Preview

Научно-технический вестник информационных технологий, механики и оптики

Расширенный поиск

Сегментация мышечной ткани на снимках компьютерной томографии на уровне позвонка L3

https://doi.org/10.17586/2226-1494-2024-24-1-124-132

Аннотация

Введение. С возрастающей рутинной нагрузкой на врачей-рентгенологов, связанной с необходимостью анализировать большое количество снимков, возникает потребность в автоматизации части процесса анализа. Саркопения представляет собой состояние, при котором происходит потеря мышечной массы. Для диагностики саркопении наиболее часто применяется компьютерная томография, по снимкам которой может быть оценен объем мышечной ткани. Первым этапом анализа является ее оконтуривание, которое выполняется вручную, занимает продолжительное время и не всегда производится достаточно качественно, что оказывает влияние на точность оценок и, как следствие, на план лечения пациента. Предметом исследования является применение подходов компьютерного зрения для точной сегментации мышечной ткани по снимкам компьютерной томографии с целью саркометрии. Цель исследования — разработка подхода к решению задачи сегментации собранных и размеченных снимков. Метод. Представленный подход включает в себя этапы предварительной обработки снимков, сегментации при помощи нейронных сетей семейства U-Net и постобработки. Всего рассмотрено 63 различных конфигурации подхода, которые отличаются с точки зрения данных, подаваемых на вход моделей, и архитектур моделей. Оценено влияние предложенного способа постобработки получаемых бинарных масок на точность сегментации. Основные результаты. Для конфигурации подхода, включающей предварительную обработку с маскированием стола томографа и применением анизотропной диффузионной фильтрации, сегментацию моделью, имеющей архитектуру Inception U-Net и постобработку на базе анализа контуров, получен коэффициент схожести Дайса (Dice similarity coefficient, DSC) 0,9379 и пересечение над объединением (Intersection over Union, IoU) — 0,8824. Девять из исследованных в работе конфигураций также продемонстрировали высокие значения метрик DSC (в диапазоне 0,9356–0,9374) и IoU (0,8794–0,8822). Предлагаемый подход на базе предобработанных трехканальных изображений позволяет достигать значений 0,9364 для DSC и 0,8802 для IoU с применением легковесной модели сегментации U-Net. В соответствии с описанным подходом реализован программный модуль на языке Python. Обсуждение. Результаты исследования подтверждают целесообразность применения компьютерного зрения для оценки показателей мышечной ткани. Разработанный модуль может применяться для снижения рутинной нагрузки на рентгенологов.

Об авторах

А. Р. Теплякова
Обнинский институт атомной энергетики — филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (ИАТЭ НИЯУ МИФИ)
Россия

Теплякова Анастасия Романовна — преподаватель, аспирант

 Обнинск, 249039

 sc 57220985322



Р. В. Шершнев
Обнинский институт атомной энергетики — филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (ИАТЭ НИЯУ МИФИ)
Россия

Шершнев Роман Владимирович — старший преподаватель

Обнинск, 249039



С. О. Старков
Обнинский институт атомной энергетики — филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (ИАТЭ НИЯУ МИФИ)
Россия

Старков Сергей Олегович — доктор физико-математических наук, профессор, старший научный сотрудник

 Обнинск, 249039

 sc 6701907645



Т. А. Агабабян
Медицинский радиологический научный центр им. А.Ф. Цыба — филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России
Россия

Агабабян Татев Артаковна — кандидат медицинских наук, заведующая отделением

 Обнинск, 249036

sc 57202285176

 



В. А. Кукарская
Медицинский радиологический научный центр им. А.Ф. Цыба — филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России
Россия

Кукарская Валерия Андреевна — клинический ординатор

 Обнинск, 249036



Список литературы

1. Шеберова Е.В., Силантьева Н.К., Агабабян Т.А., Потапов А.Л., Невольcкиx А.А., Иванов С.А., Каприн А.Д. Роль компьютерной томографии в диагностике саркопении // Сибирский онкологи-ческий журнал. 2023. Т. 22. № 3. С. 125–133. https://doi.org/10.21294/1814-4861-2023-22-3-125-133

2. Агабабян Т.А., Кукарская В.А., Силантьева Н.К., Потапов А.Л., Скоропад В.Ю., Шеберова Е.В., Дорожкин А.Д., Иванов С.А., Каприн А.Д. Роль КТ-саркометрии в прогнозировании послеопе-рационных осложнений у больных раком желудка // Современная онкология. 2023. Т. 25. № 3. С. 284–288. https://doi.org/10.26442/18151434.2023.3.202260

3. Tagliafico A.S., Bignotti B., Torri L., Rossi F. Sarcopenia: how to measure, when and why // La radiologia medica. 2022. V. 127. N 3. P. 228–237. https://doi.org/10.1007/s11547-022-01450-3

4. Shen W., Punyanitya M., Wang Z., Gallagher D., St-Onge M.P., Albu J., Heymsfield S.B., Heshka S. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image // Journal of Applied Physiology. 2004. V. 97. N 6. P. 2333–2338. https://doi.org/10.1152/japplphysiol.00744.2004

5. Van den Broeck J., Sealy M.J., Brussaard C., Kooijman J., Jager-Wittenaar H., Scafoglieri A. The correlation of muscle quantity and quality between all vertebra levels and level L3, measured with CT: An exploratory study // Frontiers in Nutrition. 2023. V. 10. P. 1148809. https://doi.org/10.3389/fnut.2023.1148809

6. Vedire Y., Nitsche L., Tiadjeri M., McCutcheon V., Hall J., Barbi J., Yendamuri S., Ray A.D. Skeletal muscle index is associated with long term outcomes after lobectomy for non-small cell lung cancer // BMC Cancer. 2023. V. 23. N 1. P. 778. https://doi.org/10.1186/s12885-023-11210-9

7. Сморчкова А.К., Петряйкин А.В., Семёнов Д.С., Шарова Д.Е. Саркопения: современные подходы к решению диагностических задач // Digital Diagnostics. 2022. Т. 3. № 3. C. 196–211. https://doi.org/10.17816/DD110721

8. Burns J.E., Yao J., Chalhoub D., Chen J.J., Summers R.M. A machine learning algorithm to estimate sarcopenia on abdominal CT // Academic Radiology. 2020. V. 27. N 3. P. 311–320. https://doi.org/10.1016/j.acra.2019.03.011

9. Graffy P.M., Liu J., Pickhardt P.J., Burns J.E., Yao J., Summers R.M. Deep learning-based muscle segmentation and quantification at abdominal CT: application to a longitudinal adult screening cohort for sarcopenia assessment // British Journal of Radiology. 2019. V. 92. N 1100. P. 20190327. https://doi.org/10.1259/bjr.20190327

10. Blanc-Durand P., Schiratti J.B., Schutte K., Jehanno P., Herent P., Pigneur F., Lucidarme O., Benaceur Y., Sadate A., Luciani A., Ernst O., Rouchaud A., Creze M., Dallongeville A., Banaste N., Cadi M., Bousaid I., Lassau N., Jegou S. Abdominal musculature segmentation and surface prediction from CT using deep learning for sarcopenia assessment // Diagnostic and Interventional Imaging. 2020. V. 101. N 12. P. 789–794. https://doi.org/10.1016/j.diii.2020.04.011

11. Ackermans L.L.G.C., Volmer L., Wee L., Brecheisen R., Sánchez-González P., Seiffert A.P., Gómez E.J., Dekker A., Ten Bosch J.A., Olde Damink S.M.W., Blokhuis T.J. Deep learning automated segmentation for muscle and adipose tissue from abdominal computed tomography in polytrauma patients // Sensors. 2021. V. 21. N 6. P. 2083. https://doi.org/10.3390/s21062083

12. Kreher R., Hinnerichs M., Preim B., Saalfeld S., Surov A. Deep-learning-based Segmentation of Skeletal Muscle Mass in Routine Abdominal CT Scans // In Vivo. 2022. V. 36. N 4. P. 1807–1811. https://doi.org/10.21873/invivo.12896

13. Song G., Zhou J., Wang K., Yao D., Chen S., Shi Y. Segmentation of multi-regional skeletal muscle in abdominal CT image for cirrhotic sarcopenia diagnosis // Frontiers in Neuroscience. 2023. V. 17. P. 1203823. https://doi.org/10.3389/fnins.2023.1203823

14. Dabiri S., Popuri K., Cespedes Feliciano E.M., Caan B.J., Baracos V.E., Beg M.F. Muscle segmentation in axial computed tomography (CT) images at the lumbar (L3) and thoracic (T4) levels for body composition analysis // Computerized Medical Imaging and Graphics. 2019. V. 75. P. 47–55. https://doi.org/10.1016/j.compmedimag.2019.04.007

15. Gu S., Wang L., Han R., Liu X., Wang Y., Chen T., Zheng Z. Detection of sarcopenia using deep learning-based artificial intelligence body part measure system (AIBMS) // Frontiers in Physiology. 2023. V. 14. P. 1092352. https://doi.org/10.3389/fphys.2023.1092352

16. Islam S., Kanavati F., Arain Z., Da Costa O.F., Crum W., Aboagye E.O., Rockall A.G. Fully automated deep-learning section-based muscle segmentation from CT images for sarcopenia assessment // Clinical Radiology. 2022. V. 77. N 5. P. e363–e371. https://doi.org/10.1016/j.crad.2022.01.036

17. Takahashi N., Sugimoto M., Psutka S.P., Chen B., Moynagh M.R., Carter R.E. Validation study of a new semi-automated software program for CT body composition analysis // Abdominal Radiology. 2017. V. 42. N 9. P. 2369–2375. https://doi.org/10.1007/s00261-017-1123-6

18. Kaur R., Juneja M., Mandal A.K. A comprehensive review of denoising techniques for abdominal CT images // Multimedia Tools and Applications. 2018. V. 77. N 17. P. 22735–22770. https://doi.org/10.1007/s11042-017-5500-5

19. Масенко В.Л., Коков А.Н., Григорьева И.И., Кривошапова К.Е. Лучевые методы диагностики саркопении // Исследования и практика в медицине. 2019. Т. 6. № 4. С. 127–137. https://doi.org/10.17709/2409-2231-2019-6-4-13

20. Lee J.S., Kim Y.S., Kim E.Y., Jin W. Prognostic significance of CT-determined sarcopenia in patients with advanced gastric cancer // PLoS ONE. 2018. V. 13. N 8. P. e0202700. https://doi.org/10.1371/journal.pone.0202700


Рецензия

Для цитирования:


Теплякова А.Р., Шершнев Р.В., Старков С.О., Агабабян Т.А., Кукарская В.А. Сегментация мышечной ткани на снимках компьютерной томографии на уровне позвонка L3. Научно-технический вестник информационных технологий, механики и оптики. 2024;24(1):124-132. https://doi.org/10.17586/2226-1494-2024-24-1-124-132

For citation:


Teplyakova A.R., Shershnev R.V., Starkov S.O.,  , Kukarskaya V.A. Segmentation of muscle tissue in computed tomography images at the level of the L3 vertebra. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2024;24(1):124-132. (In Russ.) https://doi.org/10.17586/2226-1494-2024-24-1-124-132

Просмотров: 13


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)