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Abstract

A practically effective solution to the problem of automated processing of ice reconnaissance data in high latitudes is
proposed. The intermediate result of ice reconnaissance is huge aerial survey data set consisting of images of low quality;
this is a consequence of the difficult conditions of aerial survey in high latitudes. The goal of the study is to create a
high-level method that can either efficiently process this pre-collected data set or perform real-time processing of similar
images while ensuring high reliability in solving the problem of recognizing ice class distribution on the water surface
with minimal computing resources. In particular, the problem of automatic classification of ice-floe size distribution
(FSD) type for a three-class model based on aerial survey data is solved. The practically important case of low-quality
images is considered, a common situation for the meteorological conditions of the Far North. The proposed approach
is based on the use of machine learning methods, in particular on the well-known multi-class SVM (Support Vector
Machine), which is extremely undemanding to computing resources and therefore can be implemented even by the
onboard computer of an ice reconnaissance UAV. From the input images of low quality some numerical characteristics
of the image are calculated which informatively characterize the image. These characteristics (features) are invariant
to scaling, rotation and illumination as well as have a much smaller dimensionality than the original image. The main
idea underlying the proposed method is to form an original set of features which are implemented in the original feature
space. These features characterize large fragments of the analyzed image and are “stable”, in contrast to the features that
characterize small details. A new method of FSD type classification based on the processing of aerial survey data by
using machine learning methods, which is sufficiently effective for processing low-quality images, has been proposed.
Also, the original feature space for classification was proposed which ensured high practical efficiency of this method.
The method has shown high efficiency when it is tested on a data set composed of low-quality real images (high
blurriness, vagueness, presence of meteorological noises). The developed algorithm can be used for express analysis of
ice reconnaissance data, including an ice reconnaissance UAV on-board software component.
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AHHOTaLMA
peamer ucciaenoBanus. [IpemioxeHo npakTudecku 3PEeKTHBHOE pelIeHHE 3a1a91 aBTOMaTH3UPOBAHHOI 00paboTKH
JTAHHBIX JE€A0BOH Pa3BEAKN B BBICOKHX IIHUPOTAX. [IpOMEKyTOUHBIN pe3ynbTarT IeTOBOH pa3BeIKi — OOJBIION MAacCHB
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A.V. Timofeev, D.l. Groznov

JIAHHBIX a’pO(OTOCHEMKH, COCTOSIIIMI U3 N300paKEHUI HU3KOTO KauecTBa. Takol pe3yibTaT SIBISIETCS CIECTBUEM
CJIOKHBIX YCIIOBHI a9p0o()OTOCHEMKH B BRICOKUX IIMpoTax. L{enb paboTel — co3nanne BbICOKOA()(HEKTUBHOTO METO/Ia,
KOTOPBIN MPU MHUHUMAJBHBIX TPEOOBAHUAX K BBIYHCINTEIBHBIM pecypcaM crocobeH miu d3gdekTuBHo 00paboTarh
MpeBapUTEIbHO COOPAaHHBI MACCHB JaHHBIX, HJIU BBIIOIHUTH 00paOOTKY MOIXOOHBIX H300paKEHHI B peaabHOM
MaciTade BpeMeHH. MeTojt I0IKeH 00eCeYnTh BHICOKYIO HaIe)KHOCTh PEIICHHUS 3a/1a4H 110 Paclo3HaBaHMIO Kiacca
pacrpe/iesieHHs JIbMH Ha BOJHOM MOBEpPXHOCTH. PellieHa 3a/1aqa aBTOMAaTHYECKOI KIIaCCH(DHKALIMHU TUITA PACTIPEICIICHHS
JBJIUH 110 pa3MepaMm JUIsl TPEXKIACCOBON MOJENIH HAa OCHOBE JAHHBEIX a3po(OTOCHEMKH. PacCMOTpeH MpakTuieckn
BA)KHBIH CITy4ail HU3KOKa4eCTBEHHBIX CHUMKOB, UTO SIBJISIETCS OOBIYHON CHUTYaIHeil It METEOpOIIOTHIECKUX YCIOBHN
Kpaitnero Cesepa. Metoa. [IpeyioskeHHBIH MOX01 OCHOBAH Ha MCIOJIb30BAHUS METOIOB MAIIMHHOTO O0yUYCHHUS,
B YAaCTHOCTH Ha MYJBTHUKIACCOBOM MalllMHE ONMOPHBIX BEKTOPOB, KOTOPBIN SBISAETCS KpailHe HETpeOOBATEIbHBIM K
BBIYMCIUTEIBHBIM PECYpcaM M MOITOMY MOXKET OBITh peann30BaH Jake OOPTOBLIM BBIYUCIUTENIEM OESCIHIOTHOTO
JIETATeNBHOTO armnapara JIefloBoi pa3Beaku. [To BXOIHBIM H300paKeHHUSIM HU3KOTO KaueCTBA BBIYMCIISIOTCS MHOTOMEPHbIE
YHCIIOBBIC XapaKTEPUCTHKH BXOAHOTO H300paykeHMsl, KOTOPbIC ero HHGOPMATHBHO XapaKTepU3YIOT. XapaKTepUCTHKU
(MpU3HAKK) TAaHHOTO THIIA HHBAPHAHTHBI K MacuTady, TOBOPOTY M OCBEIICHHIO, & TAKKE MUMEIOT 3HAYUTEIBHO
MEHBIIYIO0 Pa3MepHOCTB, YeM HCXOHOe n300paxenne. OCHOBHAs Hjes, JiexkKalasi B OCHOBE MPeIaraeMoro MeTosa,
3aKJII04aeTcsl B (pOPMUPOBAHUN OPUTHHAIBEHOH COBOKYITHOCTH NMPHU3HAKOB. [IpHU3HAKN pean3yroTcsi B OpUTHHAIBHOM
MPOCTPAHCTBE MPU3HAKOB, YQPEKTHUBHO XapaKTePU3YIOT KPYIHbIE (pparMeHThl aHAIU3UPYEMOT0 M300pakeHUs U
SABJIAKOTCA ((yCTOi’I'—lHBbIMM)), B OTJIMYHE OT IIPU3HAKOB, XapaKTECPU3YIOIIUX MEJIKUE [NE€TaIH. OcHoBHBIE pe3yiabTarhbl.
TTpensoxeH HOBBII METOA KIacCH(HKALMN THIIA PACHIPEASICHUS JIBIMH Ha BOJIHON MOBEPXHOCTH Ha OCHOBE 00pabOTKN
JTAHHBIX a9PO(POTOCHEMKH C UCIOIB30BAHUEM METOJJOB MAITMHHOTO O0yUYeHHUsI, KOTOPBIH 3(h(heKTHBEH 115t 00padOTKH
HHU3KOKAYeCTBEHHBIX M300pakeHUl GOPTOBBIM BBIYUCIUTEIEM OCCIMIOTHOTO JICTATENILHOTO annapaTa JeaoBoi
pasBeku. [IpeuioKeHO OpUIHHAIBHOE IPOCTPAHCTBO MPH3HAKOB KiIACCH(UKAIIMN, KOTOPOE 00ECIeYnBaCT BHICOKYIO
MIPAaKTHIECKyIo S (PEeKTHBHOCTH JAaHHOTO MeTona. MeTo/ moKa3all BEICOKYIO S (eKTHBHOCT IIPH TECTHPOBAHUH HA
HaOoOpe JaHHBIX, COCTABICHHOM U3 PeaJbHBIX M300pakeHHH HU3KOro KadyecTBa (BBICOKAsl Pa3MBITOCTh, HEUETKOCTD,
HaJIu4Yue MeTeoposornyeckux nomex). [lpakTuyeckasi 3HAYMMOCTh. Pa3paboTaHHBIN alrOPUTM MOXET OBITH
MCIIOJIb30BaH /ISl OKCIIPECC-aHaIn3a JaHHbIX JIEOBOW pa3BEAKH, B TOM YHCIE U KaK KOMIOHEHT IPOTrPaMMHOIO
obecrieyeHns: GOPTOBBIX BBIYUCIUTENCH OSCIMIOTHBIX JIETATENbHBIX allapaToB JISJOBOH Pa3BeIKH.

KiroueBble ci10Ba

pacrpeesneHie pa3MepoB JbJANH, JE0Bas pa3Bejika, Kiaccudukanus n3o0paxenuit, MynprukiaccoBas SVM,
THCTOrpaMMa H300paeHUsI, Pa3MbIThIC H300paKEHHUsI, KIACCU(UKALNMSA THIIOB MOPCKOTIO JIb/ia
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Introduction

Shipping routes in the Northern latitudes, including
the Northern Sea Route, do not have a permanent
geographical reference and are formed based on a set of
hydro-meteorological information which comes to the
ship. As a rule, the total length of the route, in this case,
is a variable value since throughout the route the vessel
is under the influence of various ice conditions. In this
case, the tortuosity coefficient always exceeds unity, and
additional route length increase in old ice due to their
circumvention is 10-30 % [1]. When laying routes in the
Northern latitudes, the concept of a rational route that best
meets some formal criterion (for example: route length,
travel time along the route, fuel economy and others)
plays an important role [2]. The main criterion used when
constructing a rational route in the Northern latitudes is
the total time spent on its passage time. A rational route
is usually laid through the zones where: total ice cohesion
is minimal, young ice forms prevail, and ice torsion is
minimal. All this information can be obtained operatively
only from ice reconnaissance data. Thus, without taking
into account hydro-meteorological information, which is
mainly the result of ice reconnaissance, the construction of
a rational route is fundamentally impossible. Therefore, the
role of ice reconnaissance in the set of tasks for providing
logistics in northern latitudes is extremely important. The
main navigational characteristic to be monitored during
ice reconnaissance is the “ice cohesion” characteristic.

Ice cohesion is the ratio of the area of ice in area X to
the total area of this area expressed in fractions or scores
[3]. Let us denote this parameter by the symbol S(X). It
is the parameter S(X) that cardinally affects the ability to
navigate in a particular area of the sea [3]. More precisely:
the resistance of broken ice increases in proportion to the
value of (2 — S(X))S%(X) [3]. Somewhat different, but close
in meaning, ice cohesion can be described by the concept
of “floe size distribution” (FSD) [4]. There are many
papers devoted to the study of FSD, e.g., [4-11], from
which follows that this FSD is well approximated by the
power law. At the same time, some works consider more
complex models, such as mix of power law and Gaussian
law or the mix of two power laws with different parameters.
Depending on the type of FSD, the ice is classified into
classes according to the N point system. That is, solid ice
gets the maximum number of points (N), and sparse ice gets
the minimum number of points. Different applications of
the FSD concept imply different values of N. For example,
in [12] N=10, and in [4] N = 3. From a practical point of
view, it is the ice cohesion score assigned to a particular area
=, of the sea surface with an ice cohesion value S[=,] that
is important. Let’s denote this value by vy, v; = {1, ... N}.
In practice, the value of y; is calculated using the processing
(manual or automatic) of some image /(Z;) of the surface
area Z,. The image /(E;) can be made in one or another
spectral range, this image can be obtained by one or
another means of aerial photography. The data processing
procedure D, which calculates the value y; based on /(Z)),
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in fact, maps the set of all possible images of different
parts of the sea surface (which form the set =) onto the set
{1, ... N}. That is:

24,8
y=DWE)) e {1, ...,N},I(E) € E.

I

In fact, D is a classifier. Depending on the value of vy,,
the decision is made to include or not to include the section
=, in the ship’s route. It follows from the definition that vy; is
a discrete (otherwise coarse) descriptor of the value S[Z;].

The efficiency of D classifier implementation directly
affects the correctness of determining the value of y, and
consequently, the efficiency of ice reconnaissance data
implementation. Many works are devoted to methods
of construction of the classifier D, for example [13-25].
Different methods of image processing are traditionally
used, but the main accent is made on studying the
boundaries of elements of a scene which represents an
image. In this direction, considerable progress has been
made including the use of the fashionable concept of Deep
Learning [19]. In this work, Deep Convolutional Neural
Network is successfully used to process ice reconnaissance
data.

Against the background of huge recent achievements in
the field of ice reconnaissance data, it remains a problem to
construct such a classifier D which would be able to work
with images of very low quality. Namely, low-quality ice
images are not uncommon when operating in the High
Latitudes using UAVs equipped with visible range sensors
due to the chronically difficult weather conditions of this
region. The images that are practically used to determine y
are often very blurry and highly noisy. As a rule, traditional
image processing methods based on the analysis of image
element boundaries (in fact: local contrast gradients and
hessians) proved to be ineffective when processing blurred
images [26]. In addition, developers are often faced with the
problem of a training corpus of small volume. Also relevant
is the task of ensuring the processing of ice reconnaissance
data directly on board the UAV which imposes additional
requirements for optimizing the computational complexity
of the algorithms for determining y. Therefore, the main
goal of this paper is to develop a classifier D that would
be operable for low-quality image processing, will remain
operable for training on a small volume image body,
and will be adaptable for implementation in the onboard
complex of a small UAV.

Materials and Method

Description of the Features Space used

For automatic classification of images, explicitly or
implicitly, some numerical characteristics of the image are
calculated informatively characterizing the image. Ideally,
they are invariant to scaling, rotation and illumination, and
also have a significantly smaller dimensionality than the
original image. These characteristics are called features.
Typical examples of features are: histograms, image
pixel intensity, contrast gradient, contrast hessian, SIFT-
descriptors (spatial histogram of the image gradients), HOG

(histogram of oriented gradients) and so on. The main idea
underlying the proposed method is to form such features
that characterize large fragments of the analyzed image,
avoiding the use of features that characterize small details.
We will call the feature of the first type — global and the
feature of the second type — local. The main task of ice
reconnaissance is to estimate the FSD type for quite large
fragments of sea surface. This problem can be solved by
different methods that allow you to use both global and
local features. For example, in [8, 11, 21] both types of
features are considered, and in [4, 19, 24] preference is
given to the study of local features. For the case of blurred,
noisy images considered in this paper, the use of fine details
of the image, for example, based on the calculation of
contrast gradients and hessians, is problematic. In other
words, in this case, computing local features involve
unacceptable errors. Local features computed in this way
are uninformative and therefore unsuitable for solving
the problem of FSD classification or other concepts
characterizing FSD, in particular, for determining the
parameter y. On the other hand, global features are less
dependent on the parameters of image blurring (although
such dependence exists). The stability of global features is
largely determined by the correlation radius of the image:
the larger this value is, the more stable the global features
are to the effects of blurring and noisiness factor. That
is why this paper focuses on the use of global features.
Initially, a fairly wide set of features was considered: more
than thirty. At subsequent stages, this set was reasonably
narrowed down by selecting the most informative features.
Several methods were used including three so-called
“filtering” methods: chi-square, Pearson correlation and
analysis of variance (ANOVA), as well as adaptive method
of backward elimination. As a result, the following set of
features was obtained:

J==(E[E)], |E], STU(E)], H,[I{(E)], r=,
E(Az|x > ry), st(A=|x > r2)).

Here
I(E) = {i\Jx € Xz} is image of E, x-coordinates; Xz, is
image /(Z) coordinate set; and i, is intensity in image point
with coordinates x;
E[/(E)]= X iJX;g)/l !, hereinafter, the entry |B| denotes

xeXy=
the power of ]tﬁe set B;
I(E)| = max (i,) — min (i,);

xeXjg) xeXjg)

STE) =4 X (i~ EUEDIXe)™;

XEXI(E)
H,(E) is histogram of /(E) with m bins;
Az(]) is autocorrelation function of the /(Z) (averaged over
different slices), / € (0, d) — pixel shift; d is determined by
the size of the /(2);
rz is correlation radius of the image (averaged over
different slices);

E(dz(Dll € (rz, d) = YA=(D(d-r=);

IEFE

si(Aglx = rg) =

= \j Y A=)~ EAz(DI = r2))X(d - rg) (d—rz— 1)) .

rz
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In numerical studies it was assumed that m = 14. The
features fz are defined in the corresponding feature space
F, consisting of real vectors of length 20.

Description of the Data Set used

To set up and test the proposed classifier, we used
a Data Set specially created for this purpose. This Data
Set included, according to the classification from [4],
images of three FSD distribution classes, namely: “Pack
Ice”, “Marginal Ice Zone” and “Open Ocean” (Fig. 1).
When setting up the problem, the use case of so-called
“background” class has been deliberately excluded. Images
of all three classes were collected from open sources.
Then, in order to simulate the influence of a complex
meteorological situation, the images were subjected to the
procedure of artificial noising by spatially correlated noise
and smoothing by a Gaussian filter.

Data Set was obtained, in which class PI (“Pack
Ice”) corresponds to 96 samples, class MIZ (“Marginal
Ice Zone”) corresponds to 76 samples, class OO (“Open
Ocean”) corresponds to 192 samples. Fig. 2 shows
information about the class “Open Ocean”. Fig. 3 shows
information about the class “Marginal Ice Zone”, and Fig. 4
shows information about the class “Pack Ice”. It can be
seen from the figures that the video material is of very low
quality: ice edges are very blurred, contrast is low. But it
is images of such quality that are typical when using small
UAVs in the difficult meteorological conditions of the High
Latitudes.

Description of the D-classificator used

In practice, the amount of power available to developers
and researchers for training Data Set with aerial survey
data is affected by legal restrictions. In particular, special
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Fig. 1. FSD types used in this study. This figure is taken from
the article [4]

licenses are usually required to use high-resolution remote
sensing data. A significant number of modern airborne
video sensors fall under this limitation. Thus, the Data Set
with aerial imagery data available to a particular developer-
researcher may by no means always be of significant (more
than a thousand samples per class) power. In the present
work, we assume that for training classifier D researchers
have access to a Data Set of relatively small power. Since
the dimensionality of feature space is relatively small, and
the images in Data Set have a relatively large correlation
radius (8 or more pixels), the samples of the same class will
relatively “smoothly” differ from each other by the metric
of F-space. Under these conditions, it is logical to use a
conventional and very computationally economical Multi-
Class Support Vector Machine (MC-SVM) as a D-classifier
[27]. For comparison, a DL-classifier was also used in
ResNet20 [28]. During training, in order to ensure control
of the generalization ability of the classifiers, the standard
Cross Validation scheme was used, in the LOO (leave-one-
out) variant. For the MC SVM classifier, given the multiclass
formulation of the problem, a one-vs-rest strategy was used.

0O0O-image autocorrelation function

ACEF values

L S e s S B B B

0o 4 8 12 16 20 25 30 35 40
Lag

Fig. 2. Class “Open Ocean” (OO). Typical sample images from the OO-class (a). Intensity histogram plotted over the entire typical
image from the OO-class (b). Typical autocorrelation function of an OO-image (averaged over different slices) (c)
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Fig. 3. Class “Marginal Ice Zone” (MIZ). Typical sample images from the MIZ-class (a). Intensity histogram plotted over the entire
typical image from the MIZ-class (). Typical autocorrelation function of MIZ-image (averaged over different slices) (c)
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Fig. 4. Class “Pack Ice” (PI). Typical sample images from the Pl-class (). Intensity histogram plotted over the entire typical image
from the Pl-class (b). Typical autocorrelation function of PI-image (averaged over different slices) (c)
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Table 1. The basic metrics values on the test Data Set

Image Class Method Precision recall f1-score Support
MC-SVM 1.00 0.96 0.98 24
Open Space (OS)
Resnet20 0.96 1.00 0.98 24
. MC-SVM 0.96 1.00 0.98 24
Marginal Ice Zone (MIZ)
Resnet20 0.92 1.00 0.96 24
MC-SVM 1.00 1.00 1.00 43
Pack Ice (PI)
Resnet20 1.00 0.93 0.96 43
Table 2. Confusion matrices for ResNet 20 and MC-SVM
Image Class Method oS MIzZ PI
MC-SVM 23 0
Open Space (OS)
ResNet20 24 0
. MC-SVM 0 24
Marginal Ice Zone (MIZ)
ResNet20 0 24
MC-SVM 0 42
Pack Ice (PI)
ResNet20 1 2 40

Test results

The results of the numerical studies are summarized in
Tables 1, 2. The main information is contained in Table 1.
Here we accumulate the results which were shown on
the test Data Set by classifiers based on MC-SVM and
Resnet20. A standard set of metrics was used to evaluate
the classification results: precision, recall, and f1-score.
The table shows that in the experiments exactly 24 samples
from each class were used at the test stage.

Table 2 contains the so-called confusion matrix for
classifier implementations by MC-SVM and Resnet20
schemes, respectively. In general, the classification results
are quite good. A more detailed analysis of the results is
given in the Discussion section.

Discussion

As follows from Tables 1, 2, the classifiers built
according to different schemes, taking into account the
low power of the Data Set, showed very decent results.
At the same time, the classifier based on MC SVM is
slightly superior in all parameters to the classifier based on
ResNet20. This is due to the insufficient power of the Data
Set to provide full training of the DL-classifier, ResNet20
in this case. It is known that the training of DL-classifiers,
for example based on Deep Convolutional Neural Network,
requires a Data Set of considerable power (more than 1000
instances for each class). This is due to the fact that DL-
classifier is a very complex model which depends on tens of
thousands (and more) parameters. From machine learning
theory [29] follows that model complexity should grow
“slowly” as the size of the training Data Set increases.
Therefore, on small Data Sets, the DL-classifier simply
does not have time to be trained due to the mismatch in
the complexity of the classifier and the Data Set. Analysis
of confusion matrixes shows that MC SVM made only 1
mistake, confusing classes PI and OO. This is probably

due to the fact that these classes, despite their numerous
differences, have common features: a significant part of the
surface, in both cases, may occupy a coherent, texturally
homogeneous array, for example, a water surface (OO-
class) or a solid ice slab (PI-class). The ResNet20-based
classifier made three errors. All errors are related to
incorrect classification of samples from the PI-class. The
reason for the errors: insufficient capacity of the Data Set
to fully train the ResNet20-based classifier.

Conclusions

The paper suggests a new method for classifying the
sea-ice floe size distribution type based on the use of
low-quality video footage. Low quality of video footage
is quite typical for high latitude conditions where most
of the year a set of complex meteorological factors
negatively affects the quality of aerial photography. That
is why ice reconnaissance data processing should be able
to compensate the negative influence of meteorological
factors on the quality of ice surface imagery. In other
words, ice reconnaissance data processing should be
able to estimate with high reliability the sea-ice floe
size distribution type because this estimation is one of
the main results of ice reconnaissance. The sea-ice floe
size distribution type classification method proposed in
the article has high robustness to noises and distortions
of the source video material which makes it an effective
means of overcoming the negative influence of a complex
high latitude meteorological environment. The simulation
results showed high reliability in solving the task of
estimating the sea-ice floe size distribution type which the
proposed method provides under the condition of highly
noisy and distorted source data. The proposed method is
economical in the computational sense and, therefore, it
can be implemented in software on a medium- and low-
power computing platform placed on board a small-sized
ice reconnaissance UAV.
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