI16.: BXB-Iletepbypr, 2001. 320 c.

4. Dijkstra E.W. A Discipline of Programming. Prentice Hall, 1976. 217 p.

5. Kapnos FO.I. Model Checking. Bepudukarus napauieabHbIX U pac-
npenenennbix cucteM. CI16.: BXB-ITerepOypr, 2010. 560 c.

6. Bunorpaznos P.A., Ky3ssmun E.B., CoxosnoB B.A. Bepudukanus aBro-
MatHBIX nporpamm cpencrsamu CPN/Tools // MogpenupoBanue u
aHanu3 nHpopmarmonHeix cucteM. 2006. T. 13. Ne 2. C. 4-15.

7. laneito A.A. Ilapagurma aBTOMaTHOrO MPOTPAMMHUPOBaHUS //
Hayuno-rexunueckuii BecTHuk CaHKT-IleTepOyprekoro rocynapcTBeH-
HOTO YHMBEPCHTETa HH(OOPMAIMOHHBIX TEXHOIOTHH, MEXaHUKU U
ontuku. 2008. Ne 53. C. 3-23.

336

Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHBLIX TEXHONOMMIA, MEXaHUKKN 1 onTukn, 2025, Tom 25, N2 2
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 2


https://doi.org/10.17586/2226-1494-2023-23-2-436-438
https://doi.org/10.17586/2226-1494-2023-23-2-436-438
https://doi.org/10.17586/2226-1494-2023-23-2-436-438
https://doi.org/10.17586/2226-1494-2023-23-2-436-438

F.A. Novikov, |.V. Afanasieva, L.N. Fedorchenko, T.A. Kharisova

8.

9.

20.

21.

22.

23.

24.

25.

26.

217.

Polikarpova N.I., Shalyto A.A. Automata-Based Programming. St.
Petersburg, Piter Publ., 2011, 176 p. (in Russian)

Novikov F.A., Tikhonova U.N. An Automata Based Method for
Domain Specific Languages Definition. Part 1. Information and
Control Systems, 2009, no. 6 (43), pp. 34-40. (in Russian)

. Novikov F.A., Tikhonova U.N. An Automata Based Method for

Domain Specific Languages Definition. Part 2. Information and
Control Systems, 2010, no. 2 (45), pp. 31-37. (in Russian)

. Novikov F.A., Tikhonova U.N. An Automata Based Method for

Domain Specific Languages Definition. Part 3. Information and
Control Systems, 2010, no. 3 (46), pp. 29-37. (in Russian)

. Novikov F., Fedorchenko L., Vorobiev V., Fatkieva R.,

Levonevskiy D. Attribute-based approach of defining the secure
behavior of automata objects. Proc. of the 10 International
Conference on Security of Information and Networks (SIN'17), 2017,
pp. 67-72. https://doi.org/10.1145/3136825.3136887

. Novikov F.A., Afanasyeva [.V. Cooperative interaction of automata

objects. Information and control systems, 2016, no. 6 (85), pp. 50-64.
(in Russian). https://doi.org/10.15217/issn1684-8853.2016.6.50

. Afanasieva 1.V. Data acquisition and control system for high-

performance large-area CCD Systems. Astrophysical Bulletin, 2015,
vol. 70, no. 2, pp. 232-237. https://doi.org/10.1134/
$1990341315020108

. Levonevskiy D., Novikov F., Fedorchenko L., Afanasieva I.

Verification of internet protocol properties using cooperating
automaton objects. Proc. of the 12!h International Conference on
Security of Information and Networks (SIN'19), 2019, pp. 1-4. https://
doi.org/10.1145/3357613.3357639

. Afanasyeva 1.V., Novikov F.A., Fedorchenko L.N. Methodology for

constructing event-driven software systems using the CIAO
specification language. SPIIRAS Proceedings, 2020, vol. 19, no. 3,
pp- 481-514. (in Russian). https://doi.org/10.15622/sp.2020.19.3.1

. Afanasieva I.V., Novikov F.A., Fedorchenko L.N. Verification of

event-driven software systems using the specification language of
cooperating automata objects. Scientific and Technical Journal of
Information Technologies, Mechanics and Optics, 2023, vol. 23,
no. 4, pp. 750-756. https://doi.org/10.17586/2226-1494-2023-23-4-
750-756

. Novikov F.A., Afanasyeva 1.V., Fedorchenko L.N., Kharisova T.A.

Application of conditional regular expressions in problems of
verification of control automata programs. /4" All-Russian
conference on control problems. Collection of Scientific Papers.
Moscow, [IPU RAS, 2024, pp. 2651-2655. (in Russian)

. Novikov F.A., Afanasieva 1.V., Fedorchenko L.N., Kharisova T.A.

Specification language for automatabased objects cooperation.
Scientific and Technical Journal of Information Technologies,
Mechanics and Optics, 2024, vol. 24, no. 6, pp. 1035-1043. https://
doi.org/10.17586/2226-1494-2024-24-6-1035-1043

Novikov F.A., Afanasyeva 1.V., Fedorchenko L.N., Kharisova T.A.
Application of Conditional Regular Expressions in Verification
Problems of Control Automata Programs. Proc. of Materials of the
All-Russian Scientific Conference “PhysMech Science Week”,
St. Petersburg, POLYTECH-PRESS, 2024, pp. 167-170. (in Russian)
Novikov F.A., Ivanov D.Iu. UML Modeling. Theory, Practice, Video
Course. St. Petersburg, Professional’naja literature Publ., 2010, 640 p.
(in Russian)

Shalyto A.A. Switch-Technology. Algorithmization and Programming
of the Logical Control Problems. St. Petersburg, Nauka Publ., 1998,
617 p. (in Russian)

Velder S.E., Shalyto A.A. Methods of verification of models of
automata-based programs. Scientific and Technical Journal of
Information Technologies, Mechanics and Optics, 2008, vol. 53,
pp. 123-137. (in Russian)

Velder S.E., Lukin M.A., Shalyto A.A., laminov B.R. Verification of
Automata-Based Programs. St. Petersburg, Nauka Publ., 2011, 244 p.
(in Russian)

Kuzmin E.V., Sokolov V.A. Modeling, specification, and verification
of automaton programs. Programming and Computer Software, 2008,
vol. 34, no. 1, pp. 27-43. https://doi.org/10.1134/50361768808010040
Gamma E., Helm R., Johnson R., Vlissides J. Design Patterns:
Elements of Reusable Object-Oriented Software. Pearson Education,
1994, 416 p.

Gerasimov A.Y. Directed dynamic symbolic execution for static
analysis warnings confirmation. Programming and Computer
Software, 2018, vol. 44, no. 5, pp. 316-323. https://doi.org/10.1134/
S036176881805002X

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

IMonukapnosa H.J., llansiro A.A. ABTOMaTHOE IIPOrpaMMUPOBAHHE.
CII6.: TTurep, 2010. 176 c.

. HoBuxoB ®@.A., Tuxonosa Y.H. ABTOMaTHBIH METO/ OINpeeleHUs

IPOOJIEMHO-OPHEHTUPOBAHHBIX sA3bIKOB. Y. 1 // H(popManmoHHO-
ynpasistomue cucreMsl. 2009. Ne 6 (43). C. 34-40.

HoBukoB @.A., TuxonoBa Y.H. ABTOMaTHBIN METO/ ONpeeNeHUs
IPOOJIEMHO-OPHEHTUPOBAHHBIX s3bIKOB. Y. 2 // H(popManoHHO-
ynpasisomue cucremsl. 2010. Ne 2 (45). C. 31-37.

HoBukos @.A., TuxonoBa Y.H. ABTOMaTHBIN METO/ ONpeeeHUs
IPOOJIEMHO-OPHEHTUPOBAHHBIX 3bIKOB. Y. 3 // HpopMannoHHO-
ynpasistomue cucremsl. 2010. Ne 3(46). C. 29-37.

Novikov F., Fedorchenko L., Vorobiev V., Fatkieva R.,
Levonevskiy D. Attribute-based approach of defining the secure
behavior of automata objects // Proc. of the 10th International
Conference on Security of Information and Networks (SIN’17). 2017.
P. 67-72. https://doi.org/10.1145/3136825.3136887

Hosuxos ®.A., Apanacbea 1.B. KooneparusHoe B3aumonencraue
aBTOMATHBIX 00bEKTOB // TH(OPMAMOHHO-yIPaBIISIONINE CUCTEMBL.
2016. Ne 6 (85). C. 50-64. https://doi.org/10.15217/issn1684-
8853.2016.6.50

Afanasieva I.V. Data acquisition and control system for high-
performance large-area CCD Systems // Astrophysical Bulletin. 2015.
V. 70. N 2. P. 232-237. https://doi.org/10.1134/S1990341315020108
Levonevskiy D., Novikov F., Fedorchenko L., Afanasieva I.
Verification of internet protocol properties using cooperating
automaton objects // Proc. of the 12th International Conference on
Security of Information and Networks (SIN’19). 2019. P. 1-4. https://
doi.org/10.1145/3357613.3357639

Adanacbea U.B., HosukoB ®@.A., ®enopuenko JI.H. Meronuka
MOCTPOCHHS COOBITUITHO-YIPABISEMBIX IPOTPAMMHBIX CHCTEM C
ucronb3oBaHueM s3bika crermdurann CIAO // Tpymst CITMUPAH.
2020. T. 19. Ne 3. C. 481-514. https://doi.org/10.15622/sp.2020.19.3.1
Afanasieva 1.V., Novikov F.A., Fedorchenko L.N. Verification of
event-driven software systems using the specification language of
cooperating automata objects // Scientific and Technical Journal of
Information Technologies, Mechanics and Optics. 2023. V. 23. N 4.
P. 750-756. https://doi.org/10.17586/2226-1494-2023-23-4-750-756
Hosuxos ®@.A., Adpanacnea U.B., ®enopuenxo JI.H., Xapucosa T.A.
TIprMeHeHne YCIOBHBIX PETYIISIPHBIX BBIPQKCHHIT B 3a/1a4ax Bepupu-
Kallu¥ YHPaBISIOIINX aBTOMATHBIX nporpaMM. COOpHUK HayYHBIX
tpynoB XIV Beepoccuiickoro coseranus mo npodiemMam ynpasie-
Hus. M.: MITY PAH, 2024. C. 2651-2655.

. Novikov F.A., Afanasieva 1.V., Fedorchenko L.N., Kharisova T.A.

Specification language for automatabased objects cooperation //
Scientific and Technical Journal of Information Technologies,
Mechanics and Optics. 2024. V. 24. N 6. P. 1035-1043. https://doi.
org/10.17586/2226-1494-2024-24-6-1035-1043

Hosukos ®.A., AdpanacseBa 1.B., ®enopuenko JI.H., Xapucosa T.A.
[IprmeHeHune yCIOBHBIX PEryJIsSPHBIX BEIPAKCHHUIT B 3a1a4ax Bepudu-
Kalli{ yIPaBIIOIINX aBTOMATHBIX porpaMM. COOpHUK MaTepuaioB
Bceepoccniickoii Hayunolt koHbepennun “Henemns nayxu OuzMex”.
CI16.: ITOJIMTEX-ITPECC, 2024. C. 167-170.

Hosuxos ®.A., Banos /1.1O0. Monenuposanue na UML. Teopus,
npakTrka, Bugeokype. CII6.: [Ipodeccronansnas mureparypa, 2010.
640 c.

HanbiTo A.A. Switch-TexHonorus. AIropuTMu3anus U NporpaMmMu-
poBaHue 3amad orudeckoro ynpasnenus. CI16.: Hayka, 1998. 617 c.
Benpzep C.O., llanbiro A.A. MeTozibl BeprHKaImu MoJienei aBTo-
MaTHbIX nporpamm // Hayuno-texHuueckuili BecTHUK CaHKT-
TleTepOyprckoro rocyjapcTBEHHOTO YHHBEPCUTETa HH()OPMAIHOH-
HBIX TEXHOJOTHH, MexaHuku u ontuku. 2008. Ne 53. C. 123-137.
Benbnep C.D., Jlykun M.A., lllansito A.A., SIMmuHoB B.P.
Bepuduxarnus aBromarasix nporpamm. CII16.: Hayka, 2011. 244 c.
Kysemun E.B., Cokonos B.A. Mozenupopanue, cienuduxanus u
BepU(HKALMI «aBTOMAaTHBIX» nporpaMm // IIporpaMmMmupoBanue.
2008. T. 34. Ne 1. C. 38-60.

l'amma 3., Xenm P., [Lroncon P., Banceunec /1. Iarrepubl 00bek-
THO-OPUEHTUPOBaHHOTO npoektupoBanus. CI16.: [Turep, 2020. 448 c.
T'epacumoB A 1O. HanpapieHHOE JUHAMIYECKOE CHMBOJIBHOE HCIION-
HEHHE MPOrpamMM JUIsl IOATBEPKACHHs OMNOOK B IporpaMmmax //
IIporpammuposanue. 2018. Ne 5. C. 31-42. https://doi.org/10.31857/
S013234740001213-9

Friedl J.E.F. Mastering Regular Expressions: Understand Your Data
and Be More. O’Reilly Media, Inc., 2006. 544 p.

Fedorchenko L., Baranov S. Equivalent transformations and
regularization in context-free grammars // Cybernetics and

Hay4HO-TexXHU4eCcKuii BECTHUK MHDOPMALIMOHHbLIX TEXHONOM M, MeXaHUKK 1 onTukun, 2025, Tom 25, N2 2
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 2

337


https://doi.org/10.1145/3136825.3136887
https://doi.org/10.15217/issn1684-8853.2016.6.50
https://doi.org/10.1134/S1990341315020108
https://doi.org/10.1134/S1990341315020108
https://doi.org/10.1145/3357613.3357639
https://doi.org/10.1145/3357613.3357639
https://doi.org/10.15622/sp.2020.19.3.1
https://doi.org/10.17586/2226-1494-2023-23-4-750-756
https://doi.org/10.17586/2226-1494-2023-23-4-750-756
https://doi.org/10.17586/2226-1494-2024-24-6-1035-1043
https://doi.org/10.17586/2226-1494-2024-24-6-1035-1043
http://D.Iu
https://doi.org/10.1134/s0361768808010040
https://doi.org/10.1134/S036176881805002X
https://doi.org/10.1134/S036176881805002X
https://doi.org/10.1145/3136825.3136887
https://doi.org/10.15217/issn1684-8853.2016.6.50
https://doi.org/10.15217/issn1684-8853.2016.6.50
https://doi.org/10.1134/S1990341315020108
https://doi.org/10.1145/3357613.3357639
https://doi.org/10.1145/3357613.3357639
https://doi.org/10.15622/sp.2020.19.3.1
https://doi.org/10.17586/2226-1494-2023-23-4-750-756
https://doi.org/10.17586/2226-1494-2024-24-6-1035-1043
https://doi.org/10.17586/2226-1494-2024-24-6-1035-1043
https://doi.org/10.31857/S013234740001213-9
https://doi.org/10.31857/S013234740001213-9

Verification of the formal requirements for the system behavior based on automaton objects...

28. Friedl J.E.F. Mastering Regular Expressions: Understand Your Data
and Be More. O’Reilly Media, Inc., 2006, 544 p.

29. Fedorchenko L., Baranov S. Equivalent transformations and
regularization in context-free grammars. Cybernetics and Information
Technologies, 2015, vol. 14, no. 4, pp. 29—44. https://doi.org/10.1515/
cait-2014-0003

Authors

Fedor A. Novikov — D.Sc., Senior Researcher, Professor, Peter the Great
St. Petersburg Polytechnic University (SPbPU), Saint Petersburg, 195251,
Russian Federation; s¢ 16441904500, https://orcid.org/0000-0003-4450-
0173, fedornovikov51(@gmail.com

Irina V. Afanasieva — PhD, Head of Laboratory, Special Astrophysical
Observatory of the Russian Academy of Sciences (SAO RAS), Nizhny
Arkhyz, 369167, Russian Federation, s¢ 57210431774, https://orcid.
0rg/0000-0003-4225-4124, riv6 1 5@gmail.com

Ludmila N. Fedorchenko — PhD, Senior Researcher, St. Petersburg
Federal Research Center of the Russian Academy of Sciences, Saint
Petersburg, 199178, Russian Federation, s¢ 36561350100, https://orcid.
org/0000-0002-4008-93 16, Inf@iias.spb.su

Taisia A. Kharisova — Engineer, loffe Institute, Saint Petersburg,
194021, Russian Federation, https://orcid.org/0009-0002-3456-0471,
tais.harisova@mail.ru

Received 25.12.2024
Approved after reviewing 27.02.2025
Accepted 30.03.2025

©Noe

Information Technologies. 2015. V. 14. N 4. P. 29—44. https://doi.
org/10.1515/cait-2014-0003

ABTOpBI

HoBukos ®eiop AsleKcaHIPOBHY — JOKTOP TEXHUYECKUX HAyK, CTap-
Ui HayIHBIH COTPYAHUK, Ipodeccop, CankT-IleTepOyprekuii MomuTex-
Huueckuil yrusepcutet Ilerpa Bemukoro, Cankr-IlerepOypr, 195251,
Poccuiickass ®enepannst, 8¢ 16441904500, https://orcid.org/0000-0003-
4450-0173, fedornovikov51(@gmail.com

AdanacbeBa Mpuna BUKTOpOBHA — KaHIMJAT TEXHUUYECKUX HayK,
3aBe/ytomuii aboparopueii, CriennanpHas actpodusnueckas odcepsa-
topust Poccuiickoii akanemun Hayk, Hukauit Apxei3, 369167, Poccuiickast
Denepauns, s¢ 57210431774, https://orcid.org/0000-0003-4225-4124,
rivo 1 5@gmail.com

®enopuenko Jliogmuiaa HukonaeBHa — KaHAWIAT TEXHUYECKUX HayK,
crapimit HayuHbIi cotpyauK, Cankt-IletepOypreknii denepanbHblii Hc-
ciesioBarenbekuii ieHTp Poccuiickoii akanemun Hayk, Cankr-IlerepOypr,
199178, Poccuiickas deneparus, [s¢ 36561350100, https://orcid.org/0000-
0002-4008-9316, Inf@jias.spb.su

Xapucoa Taucusi AHBapoBHa — uHxeHep, ODU3UKO-TEXHUYECKUH UH-
ctutyT uM. A.®. Hodde Poccniickoit akanemun Hayk, Cankr-IlerepOypr,
194021, Poccuiickas enepauns, https://orcid.org/0009-0002-3456-0471,
tais.harisova@mail.ru

Cmamusi nocmynuna 6 peoakyuro 25.12.2024
Ooobpena nocne peyensuposanus 27.02.2025
Ipunama x newamu 30.03.2025

Pa6oTta nocTynHa no nuueHsum
Creative Commons
«Attribution-NonCommercial»

338

Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHBLIX TEXHONOMMIA, MEXaHUKKN 1 onTukn, 2025, Tom 25, N2 2
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 2


https://doi.org/10.1515/cait-2014-0003
https://doi.org/10.1515/cait-2014-0003
http://D.Sc
https://orcid.org/0000-0003-4450-0173
https://orcid.org/0000-0003-4450-0173
mailto:fedornovikov51@gmail.com
https://orcid.org/0000-0003-4225-4124
https://orcid.org/0000-0003-4225-4124
mailto:riv615@gmail.com
https://orcid.org/0000-0002-4008-9316
https://orcid.org/0000-0002-4008-9316
mailto:lnf@iias.spb.su
https://orcid.org/0009-0002-3456-0471
mailto:tais.harisova@mail.ru
https://doi.org/10.1515/cait-2014-0003
https://doi.org/10.1515/cait-2014-0003
https://orcid.org/0000-0003-4450-0173
https://orcid.org/0000-0003-4450-0173
mailto:fedornovikov51@gmail.com
https://orcid.org/0000-0003-4225-4124
mailto:riv615@gmail.com
https://orcid.org/0000-0002-4008-9316
https://orcid.org/0000-0002-4008-9316
mailto:lnf@iias.spb.su
https://orcid.org/0009-0002-3456-0471
mailto:tais.harisova@mail.ru

