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Abstract

In the context of the Industrial Internet of Things (IloT), cybersecurity refers to preventing unauthorized access, attacks,
and vulnerabilities to interconnected devices, networks, and data. Given the inherent interconnectedness of I1oT devices,
ensuring security is of paramount importance to mitigate potential disruptions, data breaches, and malicious activities.
As I1oT systems continue to proliferate, the significance of robust security measures, effective intrusion detection, and
intelligent detection techniques escalates to safeguard critical infrastructure and sensitive data from cyber threats. This
work aims to contribute towards establishing a secure and resilient industrial environment through the utilization of a
hybrid model: Convolutional Neural Network with Deep Neural Network, accommodating distinct class distributions.
The recent “Edge [loTset” dataset is harnessed to enhance the model efficacy. Throughout the evaluation process, diverse
metrics are employed, encompassing Accuracy, Precision, Recall, and the F1-score. By applying thorough preprocessing
and using various class distribution scenarios (2, 6, 9, 10, and 15 classes), the model achieved excellent classification
results. Notably, the 9-class configuration reached an Accuracy of 99.13 %, while the 6-class and 10-class setups also
delivered strong performance at 97.13 % and 96.11 %, respectively. Our architecture effectively combines feature
extraction and deep classification layers, resulting in a robust solution adaptable to complex IIoT traffic.
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AHHOTAIUS

Kubepbeszonacnocts npomsiinieHHoro nateprera Beweid (Industrial Internet of Things, IIoT) o3nauaeT npenoTBpaiieHne
HECAaHKIIMOHUPOBAHHOTO JIOCTYIIA, aTaK U YS3BUMOCTEH B3aUMOCBSI3aHHBIX YCTPOWCTB, ceTeil ¥ JaHHBIX. YUYHUTHIBASL
BHYTPECHHIOIO B3aUMOCBs3b yCTpoHCTB 1loT, obecieueHne 6e30macHOCTH UMEET MEPBOCTEIICHHOE 3HAUYCHUE IS
MPEIOTBPAIICHHS TOTCHIMAIBHBIX COOCB, YTEUEK JaHHBIX M BPEAOHOCHBIX HeicTBHil. [To Mepe pacnpocTpaHeHUs
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cucteM I1oT Bo3pacTaeT BaXKHOCTh HaJEKHBIX Mep Oe30macHOCTH, 3Q(HEKTHBHOrO 0OHAPYKEHHS BTOPKEHHUN H
MHTEJUICKTYaIbHBIX METOJIOB OOHAPYKEHHS [UTS 3AIUThl KPUTHYECKH BaXKHOH HHPPACTPYKTYPbI U KOH(PHACHIIHATEHBIX
JAHHBIX OT KHOepyrpo3. B nanHO# paboTe uccnenoBaHbl BONPOCH! CO3AaHMs 0€30MacHOM 1 YCTOHYMBOM IPOMBIIUICHHON
CpeIbl MOCPEICTBOM HCIONB30BAHUS THOPUIHOM MO/IENN: CBEPTOYHON HEHPOHHOW CeTH M TITyOOKOH HEHpOHHOH ceTH,
YUHTHIBAIOIIEH PA3IIHIHBIE PacTIpe/IeeHus KiIaccoB. [ moBbImieHns 3¢ (GeKTHBHOCTH MOZie I PIMEHEH Ha0Oop JaHHBIX
Edge IloTset. B mporiecce onieHKH HCTIONB30BaHbI pa3IndHbIe METPUKH, BKItoUast Accuracy, Precision, Recal u F1-mepy.
Brarogapst TiarenbHOI npeiBapuTeIbHOM 00paboTKe M NCIONB30BAHHIO PA3IMYHBIX CIIEHAPHEB PacIpeIeNIeHHs KIIacCoB
(2, 6,9, 10 u 15 kmaccoB) Mozeib TOKa3aja XOpOIIne pe3ynbTarsl kiaccudukarun. Kondurypamnus ¢ 9 xiraccamn
nocrtunia ToaHoctr 99,13 %, B To BpeMmst kak koHburypaiwu ¢ 6 u 10 kmaccamu — 97,13 % u 96,11 % cooTBeTCTBEHHO.
[IpennokenHast apxuTektypa 3pHEeKTHBHO coueTaeT ypOBHH M3BJICUSHHUS IPU3HAKOB U [TyOOKOH KilacCH(UKALIMH, YTO
MPUBOAMT K CO3JIaHUIO HAJIEKHOTO PELICHUS, aIalTHPyEeMOro K ciaokHoMYy Tpaduky [IoT.

Kuouesnie ciioBa
aHOMalusl, CBEPTOYHAsE HEUPOHHAS CETh, ITyOOKas HepoHHAasA ceTh, Habop nanHbIX Edge [loTset, mpombIIeHHBIN
HMHTEPHET BEIIEeH, HHTEIeKTyaabHOe 00OHapyKEHHE, METPHKHU, O€30MacHOCTD

Cebuika s nutupoBanus: @epxu B., Myccayn /., Xamkuna M., byunen A.b. O0HapyxeHne aHoManuil 1is
IIoT: ananu3 Habopa nanusix Edge-IloTset ¢ pasnuuHbIiME pactpeaeneHusMu KiaaccoB // HaydHo-TeXHUYE CKHA
BECTHHK MH()OPMAMOHHBIX TeXHOIOTUH, MexaHuku u ontuku. 2025. T. 25, Ne 5. C. 876-887 (na auru. s3.). doi:

10.17586/2226-1494-2025-25-5-876-887

Introduction

The Internet of Things (IoT) is described as the
interconnection of multiple devices that use unique
identifiers to share data and other pertinent information
across a network without the assistance of individuals
[1]. Using sensing devices, any physical device can be
simply operated, minimizing the need for human labor
[2]. IoT applications have been deployed in virtually
all fields, ranging from healthcare and agriculture to
transportation and manufacturing. These applications
have revolutionized and transformed industries by
connecting devices, collecting data, and enabling intelligent
decision-making processes [3]. Furthermore, as the
industrial world progresses towards more advanced and
complicated systems, the need for Industrial IoT (IIoT)
has emerged. IIoT takes the principles of IoT and applies
them specifically to industrial processes, enabling remote
monitoring, intelligent analytics, and control of industrial
operations. It introduces a higher level of automation,
scalability, and efficiency, addressing the unique challenges
and requirements of the manufacturing sector. With IIoT,
industries can optimize production, improve resource
utilization, and enhance overall operational performance
[4]. IIoT, when integrated with Cyber-Physical Systems
(CPS), brings a transformative shift to industrial operations.
CPS is a system that integrates the physical and virtual
worlds, fostering connectivity between them [5], which
encompass a transformative realm where the physical and
cyber worlds intricately interlace, imbuing the operational
landscape with heightened intelligence and efficiency [6].
They use sensors and actuators to gather data from the
physical world and software to analyze and act on that
data, promoting seamless connectivity [7]. The integration
of IIoT and CPS enhances connectivity among smart
devices [8]. The rapid expansion of IIoT has led to a
surge in connected devices, significantly increasing data
generation [9]. This presents challenges in data security and
anomaly detection, making the confidentiality, integrity,
and availability of IIoT data crucial for protecting critical
infrastructure [10]. Anomaly detection is essential in
identifying security vulnerabilities or inefficiencies [11].
Artificial Intelligence and Deep Learning (DL) enable real-

time anomaly detection in data traffic, device behavior, and

system performance, allowing proactive threat mitigation

[12]. These technologies strengthen cybersecurity defenses

against malware, ransomware, and phishing, ensuring data

integrity and system security. The main contributions of our
research are outlined below:

— introduction of a novel combined DL model, integrating
Convolutional Neural Networks (CNN) and Deep
Neural Networks (DNN), which demonstrates enhanced
performance;

— employing a contemporary dataset known as Edge-
IToTset to facilitate the training and evaluation of the
proposed MC-CNN-DNN (Multiclassification CNN-
DNN) model. Diverse multiclass distributions are
introduced and analyzed;

— the evaluation of our model performance incorporates
several metrics, including Accuracy and Precision.

Related work

In recent studies, researchers have presented various
approaches to addressing cybersecurity vulnerabilities
and breaches in IIoT environments. In [13], authors
present a DL-based intrusion detection model combining
CNNs for spatial feature extraction and Long Short-
Term Memory (LSTM) for temporal feature extraction
(Network Intrusion Detection System (NIDS))-CNN-
LSTM). Tested on datasets like KDD CUP99, NSL KDD,
and UNSW NBI15, the model showed robust Accuracy
and performance in binary and multi-classification tasks.
Similarly, in [14], another group of scientists propose
a DL framework leveraging CNNs, Recurrent Neural
Networks DNNs, and Generative Adversarial Networks
for cyber threat detection in IoT-driven IIoT networks,
achieving 95 %—97 % Accuracy on intrusion datasets.
The study conducted by [15] examined seven Machine
Learning (ML) classifiers on the CICIDS2017 dataset, with
K-Nearest Neighbors outperforming others in Precision,
Recall, Accuracy, and Fl-score. In a related work [16],
which uses the same dataset as [15], a combination of ML
algorithms and Principal Component Analysis techniques
for Distributed Denial of Service (DDoS) detection using
the CICIDS2017 and CSE-CIC-IDS 2018 datasets, showing
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superior results [17]. In this paper, a novel approach is
presented in which the authors develop a DLmodel
using DNN and Decision Trees to handle unbalanced
ICS datasets, improving attack detection. Another study
[18] introduces a Nonsymmetric Deep AutoEncoder for
unsupervised feature learning in intrusion detection which
is specifically designed for unsupervised feature learning.
In [19] the researchers present a groundbreaking anomaly-
based intrusion detection model that uses a CNN to build
both binary and multi-class classification models [20, 21].
Refer to numerous interesting surveys that deal with ML
and DL techniques for Intrusion Detection Systems (IDS).
These surveys examine publicly available intrusion datasets
used in recent IDS to reveal present-day challenges and
future directions. The review published in [22] focuses
on several advancements IDS datasets, specifically
from CSE-CIC-IDS-2017 to CSE-CIC-IDS-2018. This
update includes the addition of new attack categories.
The review study discussed in [23] explores and analyses
intrusion detection and prevention methods specifically
aimed at mitigating DDoS attacks. The study delves into
the classification of IDS and explores different anomaly
detection approaches. Similarly, and in the same context,
the researchers in [24] are using the Difficult Set Sampling
Technique (DSSTE) algorithm. The purpose of DSSTE
is to improve the learning of unbalanced network data
in a classification model by increasing the number of
minority samples to be learned. DSSTE aims to address
the problem of unbalanced network traffic and improve the
classification Accuracy for the minority class. In [25], the
researchers will thoroughly analyze and provide solutions
to the problems arising from dataset imbalance in both the
training and inference phases.

Background Framework of the Study

DNN

DL, a subset of ML, utilizes artificial neural networks
to learn complex patterns from data [26]. A neural network
consists of an input layer, an output layer, and one or more
hidden layers. The perceptron, the fundamental unit of
neural networks, processes multiple inputs by applying

Input
layer

Hidden
layer 1

weights, summing them with a bias term, and passing the
result through an activation function [27]. Mathematically,
this is expressed as:

z=wxytwoxy + o+ wx, + b,
Si=wixp Hwipx, + by
So=wyxp +wypxy + by,

S3=w3pxp + wspxy + by

where xq, x,, . . . X,,, are inputs; wy, wy, . . . w,,, are weights,
and b is the bias term. Early DNNs were structured as
multilayer perceptrons, where each perceptron computed
outputs based on weighted inputs [28, 29]. In the case
of three connected perceptrons, such as illustrated in
Fig. 1, a, the first two perceptrons receive inputs w and x,,
perform calculations based on their respective parameters,
and generate outputs y; and y,. These outputs are then
passed to the third perceptron, which further performs
calculations to produce the final output y;. Modern DNNs
use advanced training techniques like backpropagation
(Fig. 1, b) which optimizes learning by adjusting weights
and biases efficiently.

CNN

In the evolution of neural networks, significant
advancements were made with the introduction of
multilayer perceptron variants and CNNs. In 1989, the
concept of multilayer perceptron models emerged, marking
a key milestone in neural network development. However,
it was Yann LeCun who revolutionized the field by
inventing the first CNNs [29]. LeCun’s CNNs were inspired
by the organization and functionality of the visual cortex
in animals [30]. These networks were specifically designed
to learn and process spatial hierarchies of features in an
automated and adaptive manner. CNNs are a mathematical
framework that typically consists of three fundamental
layer types: convolutional layers, pooling layers, and
fully connected layers [31]. Convolutional layers extract
important features from input data using learnable filters.
Pooling layers reduce the spatial dimensions of feature
maps through down-sampling, improving computational
efficiency and translation invariance. Fully connected
layers analyze extracted features to make final predictions,

b
Hidden Hidden Output
layer 2 layer 3 layer

Yfinal

o
o

% % ay final

AN A7

Fig. 1. DNN structure and learning mechanism: multilayer perceptron model (a); backpropagation process (b)
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connecting all neurons from the previous layer to capture
complex patterns. By combining these layers in a
sequential manner and adjusting their parameters through
processes like backpropagation and gradient descent, CNNs
can learn complex patterns and make predictions on various
tasks.

Evaluation Metrics

The evaluation of previous algorithms used for securing
IIoT often involves employing various performance
measures. These measures, including Accuracy, Precision,
Recall, F1-score, true positive rate, false alarm rate, false
positive rate, receiver operating characteristic curve, and
area under the curve, are commonly utilized for assessing
their effectiveness.

Model proposed

Dataset

The choice of dataset is critical for anomaly detection
algorithms. This study makes use of the “Edge-IloTset”
dataset [32]. The dataset was created leveraging a purpose
built IoT/IIoT testbed that includes a wide range of devices.
The dataset contains data on 14 attacks related to IoT
and IIoT connectivity protocols which are classified into
five threat categories: DoS/DDoS attacks, information
gathering, man-in-the-middle attacks, injection attacks, and
malware assaults. It also includes features sourced from
several sources, such as alarms, system resources, logs,
and network traffic. The “Edge-IloTset” dataset contains 61
features with two target variables: ‘Attack label’ for binary
classification and ‘Attack type’ for multiclass classification.
The ‘Attack label’ is explicitly designed for binary
classification tasks, aiming to differentiate between two
classes: “Attack” and “Normal”. The target variable ‘Attack
label” assigns a binary label of 1 to instances representing
attacks, and a label of 0 to instances representing normal
traffic. On the other hand, the ‘Attack type’ target variable
is intended for multiclass classification, enabling the
categorization of instances into Different Attack (DA)
types and normal traffic. Table 1 presents a summary of
the instances of different IoT traffic types observed in the
“Edge-IToTset” dataset.

Experimental Approaches

The proposed model in this work is a composite
algorithm consisting of a CNNs followed by a complex
DNN. The design of the hybrid CNN-DNN model
was motivated by the complementary strengths of
both architectures. CNN layers are well-suited for
capturing spatial and temporal patterns in sequential
feature representations, while DNN layers are effective
in combining those features through deep nonlinear
transformations for robust classification. Initial tests with
DNN-only models showed a tendency toward overfitting
and limited generalization. Conversely, CNN-only models
struggled to differentiate between closely related attack
classes. The hybrid configuration achieved a balance
between rich feature extraction and accurate classification
resulting in superior performance across multiple class
distributions. These results validate the architectural
synergy of the CNN-DNN combination and reflect the
trade-offs considered during model development.

Table 1. Edge-l1oTset dataset Type Instances ‘Attack type’

Class Traffic Type Instances
Normal NORMAL 1,615,643
DDoS UDP 121,568
DDoS ICMP 116,436

SQL injection 51,203

Password 50,153

Vulnerability scanner 50,110

DDoS TCP 50,062

Attack DDoS HTTP 49,911

Uploading 37,634

Backdoor 24,862

Port Scanning 22,564

XSS 15,915

Ransomware 10,925

MITM 1,214

Fingerprinting 1,001

However, before implementing the model, a
preprocessing step is performed on the dataset to enhance
the performance of the created model. Preprocessing the
dataset is an essential step in any ML or DL task. It consists
of transforming and preparing the raw data in a way that
makes it suitable for training the model. The steps involved
in preprocessing utilized in this study are:

— Load the dataset: The code loads the dataset from a
csv file.

— Drop unnecessary columns: Certain columns in the
dataset are not needed for the ML model, so they are
dropped using the drop method of the DataFrame.

— Drop rows with missing values: Rows containing any
missing values are removed from the dataset using the
dropna method.

— Shuffle the dataframe: The rows in the DataFrame are
shuffled randomly using the shuffle function from the
sklearn.utils module. This is done to ensure that the data
is not biased in any particular order.

— Encode categorical variables: Some columns in
the dataset are categorical, meaning they represent
categories rather than numerical values. To convert
these categorical variables into a numerical format
suitable for the model, one-hot encoding is performed
using the pd.get dummies method.

— Normalize the features: The numerical features in the
dataset are normalized to achieve a mean of ‘0’ and a
standard deviation of ‘1”. This is done by leveraging the
StandardScaler from the sklearn.preprocessing module.

— Encode the target variable: The target variable, which
is the ‘Attack type’ column representing the attack class,
is encoded leveraging label encoding. Label encoding
maps use the different classes to integer values.

— Split the data: The preprocessed data is split into
training and testing sets using the train test split function
from sklearn.model selection. The training set is utilized
for model training, and the testing set is employed to
evaluate its performance.
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Binary classification

We build a DNN model for binary classification
leveraging the given dataset. The model consists of Dense
layers with Rectified Linear Unit (ReLU) activation
functions and a Sigmoid activation function for the output
layer. We compile and train the model using the Adaptive
Moment Estimation (Adam) optimizer, binary crossentropy
loss function, and Accuracy as the evaluation metric. The
algorithm is depicted in Algorithm 1.

Algorithm 1 DNN Model for Binary Classification

Require: Input x train scaled, y train, x test scaled, y test

1: Perform label encoding on y train and y test to
convert class labels into numerical format. build DNN
model

2: Create a Sequential model

3: Add a Dense layer with 256 neurons and activation
function ReL U, with input dimension equal to the number
of features in x train scaled.

4: Add another Dense layer with 164 neurons and
activation function ReLU.

5: Add another Dense layer with 82 neurons and
activation function ReLU.

6: Add another Dense layer with 32 neurons and
activation function ReLU.

7: Add the output Dense layer with 1 neuron and
activation function Sigmoid (binary classification).

8: Call build DNN model() to build the DNN model for
binary classification.

9: Compile the model using Adam optimizer and binary
crossentropy loss function, with Accuracy as the evaluation
metric.

10: Train the model with 25 epochs and a batch size
of 32. Validate the model using x test scaled and y test
encoded.

Multiclass Classification

In a well-structured dataset with efficient pre-
processing, it is possible to modify the number of classes
in the target according to our objectives and the use of the
model in our environment. In Edget IloTset the ‘attacks-
types’ target is generally used to perform a multiclass
classification. Manipulating the number of classes in the
target variable can be beneficial in various ways:

— Remove non-essential classes: To simplify the
model and improve focus on critical attacks, rare or
less relevant attack classes were removed. The study
retained the nine most common attack classes, where
the model demonstrated high Accuracy. Fig. 2, b
illustrates the distribution of these selected classes.

— Merging similar classes: Classes with similar attack
characteristics were combined to reduce complexity
while maintaining data representativeness. After
analysis, 15 similar attack classes were merged into
six broader categories (Fig. 2, ¢) ensuring essential
attack features were preserved while enhancing model
efficiency.

— Aggregate classes: Some classes had low Accuracy
or insufficient data points, making them difficult to
distinguish. Instead of removing them, they were
grouped into a single new class called DA (Fig. 2, a).

This aggregation increased representativeness and
improved predictive performance.

— Duplicate classes: In certain cases, classes were
duplicated to represent specific attack subcategories,
enhancing the model ability to differentiate between
various attack scenarios and improving Accuracy.
Once the data was pre-processed and the classes defined,

we proceeded to model design (Fig. 2). The proposed

architecture, called MC-CNN-DNN, combines a CNN for
feature extraction and a DNN for classification. The CNN

part includes three 1D convolutional layers with 256, 128,

and 64 filters, respectively, each followed by a max-pooling

layer (pool size =2). The extracted features are flattened and
passed to a DNN consisting of four fully connected layers
with 256, 164, 82, and 32 neurons, all using ReL.U activation.

L2 regularization (A=0.00001) is applied to all dense layers.

The final output layer has 6 (or 9, 10, 15) neurons with

Softmax activation for multiclass classification. After one-

hot encoding and normalization, the input data contained

96 features per sample, reshaped to match the CNN input

format of (96, 1) representing 96 features and one channel.

This shape is optimal for Conv1D layers. The model was

compiled with the Adam optimizer (learning rate = 0.0001)

and categorical cross-entropy as the loss function. It was

trained over 25 epochs with a batch size of 32, using 20 %
of the training data for validation. The full structure and

implementation of the model are detailed in Algorithm 2.

Algorithm 2 MC-CNN-DNN Model

Require: x train, y train, x test, y test.

1: Initialize the model as Sequential()

2: Add Conv1D Layer with filters=256, kernel size=3,
activation= ‘relu’, input shape=(xtrain.shape[1], 1)

3: Add MaxPooling1D Layer with pool size=2

4: Add Conv1D Layer with filters=128, kernel size=3,
activation="relu’

5: Add MaxPooling1D Layer with pool size=2

6: Add Conv1D Layer with filters=64, kernel size=3,
activation="‘relu’

7: Add MaxPooling1 D Layer with pool size=2

8: Add Flatten Layer

9: Add Dense Layer with units=256, activation="‘relu’,
kernel regularizer=12(0.00001)

10: Add Dense Layer with units=164, activation="relu’,
kernel regularizer=12(0.00001)

11: Add Dense Layer with units=82, activation="‘relu’,
kernel regularizer=12(0.00001)

12: Add Dense Layer with units=32, activation="relu’,
kernel regularizer=12(0.00001)

13: Add Dense Layer with units=classnum,
activation="softmax’

14: Set the optimizer as Adam with learning rate 0.001

15: Set the loss function as categorical crossentropy

16: Compile the model with optimizer and loss function

17: Train the model

18: Fit the model on x train and y train for 20 epochs
with batch size=512 and validation split=0.2

19: Save the training history in history

20: Evaluate the model on x test and y test, and save the
results in score.
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Fig. 2. Bar distribution across class settings: 10-class (a); 6-class (b); 9-class (c)

Results and Discussion

This paper proposes an innovative and efficient method
for modern intrusion detection systems which are crucial
for identifying unauthorized activity within computer
networks. Despite the use of state-of-the-art algorithms to
categorize a wide range of intrusion scenarios, their overall
performance remains suboptimal. The experiment results
show the model outstanding proficiency in distinguishing
between the two classes, ‘Normal’ and ‘Attack’. Achieving
a perfect score (100 %) across all binary classification
metrics — Accuracy, Precision, Recall, and F1-score,
highlights its ability to classify instances with complete

Accuracy while minimizing misclassifications. These
results confirm the model exceptional suitability for binary
classification tasks.

The Accuracy results across the testing, validation, and
training sets using the “Edge IloTset” dataset are illustrated
in Fig. 4, with representing different class distribution
scenarios.

Notably, our proposed method, the MC-CNN-DNN
model, consistently demonstrates exceptional Accuracy
across all approaches examined. Particularly, when
assessing different class distributions, the 9-class
distribution approach emerges as the standout performer,
boasting an impressive Accuracy rate of 99.50 %. Similarly,
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the 6-class distribution approach exhibits a robust Accuracy
level of 97.14 %. Meanwhile, the Accuracy for the 10-class
distribution approach remains noteworthy at 96.12 %,
followed closely by the 15-class distribution approach
with an Accuracy of 95.6 %.

Fig. 5 subpictures reveal consistently low loss values
across all scenarios, highlighting the model stability
during training. Furthermore, the close alignment between
training and validation loss curves indicates the absence
of overfitting. These results underscore the efficacy of
our proposed MC-CNN-DNN model in achieving high
Accuracy across diverse class distribution scenarios, further
affirming its potential for robust intrusion detection within
the complex landscape of the “Edge I[loTset” dataset.

Table 2 shows the evaluation metrics in terms of
Precision, Recall, and F1-score of a MC-CNN-DNN
model on 15-class distribution, Classes like “Normal”,
“Backdoor”, “DDoS HTTP”, “DDoS ICMP”, “DDoS
TCP”, “DDoS UDP”, “Fingerprinting”, “MITM”,
“Password”, “Port Scanning”, “Ransomware”, “SQL
injection”, “Uploading”, “Vulnerability scanner”, and
“XSS”.

Table 3 shows the performance of a MC-CNN-DNN
model on 9-class distribution. Classes like “Normal”,
“DDoS UDP”, “DDoS ICMP”, and “MITM” show perfect

Table 2. Evaluation Metrics for 15-class Distribution, %

Class Precision Recall Fl-score
Normal 100 100 100
Backdoor 94 97 96
DDoS HTTP 74 96 84
DDoS ICMP 100 100 100
DDoS TCP 84 100 91
DDoS UDP 100 100 100
Fingerprinting 35 46 40
MITM 100 100 100
Password 91 19 32
Port Scanning 85 57 69
Ransomware 100 75 86
SQL injection 46 91 61
Uploading 67 48 56
Vulnerability 100 83 90
scanner
XSS 62 35 44
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Table 3. Evaluation Metrics for 9-class Distribution, %

Table 4. Evaluation Metrics for 10-class Distribution, %

Class Precision Recall F1-score Class Precision Recall Fl-score
Normal 100 100 100 Normal 100 100 100
DDoS UDP 100 100 100 DA 71 85 77
DDoS ICMP 100 100 100 DDoS UDP 100 100 100
DDoS TCP 99 100 100 DDoS ICMP 100 99 100
Vulnerability 100 100 100 DDoS TCP 82 100 92
scanner Vulnerability 91 81 922
Password 98 85 91 scanner
DDoS HTTP 87 98 92 Password 100 84 91
Backdoor 100 98 99 DDoS HTTP 75 94 84
MITM 100 100 100 Backdoor 99 95 97

MITM 100 100 100

Precision, Recall, and F1-score, indicating that the model
performs exceptionally well on these classes. The “DDoS
TCP” class has also high Precision 99 %, suggesting
that there might be a few false positives. However, the
Recall and F1-score are still high. “Vulnerability scanner”,
“Password”, and “Backdoor” classes also show good
performance, although “Password” has relatively lower
Recall, impacting its F1-score. “DDoS HTTP” class has a
lower Precision 87 % but a high Recall 98 %, resulting in
a good F1-score.

In Table 4, the model demonstrates excellent
performance in classifying various 10-class of attack
subtypes. For “DDoS UDP” and “DDoS ICMP” classes, it
achieves perfect Precision and Recall. In the “DDoS TCP”
class, the model achieves a Precision of 82 % and a Recall
of 100 %, resulting in an F1-score of 92 %. In “DA” class,
the model performance is reasonable, achieving a Precision
of 71 % and a Recall of 85 %, leading to an F1-score of
77 %. The model performs well on the “Vulnerability
scanner” class with a Precision of 91 % and a Recall of
81 %. However, for the “Password” class, Precision is
perfect at 100 %, and Recall is 84 %. In the “Backdoor”
class, the model performs admirably with high Precision of
99 % and Recall of 95 %, resulting in an F1-score of 97 %.

In Table 5, for 6-class distribution the model
performance remains strong. In “DDoS attack” it achieves
a Precision of 68 % and a high Recall of 99 %, resulting
in an F1-score of 81 %. For “Injection attack”, “Scanning
attack”, and “MITM”, the model excels with perfect
Precision, Recall, and F1-score for these classes. However,
in “Malware attack”, the model performance is moderate,
attaining a Precision of 95 % but a lower Recall of 51 %,
which leads to an F1-score of 66 %. Table 6 summarizes
the results obtained in terms of both Accuracy and loss
function.

Table 7 offers a concise comparison of model
performances within the domain of intrusion detection
leveraging the “Edge IloTset” dataset. Our MC-CNN-
DNN hybrid model stands out with the highest Accuracy,
indicating its robustness and potential for enhanced security
measures in industrial [oT environments. This comparison
sheds light on the advancements made in intrusion detection
techniques, further contributing to the development of
effective solutions for safeguarding IToT systems.

Table 5. Evaluation Metrics for 6-class Distribution, %

Class Precision Recall Fl-score
Normal 95 100 97
DDoS Attack 68 99 81
Injection attack 100 100 100
Malware attack 95 51 66
Scanning attack 100 100 100
MITM 98 73 84

Table 6. Summary of results

Class Num Accuracy, % Loss Function
2-class 100 5.52:10-¢
6-class 97 0.062
9-class 99 0.014
10-class 96 0.070
15-class 95 0.080

Table 7. Comparison of the results with previous studies using
the ‘Edge IloTset’ dataset

Authors Model Accuracy, %
[32] DNN 96.0
[33] CNN-LSTM 98.7
[34] Inception Time 94.9
Our work CNN-DNN 99.5

Limitations and Future Work

While our proposed Multiclassification CNN-DNN
model achieved outstanding results on the Edge-IloTset
dataset, certain considerations remain for future exploration.
As with most DL models, performance can vary with
dataset size and class balance, suggesting that larger or
more diverse datasets may further enhance generalization.
The hybrid architecture, though highly effective, introduces
a moderate computational cost that could be optimized
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for edge deployments. Moreover, extending validation
to other I1oT datasets would further confirm the model
adaptability across varying industrial environments. Future
work will focus on improving efficiency and portability,
while exploring integration with other learning strategies
such as autoencoders, Reinforcement Learning, or Graph
Neural Networks.

Conclusion

This study presented a hybrid Convolutional Neural
Network with Deep Neural Network model for intrusion
detection, trained and tested on the Edge-IloTset dataset.
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