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Abstract

Information retrieval using machine learning algorithms is based on transforming the original multimodal documents
into vector representations. These vectors are then indexed, and the search is performed within this index. A popular
method for indexing is vector clustering such as with k-nearest neighbors. We propose a clustering method based on
an ensemble of Oblivious Decision Trees and introduce a vector search algorithm built on this method. The proposed
clustering method is deterministic and supports parameter serialization for the ensemble. The essence of the method
involves training an ensemble of binary or ternary Oblivious Trees. This ensemble is then used to compute a hash for
each of the original vectors. Vectors with the same hash are considered to belong to the same cluster. For searching,
several clusters are selected whose centroids are closest to the vector representation of the search query followed by a
full search of the vector representations within the selected clusters. The proposed method demonstrates search quality
comparable to widely used industry-standard vector search libraries, such as Faiss, Annoy, and HNSWlib. For datasets
with an angular distance metric, the proposed search method achieves accuracy equal to or better than existing solutions.
For datasets with a Euclidean distance metric, the search quality is on par with existing solutions. The developed method
can be applied to improve search quality in the development of multimodal search systems. The ability to serialize
enables clustering data on one computational node and transferring ensemble parameters to another, allowing the
proposed algorithm to be utilized in distributed systems.
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AHHOTALUA

BBenenne. THQOpMaMOHHBIN MOUCK C MCIIOJIB30BAHHEM AJITOPUTMOB MAalIMHHOTO OOYYCHHSI OCHOBBIBACTCS Ha
npeoOpa30BaHUN UCXOIHBIX MYJIBTHMOJAIBHBIX JIOKYMCHTOB B BEKTOPHBIC MPECTABICHUS, Jajiee CTPOUTCS MHJICKC
BEKTOPHBIX MPEICTABICHUI M MPOU3BOIMTCS MOUCK BHYTPH MHACKCA. [[OMyIsIpHBIM CIIOCOOOM TIOCTPOCHUS MHIIEKCA
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Vector search using method of clustering using ensemble of oblivious trees

SIBISIETCS KJIaCTepU3alisl BEKTOPHBIX NMPEICTAaBICHUH, HAIIPUMeEp ¢ IMOMOIIBIO k-Oimkaimux coceneil. B padore
MIPE/UIOKEH METOJ KJIaCTEPU3aIMU C ITOMOIIBI0 aHCaMOJIsi HEOPEXKHBIX PEIIAIOINX JIePEBbEB, & TAKXKE AITOPUTM
BEKTOPHOTO NTOMCKA Ha OCHOBE 3TOr0 MeToza. Pa3paboTaHHbINH METO/ KIIacTepU3alluy SBISAETCS JeTEPMUHUPOBAHHBIM
1 IIPEJOCTaBISIET BOZMOXKHOCTD CEpPHATN3alUK TapaMeTpos ancamOis. Metod. CyIiHOCTh METOIa COCTOUT B 00yUEeHHN
aHcaMOIIs ABOMYHBIX MM TPOUYHBIX HEOPEKHBIX PEHIAIONINX JIEPEBHEB. DTOT aHCAMOIb HCTIONB3YETCS IS BBIUHCICHUS
XdMIa IS KaKIOTO M3 MCXOMHBIX BEKTOPHBIX NpEACTaBICHUH. BekTopHbIe mpecTaBieHns, NMeIomue OANHaKOBEIN
XOIII, CYUTAIOTCS IPUHAISKAINMH K OTHOMY KiacTepy. [lyist moncka BeIOMpaeTcst HECKOJIBKO KIIaCTEePOB, IIEHT PO IBI
KOTOPBIX Hanbosee MpUOIMKEHBI K BEKTOPHOMY TIPEJICTABICHHIO IIOMCKOBOTO 3aIpoca, IMOCIe Yero MpON3BOIUTCS
TIOJTHBIN Nepe®op BEKTOPHBIX MPEACTaBICHUI BHIOpaHHBIX Ki1acTepoB. OCHOBHBIE pPe3yabTaThl. [IpencraBieHHbIN
METO/]] IIOKa3bIBACT KA4€CTBO MIOMCKA, CPABHUMOE C LIIMPOKO HCIIOIb3YEMbIMU B HHAYCTPUH OUOIMOTEKaMH BEKTOPHOTO
noucka Faiss, Annoy 1 HNSWIib. [lns nporecTupoBaHHOro Habopa JaHHBIX ¢ €BKIMJOBOM METPUKOI pacCTOSHUS
MIPEeUIOKEHHBIH METOJT TOMCKA MEATIEHHEE, YeM CYIIECTBYIOIIHE PEIISHHUs, HO ISl IPOTECTUPOBAHHOTO HAOOpa JaHHBIX
C YIJIOBOU METPHKON PacCTOSHUS Pe3yIbTaT CpaBHUM min mydmre. Oocy:kaeHue. Pa3paboTaHHEIH METO MOXKET OBITh
MIPUMEHEH JUIS YIyqIIeHHUs Ka4ecTBa ITOUCKa IPH CO3AaHHU MYJIBTUMOJAIBHBIX MOUCKOBBIX CHCcTeM. Bo3MOXKXHOCTE
CepHAITH3aINH MTO3BOJISIET KJIACTEPH30BaTh JaHHbIE HAa OJJHOM BEIYHCIIMTEILHOM Y3IIe U ITepeaaBaTh HapaMeTphbl aHcaMOIs
Ha JIpyroi BEIMUCIHUTEIBHBIN Y3, 9TO JaeT BO3MOKHOCTB UCIIOJIB30BATh MPEIUIOKEHHbIN alTOPUTM B pacpeaesIeHHBIX
cUCTeMax.

Kirouesblie ciioBa

BEKTOPHBIE [IPE/ICTABIICHNS, BEKTOPHBII MOUCK, SMOCIMHT, HEOPEKHOE peLIalolee AePeBO

Ceblaka nus uutupoBanus: Tomunos H.A., Typos B.IIL., babasun A.A., [InatonoB A.B. BexTopHblil mouck
METOJIOM KJACTepPH3aIMK ¢ MOMOILIbIO aHCAaMOJIs HEOPEKHBIX pelarmux aepesbes // HayuHo-TeXHHYeCKHi
BECTHUK MH()OPMAIMOHHBIX TEXHOJIOTHH, MexaHuKu U ontuku. 2025. T. 25, Ne 2. C. 339-344 (ua anru. s3.). doi:

10.17586/2226-1494-2025-25-2-339-344

Introduction

One of the methods for organizing search in large
databases of heterogencous data and documents involves
a machine learning-based approach. This approach
transforms data into representations that reflect the semantic
structure of both textual [1] and multimodal documents in
the form of vector embeddings being sequences of floating-
point numbers. In this framework, efficient search can be
achieved by constructing an index of these embeddings,
transforming the search query into a vector embedding, and
performing a nearest neighbor search using the constructed
index [2]. Clustering, or grouping, vector embeddings is
among the most popular indexing methods. In this method,
the search index consists of cluster centroids. To perform
a search, the system selects one or more centroids closest
to the query and then performs an exhaustive search
among the vector embeddings within the corresponding
clusters. This indexing approach reduces the number
of vector embeddings considered during the search to
those within a single cluster [3]. A common clustering
method for this purpose is the k-Nearest Neighbor (ANN)
algorithm [4].

The most significant drawback of this method is its
computational complexity. To determine which cluster
a given vector embedding belongs to, it is necessary to
calculate the distance from the embedding to all centroids
of all existing clusters. It might also be necessary to, after
assigning the embedding to the nearest cluster, recalculate
the centroid of that cluster. Performing these computations
requires not only access to the centroids of all clusters
but also access to all vectors associated with the target
centroid, which complicates the use of this algorithm
in distributed systems. Less critical drawbacks include
the use of a pseudorandom number generator during the
clustering process, which may lead to different outputs for
identical input data, as well as the limited number of hyper
parameters available in the algorithm.

In this paper we propose a clustering method using an
ensemble of Oblivious Decision Trees (ODT) [5] as well as
an approximate search method leveraging this clustering.
This clustering assigns a hash to each vector embedding
which serves as a cluster identifier and can be used to
implement a Bloom filter for vector embeddings [6].
The rules for computing this hash are deterministic and
independent of the vector data, allowing them to be
serialized and used separately from the vector data. Our
hypothesis is that this clustering method overcomes the
drawbacks of the ANN method while providing comparable
search accuracy.

Description of proposed clustering method

In this study, we propose an approximate vector search
method based on clustering using an ensemble of binary
or ternary ODT. Since training trees require significant
computational effort, we build the ensemble by randomly
selecting a training sample of size N = N, % TrainRatio,
where Ny, 450 15 the amount of vectors in the dataset,
0.1 < TrainRatio < 1. We transform each vector embedding
of dimension d from the sample into M vector embeddings
of a smaller dimension d,,, created by randomly selecting
components from the original embedding. We also store a
mapping table that links the indices of the components in
the generated embeddings to their indices in the original
embedding. This approach allows some components of the
original embedding to remain unused or to appear multiple
times, including multiple occurrences within the same
generated embedding. After this transformation, we train a
tree for each of the M sets of generated embeddings. These
M trained trees form the ensemble.

The essence of the algorithm for constructing a ternary
ODT of depth for vector embeddings of dimension d lies
in selecting a set of elements (K}; X)), where 1 < < depth,
1 <K;<d,, at each tree level, such that the set of vector
embeddings V is divided into three non-overlapping
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subsets based on whether the K;-th component of a
vector embedding from V' is less than X-delta, greater
than X; + delta, or approximately equal to X; within the
delta tolerance. This delta parameter defines the size of a
group and is a configurable parameter of the structure. The
partitioning rule is a hyper parameter, and in this study, we
use a partitioning approach that minimizes the variance of
distances between each vector embedding and the average
vector embedding for that group.

The process is iterative and continues until the
required depth is reached. At each step, the next division
is performed for each of the three groups formed by the
previous division. Thus, after the first division, the original
set of vector representations V' is split into three parts, V7,
V5, and V3. On the next stage (the second level), each of
the groups V;, V,, and V3 is divided into three parts again,
resulting in a total of nine groups, and so on. A distinctive
feature of ODT is that the division for all groups at level
J 1s done using the same value X; [7]. Consequently, when
dividing V, a situation may arise where the K;-th component
of all vector representations in V' is strictly greater than
or strictly less than X; and thus all vector representations
end up in one resulting group /;, while the groups V5, and
V3 are empty. This is a normal situation, but as a result,
the final number of non-empty groups may be less than
logs(depth).

After performing the calculations, the tree is described
by an array of tuples (K;; X)) and the delfa parameter. Each
node at depth j represents the operation “is the K -th value
of the vector representation less than X-delta, greater than
X; + delta, or approximately equal to X; within the tolerance
of delta”.

The process of individual tree construction is repeated
for each of the M sets of vector representations to form
the ensemble. After constructing the ensemble of trees,
at the final stage, it is necessary to use the previously
saved correspondence table to restore the K; index for

each element, associating the index of the element to be
compared, within the M subvector with the d,,, dimensions,
with the index of this element in the original vector
representation of size d.

For each vector from the original dataset, calculations
can be performed using the obtained tree, encoding the
comparison result at each tree level j as ‘0 if the Kj-th
component of the vector is less than X;-delta, ‘1 if 1t is
greater than X; + delta, or ‘E’ in the case of approximate
equality. This results in a ternary string of length depth
which serves as the hash of the vector, and the length of
this hash is equal to d,,. When creating an ensemble of M
trees, M hashes of the length nBits are generated. We can
call these individual hashes SH. These individual hashes
can be combined into a single hash called 7H of length M
nBits. This is illustrated in Fig. 1. The exact order in which
the combination occurs can be arbitrary, but it must be the
same for each vector representation across the current set
of vector representations.

In other words, by using M ODT, we can assign each
vector from the original dataset a hash string 7H. With
this approach, similar vectors will have the same hash
TH, meaning that vectors from the original dataset with
identical hashes will belong to the same cluster.

A binary tree is a special case of a ternary tree where
the value of delta equals zero. Consequently, during
construction, each tree node splits into two parts: “greater”
and “less than or equal”. The resulting hash 7H is then a
binary string containing ‘0’ and ‘1°, thus it can be converted
to an integer number.

Thanks to the fact that the tree is described by an array
of tuples (K); X)), the tree can be serialized and transmitted
separately from the data it was trained on. This allows, for
example, the hash of a vector to be computed directly in
client-side code when organizing client-server interactions,
even without access to the data stored on the server, or
in distributed systems without access to the data stored

Source vector
with d dimensions

M subvectors
having d,, dimensions

M trees, having depth
depth, computed
based on each of the
subvectors

M hashes SH,
length of each hash is
nBits

Hash TH,
having lengh
M - nBits

[ 01..0..11..01...EE..10 ]

Fig. 1. The process of transforming the original vector to its hash
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on another cluster node. In addition, the large number
of parameters and hyper parameters for selecting the
appropriate partition allows fine-tuning of the ensemble
for specific tasks. However, a significant drawback is the
computational complexity of building the tree ensemble
due to the exhaustive search of X; values at each depth
level. Even without considering the computation of distance
variance, the number of iterations required for the search has
a quadratic dependency on the number of input data, with
additional increasing factors from the clustering parameters.
Nevertheless, thanks to good parallelization, this drawback
can be mitigated by using parallel or even heterogeneous
computing (e.g., employing both CPU and GPU) [8].
In order to perform a search on data clustered using
ODT, after clustering by hash value, it is necessary to
compute and store the average vector for each cluster.

Description of proposed search method

When performing the ANN search for the vector
embedding ¥, obtained from the search query, we select
N, clusters, whose centroids are closest to V,, from
all clusters, where N, = log;,N, with N being the total
number of clusters. Additionally, if present, we select the
cluster whose hash matches the hash of V,- Next, for each
vector embedding in the selected clusters, we compute its
distance to V,. Then, for each cluster, we select k vector

q
embeddings that are closest to V. The resulting vector

embeddings are sorted in ascendingq order of distance to the
k nearest embeddings, and the final result consists of the &
embeddings closest to V.

The advantages of the algorithm include its versatility.
The algorithm is independent of the distance metric and
works with any method of storing vector embeddings, as
long as the method allows storing metadata for each vector
and/or supports grouping vector embeddings. However,
the proposed algorithm does not completely eliminate the
exhaustive search of vector embeddings within a group,
which negatively impacts search time, especially in cases
where parallel computations cannot be utilized.

With the exception of the step involving the selection of
the cluster whose hash matches the hash of the query vector
embedding, the proposed search algorithm is independent
of the clustering algorithm. This allows for comparison of
different clustering algorithms, as will be demonstrated in
the comparison of the proposed clustering method using an
ensemble of ODT with clustering using the ANN method.

Experiment setup

To validate the proposed vector search algorithm, we
implemented it in the Kotlin programming language. For
storage, we chose a previously implemented library for
storing vector embeddings that group the embeddings into
a single page file.

To test the proposed solution, we selected two datasets
containing different vectors: the NYT-256-angular! and

I Newman D. Bag of Words // UCI Machine Learning
Repository. 2008. doi: 10.24432/C5ZG6P

Fashion-MNIST-784-cuclidean [9] datasets taken from the
popular ANN-Benchmarks [10] collection which serves
as the industry standard for measuring the performance
of approximate vector search algorithms. Specifically,
Fashion-MNIST contains 50,000 vector embeddings of
dimension 784, representing 32 x 32 pixel images where
each component of the vector encodes the brightness
of the corresponding pixel ranging from 0 to 255. The
NYT dataset includes 290,000 vector embeddings of
text articles from the New York Times, each containing
256 components. These two datasets differ in the semantics
of the encoded data, value ranges, and distance metrics,
allowing us to evaluate the algorithm performance on
different types of input data. However, because the tree
training implementation is time-intensive, we selected only
the first 5,000 vector embeddings from each dataset to limit
the tree training time to 12 hours.

The selected vector embeddings were transformed into
file sets corresponding to the storage configurations listed
below. The specific parameter values were chosen after
numerous experiments, as they offer a balance between the
algorithm accuracy, search speed, and the tree ensemble
construction time.

As an alternative solution for comparison, we selected
the traditional nearest neighbor clustering method which
was previously implemented in the study on vector index
compression [11]. In total, for the experiment, the original
datasets were clustered and stored as follows:

1. Clustering vector embeddings using ternary ODT
ensemble with the following parameters:

— delta — 0.15 and 0.35;

— M—2,4,8,;

— d,, — 392 and 784 for the Fashion-MNIST dataset,
128 and 256 for the NYT dataset (in other
words, 50 % and 100 % from the source dataset
dimensionality);

— depth— 2,4, 8,

— TrainRatio = 1.0 (in other words, all of the 5
thousand vectors were used to train the trees);

— The partitioning rule: partition to minimize
the variance of distances between each vector
embedding and the average vector embedding for
that group.

2. Clustering vector embeddings using ensemble of binary
ODT, having the same parameters as ternary trees,
except for delta which is 0,

3. Clustering vector embeddings using ANN clustering,
maximum number of clusters being an arbitrary number
between 15 and 15,000.

After obtaining the sets of clusters, we measured the
search speed and accuracy using the following cluster
variants:

— Clusters obtained by ternary tree ensembles for all
parameter combinations.

— Clusters obtained by binary tree ensembles for all
parameter combinations.

— Clusters obtained using the nearest neighbor method.
In addition to testing the performance of the proposed

solution and the proposed benchmark, we also conducted

performance testing of libraries that are industry standards
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Fig. 2. Comparison results between ANN clustering and clustering using decision trees: Fashion-MNIST dataset (a); NYT dataset (b)

for approximate vector search, namely Annoy!, Faiss [12],
and HNSWLib [13]. The parameters of these storage
systems were chosen to match those in ANN-Benchmarks
[10], and the same 5,000 vector embeddings were selected
for indexing. The test setup has the following specifications:
AMD Ryzen 7 7700X 8C16T; 64GB RAM; NVMe WD
SN850X 2TB; OS Ubuntu 22.04; OpenJDK 17; a tool for
comparing vector search algorithms, developed in previous
research [14], using Java Microbenchmark Harness [15].

Experiment results

The measurement results are presented in Fig. 2 where
the best storage system is the one with the higher response
and lower search time.

For the Fashion-MNIST dataset [9], the proposed
clustering solution using trees cannot compete with ANN
clustering under any combination of tree construction
parameters. Since the vector embeddings in this dataset
represent images of ten types of clothing, such data clusters
well into a small number of clusters, no more than 1,000.
Exhaustive search across these clusters provides high
accuracy, and with such a small number of clusters and
a small volume of data within each cluster, the search is
fast. In contrast, clustering using ODT, with different input
parameter sets, produces between 16 and 20,000 clusters.
When there are too few clusters, leading to a large number
of vector embeddings within each cluster, the search within
the cluster becomes too slow. On the other hand, with
too many clusters, the number of clusters to be searched
becomes too small, resulting in lower accuracy. Acceptable
accuracy is only achieved for parameter sets that produce

I GitHub — spotify/annoy: Approximate Nearest
Neighbors in C++/Python optimized for memory usage
and loading/saving to disk. Available at: https://github.com/
spotify/annoy, unrestricted. Language: English. (accessed:
14.06.2024).

a clustering with fewer than 1,000 clusters, but with worse
data grouping, leading to lower search accuracy.

For the NYT dataset, the proposed clustering solution
using trees can compete with ANN clustering for certain
parameter combinations. Clustering with trees still produces
a large number of clusters ranging from 15 to 246,000;
however, in this case, clustering also generates up to 15,000
clusters, which reduces the speed advantage caused by a
small number of clusters. This increase compared to the
previous dataset is due to the nature of the data which
consists of dense embeddings of text documents. For
parameter sets producing up to 100 clusters, clustering
with trees provides a higher response compared to ANN
clustering, at the cost of a slight increase in search time.

For both datasets, comparison with industrial
standards for vector search shows that the proposed search
method can compete in terms of both speed and accuracy
with Annoy and Faiss, and for the NYT dataset, it can
compete in accuracy with HNSW at the cost of longer
search time.

Conclusion

For the selected datasets, the proposed search method
in clusters generated by Oblivious Decision Trees (ODT)
achieves search quality comparable to or better than that of
the ANN method or libraries like Faiss, Annoy, and HNSW.
However, for the Fashion-MNIST dataset, clustering using
ODT demonstrates significantly slower search performance
at the same quality metric values.

These results suggest that the proposed clustering and
search method is comparable in search quality to industry
standards. This makes further exploration of ODT for
vector search worthwhile, specifically in accelerating the
ensemble construction process and reducing the number
of trees in the ensemble. The former would enable faster
index construction, while the latter would speed up the
search itself.
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