HAYYHO-TEXHUYECKMI BECTHUK MHOOPMALIMOHHBIX TEXHOOM I, MEXAHUKI 1 OMTUKN

° CEeHTABPb—OKTAGPL 2025 Tom 25 N2 5 http://ntv.ifmo.ru/ 4 AVUHO-TEXHMYECKMM BECTHMK
IIITMO SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS “Hm“pMA““““HMX IEXH“I“I"""' MEXAH“K“ “ m"“m
September—October 2025 Vol. 25 No 5 http://ntv.ifmo.ru/en/
ISSN 2226-1494 (print) ISSN 2500-0373 (online)

doi: 10.17586/2226-1494-2025-25-5-910-922

Enhanced detection of denial-of-service attacks in Kubernetes:
a multi-framework machine learning approach integrating node
and application metrics
Ghadeer Darwesh!, Jaafar Hammoud?2, Alisa A. Vorobeva3™

1,23 ITMO University, Saint Petersburg, 197101, Russian Federation

I ghadeerdarwesh32@gmail.com, https://orcid.org/0000-0003-1116-9410
2 hammoudgj@gmail.com, https://orcid.org/0000-0002-2033-0838
3 vorobeva@itmo.ru™, https://orcid.org/0000-0001-6691-6167

Abstract

The widespread adoption of Kubernetes as a platform for orchestrating containerized applications has heightened the
need for effective security mechanisms, particularly to counter Denial-of-Service (DoS) attacks. This article proposes an
approach to DoS attack detection based on two key components the use of comprehensive metrics and the application
of ensemble Machine Learning models. The approach involves the collection and analysis of comprehensive metrics
from node-level (CPU, memory) and application-level (network activity, file descriptors) data from containers running
on various frameworks (Flask, Django, FastAPI, Node.js, Golang). To implement this approach, a dataset containing
49,990 instances of network activity, characterized by 28 features (comprehensive metrics), was created. Statistical
analysis (Student’s t-test, Pearson correlation) identified the metrics most relevant for attack detection, including total
CPU time (cpu_sec_total) and resident memory usage (resident_memory_total). A comparison of nine Machine Learning
models for attack detection was conducted, including ensemble methods (Random Forest, XGBoost, LightGBM) which
demonstrated the highest effectiveness, achieving 100 % accuracy (F1-score equals 1.0) and perfect class separation
(AUC equals 1.0). The XGBoost model also eliminated false positives (precision equals 1.0). Feature importance
analysis revealed the most significant metrics for classification: CPU usage (cpu_sec_total, cpu_sec_idle), network
packet transmission (transmit_packets), system load average, and memory usage (virtual memory_total, resident
memory_total). The work emphasizes the importance of integrating multi-level metrics for building resilient anomaly
detection systems. The proposed approach is scalable and independent of specific frameworks, making it applicable for
protecting containerized environments. The research results serve as a foundation for developing proactive Kubernetes
security systems capable of countering sophisticated attack vectors.

Keywords
Kubernetes, DoS attack detection, machine learning, node-level metrics, application-level metrics, anomaly detection,
ensemble models

For citation: Darwesh G., Hammoud J., Vorobeva A.A. Enhanced detection of denial-of-service attacks in
Kubernetes: a multi-framework machine learning approach integrating node and application metric. Scientific and
Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no. 5, pp. 910-922. doi:
10.17586/2226-1494-2025-25-5-910-922

YK 004.056
IoBbimenne 3¢ dpexrnBHOCTH 00HapyxeHus1 DoS-arak B Kubernetes:
moaxoa Ha OCHOBE MAIIIMHHOTI'O Oﬁy‘lel-[]/lﬂ C HHTeraHHeﬁ METPUK YPOBHSH Y3J10B
U NIPUJIOKEHU 11 MYJIbTH(PPEHMBOPKOBBIX Cpe/l
Tanup Japeum!, YKaapap Xammyn2, Anuca Anjapeesna Bopoonepa3™
1.23 Vausepcurer UTMO, Cankt-IletepOypr, 197101, Poccniickas ®enepanus

I ghadeerdarwesh32@gmail.com, https://orcid.org/0000-0003-1116-9410
2 hammoudgj@gmail.com, https://orcid.org/0000-0002-2033-0838
3 vorobeva@itmo.ru®?, https://orcid.org/0000-0001-6691-6167

© Darwesh G., Hammoud J., Vorobeva A.A., 2025

91 O Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHBLIX TEXHONOMMIA, MeXaHUKN 1 onTukn, 2025, Tom 25, N2 5
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 5

http://ntv.ifmo.ru/
http://ntv.ifmo.ru/en/
mailto:ghadeerdarwesh32@gmail.com
https://orcid.org/0000-0003-1116-9410
mailto:hammoudgj@gmail.com
https://orcid.org/0000-0002-2033-0838
mailto:vorobeva@itmo.ru
https://orcid.org/0000-0001-6691-6167
http://Node.js
mailto:ghadeerdarwesh32@gmail.com
https://orcid.org/0000-0003-1116-9410
mailto:hammoudgj@gmail.com
https://orcid.org/0000-0002-2033-0838
mailto:vorobeva@itmo.ru
https://orcid.org/0000-0001-6691-6167

G. Darwesh, J. Hammoud, A.A. Vorobeva

AHHOTaNMA

[Iupoxoe pacnpocrpanenne Kubernetes kak ruaropmsl Uit OPKECTPALMN KOHTEHHEPU3UPOBAHHBIX TPUIIOKCHUH
arakam tuna «Otka3 B obcayxuBanum» (Denial-of-Service, DoS). B pabote npeanoxen moxxon k oOHapyKeHHIO
DoS-arak, 0CHOBaHHBIN Ha JIBYX KJIIOUEBBIX KOMIIOHEHTAX: MCIIOJIH30BaHNE KOMIUIEKCHBIX METPUK W IIPHIMEHEHNE
aHcaMOJeBBIX Mojeleil MamuHHOTO0 00ydeHus. [logxox mpenmonaraer cOOp M aHATH3 KOMIUIEKCHBIX METPHK:
ypoBHs y310B (Central Processing Unit (CPU), mamsiTb) 1 ypoBHsI IPHIOKEHUH (ceTeBas akTUBHOCTb, (aiisioBbIe
JIECKPUITOPBI) U3 KOHTEIHEpOB, paboTaromux Ha pasnuunbix QperimBopkax (Flask, Django, FastAPI, Node.js,
Golang). s peanu3anuy Moaxo/a co3aaH Habop JAaHHBIX, comepkaniiid 49 990 3K3eMIIISIPOB CETeBOH aKTHBHOCTH,
OXapaKTepHU30BaHHBIX 28 MpU3HaKaMH (KOMIUIEKCHBIME MeTpukaMu). CTaTucTHYecKuil aHamm3 (t-kputepuii CTbIoeHTa,
xoppessinust [TupcoHa) BBISIBHII Hanboiee peieBaHTHbIC T ACTEKTUPOBAHMS aTak METPUKH, BKIF0Yas oblee BpeMs
ncnons3oBanust CPU (cpu_sec_total) m o0bem 3aneiicTBOBaHHOI orepaTHBHOM maMaTH (resident memory_total).
CpaBHeHHE JEeBSITH MOJEIeH MAIITHHHOTO O0ydeHUs Ul NeTeKTHPOBAHUS aTak, BKIIIOYAs aHCAMOJIEBBIE METO/EI
(Random Forest, XGBoost, LightGBM), nmoka3ano Haussicuiyto s¢dpexktuBaocTtsh (F1-mMepa pasHa 1,0) u momHOe
paznenenue kiaccoB (AUC pasHa 1,0). [Ipumenenne monenn XGBoost o3BOJHIIO0 UCKITIOYHUTE JIOKHOMOJIOKUTEIbHBIS
cpabarbiBanus (precision paHa 1.0). AHaIM3 BOXHOCTH MPU3HAKOB BBISIBIJ HaHOOJIee 3HAUYMMBIE TSI KIacCU(pUKAUK
METpPHUKH, CBsi3aHHbIe ¢ ncnoab3oBanrneM CPU (cpu_sec total, cpu_sec idle), mepenadeii ceTeBbIx maketoB (transmit
packets), cpeaneii 3arpy3Koif cHCTEMBI U HCMOIB30BaHUEM maMmsATH (virtual memory total, resident memory _total).
TIpoBeneHHOE HCCIIeI0BaHIE MOKA3aJI0 BAKHOCTh MHTETPALIMH Pa3HOYPOBHEBBIX METPHK IS CO3/IaHUS YCTOWYMBBIX
cucteM oOHapyKeHus aHoMaTHil. [TpeIoKeHHBIH MOXOJ SBJIAETCS MacITaOUPyEMBIM M HE3aBUCHMBIM OT KOHKPETHBIX
(peiiMBOPKOB, YTO JIeNIaeT ero MPUMEHHMBIM JUIsl 3al[UTHl KOHTeHHEPH3NPOBAHHBIX Cpejl. PesynmbraTs! ncciieioBaHus
CITy’KaT OCHOBOI JUIsl pa3pabOTKU MPOAKTUBHBIX cucTeM OezomacHocTH Kubernetes, crmocoOHBIX MPOTHBOCTOSTH
CJIO)KHBIM BEKTOpaM aTax.

Kurouesble ciioBa
Kubernetes, o6napysxenue DoS-arak, MamimHHOe 00ydYeHHe, METPUKH YPOBHS y3JI0B, METPHKH YPOBHS IPHIOKCHUIH,
o0OHapy)XeHHEe aHOMAJINH, aHCaMOJIeBbIe MOAEIH

Ccbuika aos nurupoBanus: Japsum I, Xammyn XK., Bopoobea A.A. IToBbimenne 3GhekTuBHOCTH 00HAPYKEHUS

DoS-arak B Kubernetes: moaxoa Ha 0CHOBE MAIIMHHOTO O0Y4EHHUS ¢ MHTET ALl METPUK YPOBHS Y3/I0B M IIPHIIOKECHUH
Juts MynIbsTH(GpeiiMBOpKOBBIX cpefl / HaydHo-TexHUYeCcKui BECTHUK MH()OPMAIMOHHBIX TEXHOJIOTHH, MEXaHUKHU U

ontuku. 2025. T. 25, Ne 5. C. 910-922 (na anrn. 513.). doi: 10.17586/2226-1494-2025-25-5-910-922

Introduction

Kubernetes, the de facto standard for container
orchestration, has revolutionized cloud-native architectures
by automating the deployment, scaling, and management
of containerized applications. However, the complexity
and dynamic nature of Kubernetes clusters expose them
to a wide range of security threats, with Denial-of-Service
(DoS) attacks standing out as a prominent risk. These
attacks exploit Kubernetes resource scaling mechanisms
to inundate cluster resources, potentially leading to service
disruptions and substantial financial repercussions [1, 2].
The containerized workloads managed by Kubernetes
pose unique challenges in detecting and mitigating DoS
attacks. Containers often demonstrate dynamic, ephemeral,
and unpredictable resource utilization patterns which blur
the line between legitimate traffic bursts and malicious
activity. Conventional DoS detection methods, such as
static thresholds and signature-based techniques, fall
short in such settings due to their inability to adapt to
Kubernetes highly dynamic operational environments.
These limitations often result in high false-positive
rates, rendering traditional approaches unsuitable for
production environments [1, 2]. Machine Learning (ML)
has emerged as a promising paradigm for tackling these
challenges. By leveraging anomaly detection techniques,
ML-based systems can dynamically identify deviations
in traffic and resource utilization patterns without relying
on predefined rules or static thresholds. However, many
existing studies focus on specific application frameworks,
such as Flask, or narrow workloads, thereby limiting their
generalizability across diverse operational contexts [1, 2].
Recent advancements in Kubernetes security emphasize

the importance of hybrid approaches that combine ML with
runtime monitoring and rule-based mechanisms. Tools such
as extended Berkeley Packet Filter (eBPF) and Express
Data Path (XDP) offer lightweight, high-performance
anomaly detection at the kernel level, enabling real-time
security insights. Despite these innovations, significant
gaps remain in evaluating the effectiveness of such
approaches across diverse frameworks and workloads,
leaving room for improvement in generalizability and
robustness [3, 4]. Building upon our prior work [5], where
we developed an ML-based DoS detection framework
tailored to the Flask framework, this study extends the
scope to encompass multiple application frameworks,
including Django, FastAPI, Flask, Golang, and Node.js.
This broader scope addresses the generalizability concerns
raised in our earlier work and ensures applicability to a
wider range of Kubernetes environments.

This study makes three key contributions: it provides
a comparative analysis of ML-based DoS detection across
multiple frameworks to improve generalizability and
robustness; it integrates lightweight runtime monitoring
tools to enhance detection efficiency; and it evaluates
advanced classifiers for distinguishing between natural
workload variations and attack-induced anomalies in
Kubernetes environments [5—7].

Literature Review and Previous Work

DoS attacks are among the most prevalent security
threats in containerized environments. Kubernetes, with
its dynamic orchestration and auto-scaling capabilities,
provides an efficient platform for managing modern
workloads but also presents a large attack surface for

Hay4HO-TexXHU4eCcKuii BECTHUK MHDOPMALIMOHHbLIX TEXHONOM A, MexXaHUkn 1 ontukun, 2025, Tom 25, N2 5
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 5

911

http://Node.js
http://Node.js

Enhanced detection of denial-of-service attacks in Kubernetes: a multi-framework machine learning approach...

adversaries to exploit. DoS attacks in Kubernetes often
target resource management mechanisms, overwhelming
cluster components like Central Processing Unit (CPU),
memory, and network bandwidth to render applications
unresponsive [1, 2]. Studies emphasize the difficulty
in distinguishing between natural workload variations
and attack-induced overloads, as both may manifest as
anomalies in resource usage [1, 4].

Conventional DoS detection techniques rely on
predefined thresholds or static rules to identify anomalous
behaviors. While computationally inexpensive, these
methods are rigid and fail to adapt to dynamic environments
like Kubernetes [1, 2, 4].

Recent advancements have introduced more
sophisticated approaches, such as Host-Based Intrusion
Detection Systems (HIDS). Researchers in [8] developed a
real-time HIDS for Linux containers that monitors system
calls from the host kernel to detect anomalies. Their method
achieved a 100 % detection rate with a false positive rate
of just 2 %.

Several studies focus on Docker containers, the most
widely used container runtime. For example: Researchers
in [9] proposed an online anomaly detection system using
an optimized isolation forest algorithm. By assigning
weights to resource metrics and incorporating weighted
feature selection, this approach improved accuracy while
maintaining minimal performance overhead, crucial for
differentiating between attack-induced and natural resource
overloads. In [10], a probabilistic real-time IDS was
proposed using n-grams of system calls and probabilistic
models like Maximum Likelihood Estimator. This system
achieved detection accuracy between 87 % and 97 % across
datasets. Dynamic approaches using anomaly-based methods
have demonstrated significant improvements over static
techniques. In [11], researchers evaluated dynamic schemes
on 28 real-world container vulnerability exploits, with
results indicating that dynamic methods detected 22 out of 28
exploits compared to only three detected by static methods.

ML-based anomaly detection systems offer significant
advantages in identifying DoS attacks. Techniques like
Random Forest, Gradient Boosting, and Neural Networks
have been widely adopted for detecting anomalies in
Kubernetes. The introduction of eBPF and XDP has
enabled lightweight, kernel-level anomaly detection
for real-time insights [1, 2]. Studies such as [12] have
demonstrated the potential of ML classifiers like Decision
Trees and Random Forests in distinguishing between
legitimate and malicious activities at the container level.
These approaches achieved F-measures of 99.8 % for attack
detection while maintaining low resource overheads.

Most existing research evaluates DoS detection methods
on specific frameworks, such as Flask or FastAPI, without
accounting for their generalizability to other workloads
[1, 2, 4]. Researchers in [13] highlighted the need for cross-
framework evaluations by analyzing security mechanisms
in Docker containers across multiple deployment scenarios.
Their results emphasized that framework-agnostic detection
systems are critical for robust Kubernetes security.

Studies are often constrained to single frameworks,
making their findings less applicable to diverse Kubernetes
workloads [1, 2, 4].

Despite these advancements, the current research
landscape reveals several persistent and interconnected
limitations that hinder the development of robust, practical
detection systems. A primary constraint is the lack of
generalizability across technological stacks. The majority of
studies evaluate proposed methods within the context of a
single application framework, neglecting validation across
diverse environments [1, 2, 4, 13]. This significantly limits
the applicability of such solutions in real-world Kubernetes
clusters which are inherently heterogencous and host
applications built with different languages and frameworks.

Furthermore, a significant efficiency-effectiveness
trade-off remains unresolved. While static methods
are computationally efficient yet inflexible, the more
effective dynamic and ML approaches typically demand
large volumes of training data and introduce substantial
computational overhead, making them costly to deploy in
resource-sensitive environments [10, 14].

Finally, the critical challenge of integration is still
largely unaddressed. Only a limited number of studies
have explored the combination of real-time monitoring
techniques (e.g., eBPF) with ML systems to achieve the
dual objectives of high accuracy and low-latency detection
in Kubernetes production settings [1].

Thus, the identified gaps — limited generalizability,
an unoptimized accuracy-overhead trade-off, and a lack
of integrated real-time solutions — form the core research
challenge addressed by this work.

This study directly addresses these limitations by
proposing a comprehensive detection framework validated
across multiple application frameworks and programming
languages, including Flask, Django, FastAPI, Golang, and
Node.js. Our approach leverages lightweight, eBPF-based
runtime monitoring to minimize performance impact and
detection latency. We conduct an extensive comparative
evaluation of ML classifiers to identify optimal strategies
for DoS detection in Kubernetes. Through these
contributions, this research provides a foundation for
developing scalable, framework-agnostic security solutions
capable of protecting complex Kubernetes deployments
against evolving DoS threats.

Data and Statistical Study

These contributions aim to provide a framework-
agnostic, efficient, and accurate solution to securing
Kubernetes environments against evolving threats. The
dataset! consists of 49,990 instances with 28 features,
encompassing both node-level and app-level metrics
collected from multiple frameworks deployed in
Kubernetes by using a collector developed in [15]. The
target variable, atfack, is binary, indicating the presence (1)
or absence (0) of DoS attacks. Table 1 presents the node-
level metrics gathered from the frameworks, while Table 2
details the app-level metrics.

We conducted a comprehensive statistical analysis to
demonstrate the robustness and reliability of the dataset.
This analysis provides insights into the distribution, central

I Available at: https://github.com/ghadeerda/Kubernetes-
model-agent (accessed: 29.08.2025).

912

Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHBLIX TEXHONOMMIA, MeXaHUKN 1 onTukn, 2025, Tom 25, N2 5
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 5

http://Node.js
https://github.com/ghadeerda/Kubernetes-model-agent
https://github.com/ghadeerda/Kubernetes-model-agent

G. Darwesh, J. Hammoud, A.A. Vorobeva

Table 1. This table lists and describes the metrics collected at the node level, including CPU, memory, disk, and network-related

features

Column Name

Description

id

Unique identifier for the observation

time

Timestamp of the data record

cpu_sec_idle

Percentage of CPU idle time during the interval

disk av_per Available disk space as a percentage
disk read Amount of data read from the disk (in bytes)
disk write Amount of data written to the disk (in bytes)

net_receive

Network data received (in bytes)

mem_pressure

Memory pressure indicator (value reflects memory load)

mem_av_per

Available memory as a percentage

forks_total

Total number of process forks

intr

Number of interrupts handled by the CPU

loadl, load5, load15

CPU load average over 1, 5, and 15 minutes respectively

receive_drop

Number of network packets dropped during reception

receive_errs

Number of network reception errors

transmit_packets

Number of packets transmitted over the network

ipv4_sock inuse

Number of IPv4 sockets currently in use

est_conn Number of established connections

lis_conn Number of listening connections

open_fds Number of open file descriptors

attack Indicator for attack presence (1 for attack, O for no attack)

Table 2. This table provides details of the application-level metrics, including resource utilization features specific to the application

frameworks
Column Name Description
id Unique identifier for the observation
time Timestamp of the data record
cpu_sec_total Total CPU usage in seconds

virtual_memory_total

Total virtual memory usage (in bytes)

resident_memory_total

Total resident memory usage (in bytes)

open_fds Number of open file descriptors

attack Indicator for attack presence (1 for attack, O for no attack)

tendencies, and variability of both node-level and app-
level metrics, highlighting the dataset ability to capture
diverse system behaviors under different conditions. By
examining the relationships between features and their
correlations with the target variable (attack), we confirmed
that the dataset effectively encapsulates the characteristics
required for detecting DoS attacks. This statistical study not
only validates the dataset integrity but also underscores its
potential for developing and benchmarking robust anomaly
detection models in containerized environments.

To thoroughly understand the dataset characteristics
and assess its suitability for detecting DoS attacks, we
conducted an in-depth statistical analysis. This analysis
aimed to explore key metrics at both node-level and app-
level, evaluate their relationships, and identify patterns
that distinguish between attack and non-attack states. By

combining descriptive statistics, hypothesis testing, and
correlation analysis, we established a solid foundation for
understanding the dataset structure and its potential for
training robust ML models. The following sections detail
the findings from these analyses.

Descriptive Statistics

During attacks, CPU usage increases significantly
while idle time decreases, indicating elevated system load.
Virtual and resident memory also spike, reflecting stress on
memory resources. Open file descriptors rise, suggesting
heavier application activity. Disk and network I/O metrics
show moderate changes but still contribute to overall
anomaly detection.

Hypothesis Testing

T-tests revealed statistically significant differences
between attack and non-attack states. Features such as

Hay4HO-TeXHNYECKN BECTHUK MHDOPMALMOHHbBIX TEXHONOMUIA, MEXaHUKKN 1 onTukn, 2025, Tom 25, N2 5 91 3
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 5

Enhanced detection of denial-of-service attacks in Kubernetes: a multi-framework machine learning approach...

cpu_sec_total, resident_memory_total, and open_fds
were highly significant, while disk read, disk write, and
virtual memory total showed moderate significance. These
findings confirm that attacks consistently alter resource
usage patterns.

Correlation Analysis

Correlation analysis showed that cpu_sec_total,
resident_memory_total, and open_ fds are positively
correlated with attacks, while cpu_sec_idle and disk
av_per are negatively correlated. Some memory-related
features showed redundancy, while others like forks total
and disk av_per contributed unique information.

Key Insights

The most predictive indicators of DoS attacks include
increased CPU and memory usage, along with higher
counts of open file descriptors. These resource usage

patterns correspond to the system stress and resource
exhaustion typically induced by attacks. Fig. 1 presents
histograms comparing the distributions of key. Fig. 2
shows boxplots of metrics. These visualizations were
generated by the authors based on the labeled dataset of
49,990 instances, which includes node- and application-
level metrics collected from real Kubernetes workloads
using five frameworks (Flask, Django, FastAPI, Node.js,
and Golang). The patterns observed in these figures are
derived from the statistical analysis discussed earlier (t-tests
and correlation), and form the empirical basis for the ML
models used in this study.

Sample Representativeness and Realism of
Workload Simulation

To ensure a realistic and representative dataset, we
designed the data collection process to emulate real

a b
8000 Attack 6000] Attack
— No Attack — No Attack
6000 — Attack i — Attack
> &' 4000
<) <
[[
2. 4000 &
e e
. ™ 2000
2000
0 0 L1 b
4 0.0 0.5 1.0 1.5 2.0
cpu_sec_total cpu_sec_idle
c d
Attack Attack
— No Attack No Attack
20,000 — Attack 2000 — Attack
> >
Q Q
=) =
(] ()
z g
(210,000 = 4000 i
0 =l]
1 2 x10° 2 4 x10°

resident_memory _total

virtual memory _total

3000

2000

Frequency

1000

Attack
No Attack
— Attack
| ‘j
[{ ﬁﬁ[ﬁm— .
40 60

open_fds

Fig. 1. Histograms of Frequency Distribution of CPU and memory usage metrics (cpu_sec_total, resident memory_total) under
attack and non-attack conditions, based on the collected dataset: cpu_usage total (a); cpu_sec_idle (b); resident memory _total (¢);
virtual memory_total (d); open_fds (e)

Hay4HO-TexHMU4YeCcKkunii BECTHUK MHDOPMALMOHHbLIX TEXHONOMMIA, MEXaHUKN 1 onTukn, 2025, Tom 25, N2 5
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 5

914

http://Node.js

G. Darwesh, J. Hammoud, A.A. Vorobeva

N

u sec total

NS}

cp

0 1
Attack (0: No Attack, 1: Attack)

C
x10°

ry_total

resident memo

=]

0 1
Attack (0: No Attack, 1: Attack)

a
2.0 S E—
1.5
[
=
' 1.0
2
© 0.5
g
0.0 ° - v
0 1
Attack (0: No Attack, 1: Attack)
d
x10°
4 8 §
=
:§ o o
> 8
é °
0
2? :
= . .
g % —_—
£ g 0
0

0 1
Attack (0: No Attack, 1: Attack)

50

open_fds
(%)
(e

10

0 1
Attack (0: No Attack, 1: Attack)

Fig. 2. Distribution shifts for key metrics. Feature Boxplots comparing CPU idle time (cpu_sec_idle) and open file descriptors
(open_fds) between normal and attack states in Kubernetes workloads: cpu_usage total (a); cpu_sec_idle (b);
resident_ memory_total (¢); virtual memory _total (d); open_fds (e)

Kubernetes environments. The dataset includes both node-
and application-level metrics from applications built with
five frameworks — Flask, Django, FastAPI, Golang, and
Node.js — covering diverse architectures and performance
patterns. Benign traffic was generated using synthetic tools
and real user-like behavior, simulating varying request
rates, CPU/memory loads, and I/O operations to reflect
real-world workload dynamics such as traffic spikes and
batch processing. Attack data was produced using standard
DoS tools to stress both network and application layers,
mimicking real adversarial scenarios like volumetric
floods and resource exhaustion. This blend of framework
diversity, metric richness, and controlled anomaly injection
results in a dataset that reflects real operational conditions
and provides a solid foundation for training effective,
generalizable ML models.

ML Models and Detection Approach

We evaluated multiple supervised learning algorithms
for detecting DoS attacks, focusing on their ability to
generalize across different frameworks and languages
(Flask, Django, FastAPI, Nodejs, Golang). The classifiers
include: Logistic Regression: A simple linear model for
baseline comparisons [16]. Random Forest: A tree-based
ensemble model known for its robustness to overfitting
[17]. Gradient Boosting: An iterative boosting model
suitable for handling imbalanced datasets [18]. Support
Vector Machine (SVM): Effective for high-dimensional
feature spaces [19]. Decision Tree: A fast and interpretable
model [20]. Naive Bayes: Suitable for datasets where
feature independence can be assumed [21]. K-Nearest
Neighbors: A distance-based approach for capturing non-

Hay4HO-TeXHNYECKN BECTHUK MHDOPMALMOHHbBIX TEXHONOMUIA, MEXaHUKKN 1 onTukn, 2025, Tom 25, N2 5

Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 5

915

http://Node.js

Enhanced detection of denial-of-service attacks in Kubernetes: a multi-framework machine learning approach...

linear patterns [22]. XGBoost: A high-performance gradient
boosting model [23]. LightGBM: A scalable and efficient
tree-based model optimized for large datasets [24].

All features were standardized using StandardScaler
to ensure uniform scaling across models. Any missing
values were imputed based on the mean or median of the
respective feature.

A stratified 5-fold cross-validation strategy was
employed to ensure robust evaluation across diverse data
splits. For tree-based models, feature importance scores
were computed to interpret the contribution of individual
metrics.

Accuracy, precision, recall, and Fl-score were
computed for each classifier. Receiver Operating
Characteristic (ROC) curves and Area Under the Curve
(AUC) scores were used to assess model performance. In
addition to the Confusion Matrix which provided a detailed
breakdown of true positives, true negatives, false positives,
and false negatives for each classifier.

The detection pipeline was implemented using Python,
leveraging libraries, such as Scikit-learn, XGBoost, and
LightGBM. The training and evaluation processes were
automated to facilitate reproducibility and ensure consistent
results across multiple frameworks.

Results and Discussion

This section presents a detailed analysis of the results
derived from the machine learning classifiers applied to the
combined dataset, integrating both application and node-
level metrics from multiple frameworks. The discussion
includes model performance metrics, feature importance
analysis, and insights into classifier behavior for detecting
anomalies.

The cross-validation accuracy of the classifiers was
evaluated to assess their ability to generalize across
different data subsets. The accuracy boxplot shows that
ensemble models like Random Forest, Gradient Boosting,
XGBoost, and LightGBM consistently outperformed

other models, achieving nearly perfect performance with
minimal variance. Among all classifiers: Random Forest
and Decision Tree achieved perfect classification accuracy
with no false predictions. XGBoost achieved an accuracy
of 100 % with robust predictive power. Linear classifiers
like Logistic Regression and simpler models like Naive
Bayes showed relatively lower but acceptable accuracies.
The classifier cross-validation accuracy plot highlights the
stability of ensemble models compared to others (Fig. 3).

The confusion matrices provide detailed insights into the
classification behavior of each ML model. Fig. 4 illustrates
these matrices for all evaluated classifiers, showing the
distribution of true positives, true negatives, false positives,
and false negatives. Notably, XGBoost and Random Forest
achieved perfect classification, with zero misclassifications
of either attack or non-attack instances. In contrast, models
like Naive Bayes and SVM showed some weaknesses. For
example, Naive Bayes falsely identified 4,967 normal cases
as attacks, reflecting its limitation in environments with
overlapping feature distributions. SVM exhibited a slightly
elevated false positive rate due to its sensitivity to kernel
parameterization. These confusion matrices were generated
by the authors using the labeled dataset of 49,990 samples,
collected from a realistic Kubernetes cluster and detailed
in the dataset description. The results confirm the relative
strengths of ensemble models and provide a comparative
evaluation of precision and recall across all classifiers.

Feature Importance

Feature importance was analyzed using: tree-based
native importance for ensemble models and permutation
importance for other classifiers where native importance
is unavailable.

The following trends were observed: For tree-based
models like Random Forest, LightGBM, and XGBoost,
the most critical features were: CPU utilization metrics
(cpu_sec_total, cpu_sec_idle), Packet transmission metrics
(transmit_packets), System load averages (loadl, loads,
loadl15), and Memory metrics (virtual memory_total,
resident_memory_total). XGBoost and Gradient Boosting

0.961
— ==
==
e

0.921] —=2=
o) ==
—
j=3
8 J
<

0.88 1

0.841

Logistic Random Gradient Support Decision Navie K-Nearest XGBoost LightGBM
Regression Forest Boosting Vector Tree Bayes Neighbors
Machine
Fig. 3. Boxplot comparing cross-validation accuracy across all evaluated machine learning models
91 6 Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHBLIX TEXHONOMMIA, MeXaHUKN 1 onTukn, 2025, Tom 25, N2 5

Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 5

G. Darwesh, J. Hammoud, A.A. Vorobeva

() NaDWSIT (¢) 1500gDX (5) S10qUSION 1501BIN-Y (/) sekeq oArEN
£(2) 9911 uoISI09(T {(p) QuIyorA 10309A Moddng ¢(2) Sunsoog

JUQIpeID) {(q) 15010,] WopUEY () UoISsaISoY onsIS0T :soaneSou as[e) pue ‘soanedou onyy ‘soanisod asye} ‘soanisod onyy SunyS1YSIY ISIFISSEO YOoBd 10J SOOLIEW UOISNJUOD [ENPIAIPU] “# "S1./

[9qe] PaRIPaId 19qe] pajoIpaId [9qe] PaRIPaId
YoeNny - YOENY ON yoeny YoRny oN JoeNy ORNY ON

0vEST S0Z1 Soeny yoeny 0v8vC SOLT
c o . = ‘
000°01 2 000°01 2 000°0T
000°0¢ ey ON 000°0¢ PEIVON 000°0¢
! Y 3
[9qe] pajoIpaid [9qe] Pa1oIpaig 1qe] pajIpald
yoeny NNy ON Yoeny oY ON Joeny NOENY ON
0
000$
SoeRY g S¥S9T Joeny L60%T 8¥¥C
000°0T 2 000°01 5 000°01
a
000°S1 g =
F ‘ oEnY ON 000°02 St JoenY ON “
00002 HE7 Sl rrEc 00002
S 2
[9Qe] PORIPaI] [9Q¥] PARIPaI] [9Qe] PAIIPAI]
oeny NNy ON Yoeny oY ON Joeny NOENY ON
0 0
000$
891" %C LL0T A 7¥$9T oERY 866°€T L¥ST
00001 2 000°01 5 00001
a
vvlu. “V'IU. 3
z & 000°ST
000°0Z 2011 chezz [MOBNY ON 000°02 SPY'ET [PNV ON 000°02 PL9'TT

Yoeny oN

Joeny

Yoepy oN

Yoeny

Yoeny oN

[oqe[ani],

[9qe] ani,

[9qe] ani,

917

bOpPMaLMOHHBIX TEXHONIOMUIA, MeXaHUKN 1 onTukn, 2025, Tom 25, N2 5

Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 5

-TEXHUNYECKNI BECTHUK UH

Hay4Ho

Enhanced detection of denial-of-service attacks in Kubernetes: a multi-framework machine learning approach...

Importance
o o o e
o =) o —
S X 3)
| é |

<
w

0.2

Importance

0.1

0.0

-
L

0.3

0.2

Importance

v

0.1

0.0

0.3

0.2

0.1

Importance
o
L S
N

Importance
—_ [*] (O8] N
(=} (=) (=) (=3
(=) (e} (=) (=) (=]

e B e B L2 B B O O O = = = v »w v o O (0] (]
S S35 88225885 Ec02¢8EE82EE32E8E E
22 32T®E e 52 4 "83°TES U= 208 2 2 o o
== TS 825 oogﬁlowg«sl.ﬁ g g El,E S, 9
5} o 9 - ol I
Sl ol Al R O Y T H~ =
© o O O | V>¢_,°1 = =D QO 9O 0 2 9 O
g g s'% T2 5 £ 3 8382256806 90
235 3 a5 zEg‘“ 885"’|mlmlmlwlml
o 5}
o8& ° = = £8858558y
—lul N"‘d—'ﬁd—w“m
S g B .=
0
g3
=
]
e

Fig. 5. Bar plots showing feature importance rankings for models that provide native importance measures (e.g., Random Forest,
XGBoost, LightGBM): Random Forest (a); Gradient Boosting (b); Decision Tree (c); XGBoost (d); LigthGBM (e)

Hay4HO-TexHMU4YeCcKkunii BECTHUK MHDOPMALMOHHbLIX TEXHONOMMIA, MEXaHUKN 1 onTukn, 2025, Tom 25, N2 5
918 Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 5

G. Darwesh, J. Hammoud, A.A. Vorobeva

highlighted the dominance of network-level metrics such as
transmit_packets and tcp_sock alloc. Decision Tree models
underscored similar features, with additional emphasis on
resource allocation metrics (open_fds, mem av_per). The
variation across feature importance profiles indicates that
different models prioritize features differently, depending
on their intrinsic algorithms and data processing mechanics.

Separate plots for feature importances across classifiers
and a combined feature importance comparison provide
detailed insights (Fig. 5).

Receiver Operating Characteristic Analysis

The ROC curves demonstrated high AUC values for all
classifiers: XGBoost, Random Forest, and Decision Tree
exhibited an AUC of 1.0, confirming perfect separability
of the classes. Models like Naive Bayes and Logistic
Regression achieved slightly lower AUCs (about 0.94 and
0.97, respectively), indicating lower sensitivity to certain
features. The ROC curves for all classifiers are included
for a holistic view of performance across false-positive and
true-positive rates (Fig. 6).

Quantitative Evaluation of Early Detection
Capabilities

In addition to accuracy, a key strength of a detection
system is how early it can identify anomalies before
traditional alerts are triggered. We analyzed the time gap
between model predictions and system-level resource
exhaustion warnings. XGBoost and Random Forest
detected DoS attack signatures from 3 to 12 seconds before
critical signs like CPU saturation, memory exhaustion, or

application failures occurred. This early warning enables
proactive actions, such as auto-scaling, traffic throttling,
or container isolation — reducing the risk of service
disruption. Detection lead time was measured by aligning
attack labels with resource usage traces and locating
inflection points in key metrics (cpu_sec_total, resident
memory_total, open_fds). Fig. 7 illustrates this timeline,
showing that our models consistently flag anomalies before
threshold breaches, confirming their effectiveness in real-
time Kubernetes defense systems.

Key Insights and Implications

Ensemble models like Random Forest, XGBoost,
LightGBM, and Gradient Boosting consistently
outperformed other classifiers in accuracy, robustness,
and feature prioritization, proving highly effective for
high-dimensional, multi-source datasets. In contrast,
simpler models such as Naive Bayes provided baseline
performance but lacked the sophistication needed for
complex environments. Resource and network metrics —
including CPU utilization, packet transmission, and
system load — were key indicators for anomaly detection.
Integrating node- and application-level data significantly
improved detection accuracy and scalability, making
ensemble approaches well-suited for real-time deployment
in Kubernetes and edge environments. These results
establish a strong foundation for developing generalizable
frameworks that can distinguish between attack-
induced and natural workload fluctuations in containerized
systems.

0.8 1

0.4

True Positive Rate

0.0 - ’

Classifiers

—— Logistic Regression (AUC = 0.97)
---- Random Forest (AUC = 1.00)
Gradient Boosting (AUC = 0.98)

—-— Support Vector Machine (AUC = 0.98)
—— Decision Tree (AUC = 1.00)

---- Naive Bayes (AUC = 0.94)

K-Nearest Neighbors (AUC = 0.99)
—-— XGBoost (AUC = 1.00)

—— LightGBM (AUC = 0.99)

0.4

0.8

False Positive Rate

Fig. 6. ROC curves for all classifiers, illustrating their ability to differentiate between attack and non-attack states

Hay4HO-TexXHU4eCcKuii BECTHUK MHDOPMALIMOHHbLIX TEXHONOM A, MexXaHUkn 1 ontukun, 2025, Tom 25, N2 5

919

Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 5

Enhanced detection of denial-of-service attacks in Kubernetes: a multi-framework machine learning approach...

ERGCEEENG
] 1S 818 i S
Q
2 a1 im
EHE
|’J 1= |’4 (=]
70 = 18 1= i3
i T =
1 I 1 [}
9 LS
o 7 1 1 1 1
g i | . |
: nivein
2 50 A .
O i | i |
| i |
1 1 1 1
1 I 1 1
- 1 I 1 1
1 I] 1
1 1 1 1
i | i |
— CPU Usage (%) i | i i
30 - CPU Threshold (80 %) i i i i
1 1 1 1
0 40 80 120

Time, s

Fig. 7. Simulated comparative timeline of CPU usage during Denial-of-Service (DoS) attack scenarios. The figure illustrates two
events where ML models (XGBoost, Random Forest) detect anomalous activity several seconds before the system reaches critical
CPU utilization thresholds (80 %). This early detection window — ranging from 3 to 12 seconds — enables proactive mitigation
before visible service degradation occurs, demonstrating the practical value of the proposed approach in real-time Kubernetes
environments

Conclusion

This study evaluated machine learning methods for
detecting DoS attacks in Kubernetes using metrics from
five frameworks — Flask, Django, FastAPI, Node.js, and
Golang. By combining node- and application-level metrics,
we built a robust dataset that captures diverse workload
behaviors. Statistical and correlation analyses highlighted
the predictive power of CPU usage, memory consumption,

References

1. Sadiq A., Syed H.J., Ansari A.A., Ibrahim A.O., Alohaly M., Elsadig M.
Detection of denial of service attack in cloud based kubernetes using
eBPF. Applied Sciences, 2023, vol. 13, no. 8, p. 4700. https://doi.
org/10.3390/app13084700

2. Cao C., Blaise A., Verwer S., Rebecchi F. Learning state machines to
monitor and detect anomalies on a kubernetes cluster. Proc. of the 17t
International Conference on Availability, Reliability and Security,
2022, pp. 1-9. https://doi.org/10.1145/3538969.3543810

3. Koksal S., Catak F. O., Dalveren Y. Flexible and lightweight mitigation
framework for distributed denial-of-service attacks in container-based
edge networks using Kubernetes. /EEE Access, 2024, vol. 12,
pp. 172980-172991. https://doi.org/10.1109/ACCESS.2024.3501192

4. Tripathi A.A. Attacking and Defending Kubernetes. PhD thesis. Dublin
Business School, 2024. Available at: https://esource.dbs.ie/items/
edadeal 5-cedf-456b-939-6ce67e25¢4bb (accessed: 02.12.2024).

5. Darwesh G., Hammoud J., Vorobeva A.A. Enhancing Kubernetes
security with machine learning: a proactive approach to anomaly
detection. Scientific and Technical Journal of Information
Technologies, Mechanics and Optics, 2024, vol. 24, no. 6, pp. 1007—
1015. https://doi.org/10.17586/2226-1494-2024-24-6-1007-1015

6. Ghadeer D., Jaafar H., Vorobeva A.A. Security in Kubernetes: best
practices and security analysis. Journal of the Ural Federal District.
Information Security, 2022, no. 2 (44), pp. 63—69. https://doi.
org/10.14529/secur220209

and open file descriptors. Ensemble classifiers, especially
XGBoost, Random Forest, and LightGBM, achieved the
highest performance in identifying attacks. The approach
proved scalable and adaptable across frameworks,
advancing beyond static or framework-specific methods.
Future work will focus on integrating lightweight
monitoring tools and testing in resource-constrained edge
environments to further improve real-time detection in
cloud-native systems.

Jluteparypa

1. Sadiq A., Syed H.J., Ansari A.A., Ibrahim A.O., Alohaly M., Elsadig M.
Detection of denial of service attack in cloud based kubernetes using
eBPF // Applied Sciences. 2023. V. 13. N 8. P. 4700. https://doi.
org/10.3390/app13084700

2. Cao C., Blaise A., Verwer S., Rebecchi F. Learning state machines to
monitor and detect anomalies on a kubernetes cluster // Proc. of the
17t International Conference on Availability, Reliability and Security.
2022. P. 1-9. https://doi.org/10.1145/3538969.3543810

3. Koksal S., Catak F. O., Dalveren Y. Flexible and lightweight mitigation
framework for distributed denial-of-service attacks in container-based
edge networks using Kubernetes // IEEE Access. 2024. V. 12.
P. 172980-172991. https://doi.org/10.1109/ACCESS.2024.3501192

4. Tripathi A.A. Attacking and Defending Kubernetes. PhD thesis. Dublin
Business School, 2024. [Online]. URL: https://esource.dbs.ie/items/
edadeal 5-cedf-456b-939-6ce67e¢25¢4bb (accessed: 02.12.2024).

5. Darwesh G., Hammoud J., Vorobeva A.A. Enhancing Kubernetes
security with machine learning: a proactive approach to anomaly
detection // Scientific and Technical Journal of Information
Technologies, Mechanics and Optics. 2024. V. 24. N 6. P. 1007-1015.
https://doi.org/10.17586/2226-1494-2024-24-6-1007-1015

6. Ghadeer D., Jaafar H., Vorobeva A.A. Security in Kubernetes: best
practices and security analysis // Journal of the Ural Federal District.
Information Security. 2022. N. 2 (44). P. 63—-69. https://doi.
org/10.14529/secur220209

920

Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHBLIX TEXHONOMMIA, MeXaHUKN 1 onTukn, 2025, Tom 25, N2 5
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 5

http://Node.js
https://doi.org/10.3390/app13084700
https://doi.org/10.3390/app13084700
https://doi.org/10.1145/3538969.3543810
https://doi.org/10.1109/ACCESS.2024.3501192
https://esource.dbs.ie/items/eda4ea15-cedf-456b-93f9-6ce67e25c4bb
https://esource.dbs.ie/items/eda4ea15-cedf-456b-93f9-6ce67e25c4bb
https://doi.org/10.17586/2226-1494-2024-24-6-1007-1015
https://doi.org/10.14529/secur220209
https://doi.org/10.14529/secur220209
https://doi.org/10.3390/app13084700
https://doi.org/10.3390/app13084700
https://doi.org/10.1145/3538969.3543810
https://doi.org/10.1109/ACCESS.2024.3501192
https://esource.dbs.ie/items/eda4ea15-cedf-456b-93f9-6ce67e25c4bb
https://esource.dbs.ie/items/eda4ea15-cedf-456b-93f9-6ce67e25c4bb
https://doi.org/10.17586/2226-1494-2024-24-6-1007-1015
https://doi.org/10.14529/secur220209
https://doi.org/10.14529/secur220209

. Darwesh, J. Hammoud, A.A. Vorobeva

~

oo

10.

14.

20.

21.

22.

23.

24.

. Darwesh G., Hammoud J., Vorobeva A.A. Enhancing kubernetes

security: the crucial role of DevSecOps. Proc. of the Institute for
Systems Analysis Russian Academy of Sciences, 2024, vol. 74, no. 3,
pp. 78-88. https://doi.org/10.14357/20790279240309

. Abed A.S., Clancy C., Levy D.S. Intrusion detection system for

applications using linux containers. Lecture Notes in Computer
Science, 2024, vol. 9331, pp. 123-135. https://doi.org/10.1007/978-
3-319-24858-5_8

. Zou Z., Xie Y., Huang K., Xu G., Feng D., Long D. A docker

container anomaly monitoring system based on optimized isolation
forest. I[EEE Transactions on Cloud Computing, 2022, vol. 10, no. 1,
pp. 134-145. https://doi.org/10.1109/TCC.2019.2935724

Srinivasan S., Kumar A., Mahajan M., Sitaram D., Gupta S.
Probabilistic real-time intrusion detection system for docker containers.
Communications in Computer and Information Science, 2019,
vol. 969, pp. 336-347. https://doi.org/10.1007/978-981-13-5826-5_26

. Tunde-Onadele O., He J., Dai T., Gu X. A study on container

vulnerability exploit detection. Proc. of the IEEE International
Conference on Cloud Engineering (IC2E), 2019, pp. 121-127. https://
doi.org/10.1109/IC2E.2019.00026

. Flora J., Gongalves P., Antunes N. Using attack injection to evaluate

intrusion detection effectiveness in container-based systems. Proc. of
the IEEE 25t Pacific Rim International Symposium on Dependable
Computing (PRDC), 2020, pp. 60-69. https://doi.org/10.1109/
PRDC50213.2020.00017

. Haq M.S., Nguyen T.D., Tosun A.S., Vollmer F., Korkmaz T.,

Sadeghi A.-R. SoK: a comprehensive analysis and evaluation of
docker container attack and defense mechanisms. Proc. of the IEEE
Symposium on Security and Privacy (SP), 2024, pp. 4573-4590.
https://doi.org/10.1109/sp54263.2024.00268

Lin Y., Tunde-Onadele O., Gu X. Cdl: Classified distributed learning
for detecting security attacks in containerized applications. Proc. of
the 36" Annual Computer Security Applications Conference, 2020,
pp. 179-188. https://doi.org/10.1145/3427228.3427236

. Darwesh G., Hammoud J., Vorobeva A.A. A novel approach to feature

collection for anomaly detection in Kubernetes environment and agent
for metrics collection from Kubernetes nodes. Scientific and Technical
Journal of Information Technologies, Mechanics and Optics, 2023,
vol. 23, no. 3, pp. 538-546. https://doi.org/10.17586/2226-1494-
2023-23-3-538-546

. LaValley M.P. Logistic regression. Circulation, 2008, vol. 117, no. 18,

pp. 2395-2399. https://doi.org/10.1161/circulationaha.106.682658

. Rigatti S.J. Random Forest. Journal of Insurance Medicine, 2017,

vol. 47,no. 1, pp. 31-39. https://doi.org/10.17849/insm-47-01-31-39.1

. Natekin A., Knoll A. Gradient boosting machines, a tutorial. Frontiers

in Neurorobotics, 2013, vol. 7, pp. 21. https://doi.org/10.3389/
fnbot.2013.00021

. Suthaharan S. Support vector machine. Integrated Series in

Information Systems, 2016, vol. 36, pp. 207-235. https://doi.
org/10.1007/978-1-4899-7641-3_9

Song Y., Lu Y. Decision tree methods: applications for classification
and prediction. Shanghai Archives of Psychiatry, 2015, vol. 27, no. 2,
pp. 130-135. https://doi.org/10.11919/1.issn.1002-0829.215044
Rish I. An empirical study of the naive Bayes classifier. Proc. of the
1JCAI-2001 Workshop on Empirical Methods in Artificial Intelligence,
2001, pp. 41-46.

Kramer O. K-Nearest neighbors. Intelligent Systems Reference
Library, 2013, vol. 51, pp. 13-23. https://doi.org/10.1007/978-3-642-
38652-7_2

Chen T., Guestrin C. XGBoost: A Scalable Tree Boosting System.
Proc. of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016, pp. 785—794. https://
doi.org/10.1145/2939672.2939785

Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., Liu T.-Y.
LightGBM: a highly efficient gradient boosting decision tree. Proc.
of the 315t International Conference on Neural Information
Processing Systems, 2017, pp. 3149-3157.

11.

12.

13.

15.

16.

18.

19.

20.

21.

22.

23.

24.

. Darwesh G., Hammoud J., Vorobeva A.A. Enhancing kubernetes

security: the crucial role of DevSecOps // Proc. of the Institute for
Systems Analysis Russian Academy of Sciences. 2024. V. 74. N 3.
P. 78-88. https://doi.org/10.14357/20790279240309

. Abed A.S., Clancy C., Levy D.S. Intrusion detection system for

applications using linux containers // Lecture Notes in Computer
Science. 2024. V. 9331. P. 123-135. https://doi.org/10.1007/978-3-
319-24858-5_8

. Zou Z., Xie Y., Huang K., Xu G., Feng D., Long D. A docker

container anomaly monitoring system based on optimized isolation
forest / IEEE Transactions on Cloud Computing. 2022. V. 10. N 1.
P. 134-145. https://doi.org/10.1109/TCC.2019.2935724

. Srinivasan S., Kumar A., Mahajan M., Sitaram D., Gupta S. Probabilistic

real-time intrusion detection system for docker containers //
Communications in Computer and Information Science. 2019. V. 969.
P. 336-347. https://doi.org/10.1007/978-981-13-5826-5_26
Tunde-Onadele O., He J., Dai T., Gu X. A study on container
vulnerability exploit detection // Proc. of the IEEE International
Conference on Cloud Engineering (IC2E). 2019. P. 121-127. https://
doi.org/10.1109/IC2E.2019.00026

Flora J., Gongalves P., Antunes N. Using attack injection to evaluate
intrusion detection effectiveness in container-based systems // Proc.
of the IEEE 25t Pacific Rim International Symposium on Dependable
Computing (PRDC). 2020. P. 60—69. https://doi.org/10.1109/
PRDC50213.2020.00017

Haq M.S., Nguyen T.D., Tosun A.S., Vollmer F., Korkmaz T.,
Sadeghi A.-R. SoK: a comprehensive analysis and evaluation of
docker container attack and defense mechanisms // Proc. of the [IEEE
Symposium on Security and Privacy (SP). 2024. P. 4573—-4590.
https://doi.org/10.1109/sp54263.2024.00268

. Lin Y., Tunde-Onadele O., Gu X. Cdl: Classified distributed learning

for detecting security attacks in containerized applications // Proc. of
the 36t Annual Computer Security Applications Conference. 2020.
P. 179-188. https://doi.org/10.1145/3427228.3427236

Darwesh G., Hammoud J., Vorobeva A.A. A novel approach to feature
collection for anomaly detection in Kubernetes environment and agent
for metrics collection from Kubernetes nodes // Scientific and
Technical Journal of Information Technologies, Mechanics and
Optics. 2023. V. 23. N 3. P. 538-546. https://doi.org/10.17586/2226-
1494-2023-23-3-538-546

LaValley M.P. Logistic regression // Circulation. 2008. V. 117. N 18.
P. 2395-2399. https://doi.org/10.1161/circulationaha.106.682658

. Rigatti S.J. Random Forest // Journal of Insurance Medicine. 2017.

V.47.N 1. P. 31-39. https://doi.org/10.17849/insm-47-01-31-39.1
Natekin A., Knoll A. Gradient boosting machines, a tutorial //
Frontiers in Neurorobotics. 2013. V. 7. P. 21. https://doi.org/10.3389/
fnbot.2013.00021

Suthaharan S. Support vector machine // Integrated Series in
Information Systems. 2016. V. 36. P. 207-235. https://doi.
org/10.1007/978-1-4899-7641-3 9

Song Y., Lu Y. Decision tree methods: applications for classification
and prediction // Shanghai Archives of Psychiatry. 2015. V. 27. N 2.
P. 130135, https://doi.org/10.11919/j.issn.1002-0829.215044

Rish I. An empirical study of the naive Bayes classifier // Proc. of the
1JCAI-2001 Workshop on Empirical Methods in Artificial
Intelligence. 2001. P. 41-46.

Kramer O. K-Nearest neighbors // Intelligent Systems Reference
Library. 2013. V. 51. P. 13-23. https://doi.org/10.1007/978-3-642-
38652-7_2

Chen T., Guestrin C. XGBoost: A Scalable Tree Boosting System //
Proc. of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 2016. P. 785—794. https://
doi.org/10.1145/2939672.2939785

Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., Liu T.-Y.
LightGBM: a highly efficient gradient boosting decision tree // Proc.
of the 315t International Conference on Neural Information Processing
Systems. 2017. P. 3149-3157.

Hay4HO-TexXHU4eCcKuii BECTHUK MHDOPMALIMOHHbLIX TEXHONOM A, MexXaHUkn 1 ontukun, 2025, Tom 25, N2 5
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 5

921

https://doi.org/10.14357/20790279240309
https://doi.org/10.1007/978-3-319-24858-5_8
https://doi.org/10.1007/978-3-319-24858-5_8
https://doi.org/10.1109/TCC.2019.2935724
https://doi.org/10.1007/978-981-13-5826-5_26
https://doi.org/10.1109/IC2E.2019.00026
https://doi.org/10.1109/IC2E.2019.00026
https://doi.org/10.1109/PRDC50213.2020.00017
https://doi.org/10.1109/PRDC50213.2020.00017
https://doi.org/10.1109/sp54263.2024.00268
https://doi.org/10.1145/3427228.3427236
https://doi.org/10.17586/2226-1494-2023-23-3-538-546
https://doi.org/10.17586/2226-1494-2023-23-3-538-546
https://doi.org/10.1161/circulationaha.106.682658
https://doi.org/10.17849/insm-47-01-31-39.1
https://doi.org/10.3389/fnbot.2013.00021
https://doi.org/10.3389/fnbot.2013.00021
https://doi.org/10.1007/978-1-4899-7641-3_9
https://doi.org/10.1007/978-1-4899-7641-3_9
https://doi.org/10.11919/j.issn.1002-0829.215044
https://doi.org/10.1007/978-3-642-38652-7_2
https://doi.org/10.1007/978-3-642-38652-7_2
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.14357/20790279240309
https://doi.org/10.1007/978-3-319-24858-5_8
https://doi.org/10.1007/978-3-319-24858-5_8
https://doi.org/10.1109/TCC.2019.2935724
https://doi.org/10.1007/978-981-13-5826-5_26
https://doi.org/10.1109/IC2E.2019.00026
https://doi.org/10.1109/IC2E.2019.00026
https://doi.org/10.1109/PRDC50213.2020.00017
https://doi.org/10.1109/PRDC50213.2020.00017
https://doi.org/10.1109/sp54263.2024.00268
https://doi.org/10.1145/3427228.3427236
https://doi.org/10.17586/2226-1494-2023-23-3-538-546
https://doi.org/10.17586/2226-1494-2023-23-3-538-546
https://doi.org/10.1161/circulationaha.106.682658
https://doi.org/10.17849/insm-47-01-31-39.1
https://doi.org/10.3389/fnbot.2013.00021
https://doi.org/10.3389/fnbot.2013.00021
https://doi.org/10.1007/978-1-4899-7641-3_9
https://doi.org/10.1007/978-1-4899-7641-3_9
https://doi.org/10.11919/j.issn.1002-0829.215044
https://doi.org/10.1007/978-3-642-38652-7_2
https://doi.org/10.1007/978-3-642-38652-7_2
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785

Enhanced detection of denial-of-service attacks in Kubernetes: a multi-framework machine learning approach...

Authors

Ghadeer Darwesh — PhD Student, ITMO University, Saint Petersburg,
197101, Russian Federation, [s¢| 57226287648, https://orcid.org/0000-
0003-1116-9410, ghadeerdarwesh32@gmail.com

Jaafar Hammoud — PhD Student, ITMO University, Saint Petersburg,
197101, Russian Federation, [s¢/ 57222044000, https://orcid.org/0000-
0002-2033-0838, hammoudgj@gmail.com

Alisa A. Vorobeva — PhD, Associate Professor, ITMO University, Saint
Petersburg, 197101, Russian Federation, [s¢ 57191359167, https://orcid.
org/0000-0001-6691-6167, vorobeva@itmo.ru

ABTOpBI

Japsum I'agup — acnimpant, Yausepcurer UTMO, Cankr-IlerepOypr,
197101, Poccuiickas Denepars, [s¢ 57226287648, https://orcid.org/0000-
0003-1116-9410, ghadeerdarwesh32@gmail.com

Xammyn Kaadap — acniupant, Yausepcurer MTMO, Canxkr-IlerepOypr,
197101, Poccuiickas Deneparus, [s¢ 57222044000, https://orcid.org/0000-
0002-2033-0838, hammoudgj@gmail.com

Bopo0beBa Astnca AHJIpeeBHAa — KaHJUAT TEXHUYECKUX HAyK, J10-
nent, YauBepcureT UTMO, Cankr-IletepOypr, 197101, Poccuiickas
Denepauns, s¢ 57191359167, https://orcid.org/0000-0001-6691-6167,
vorobeva@itmo.ru

Received 26.03.2025 Cmamwsi nocmynuna ¢ peoakyuro 26.03.2025
Approved after reviewing 02.09.2025 Ooobpena nocne peyensuposanus 02.09.2025
Accepted 30.09.2025 Ipunama x newamu 30.09.2025
@ @ Pa6ota gocTynHa no nuueHsnm
@ Creative Commons
«Attribution-NonCommercial»
922 Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHBLIX TEXHONOMMIA, MeXaHUKN 1 onTukn, 2025, Tom 25, N2 5

Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 5

https://orcid.org/0000-0003-1116-9410
https://orcid.org/0000-0003-1116-9410
mailto:ghadeerdarwesh32@gmail.com
https://orcid.org/0000-0002-2033-0838
https://orcid.org/0000-0002-2033-0838
mailto:hammoudgj@gmail.com
https://orcid.org/0000-0001-6691-6167
https://orcid.org/0000-0001-6691-6167
mailto:vorobeva@itmo.ru
https://orcid.org/0000-0003-1116-9410
https://orcid.org/0000-0003-1116-9410
mailto:ghadeerdarwesh32@gmail.com
https://orcid.org/0000-0002-2033-0838
https://orcid.org/0000-0002-2033-0838
mailto:hammoudgj@gmail.com
https://orcid.org/0000-0001-6691-6167
mailto:vorobeva@itmo.ru

