Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

Gain characteristics of In0.60Ga0.40As/In0.53Al0.20Ga0.27As superlattice active regions for vertical-cavity surface-emitting lasers

https://doi.org/10.17586/2226-1494-2024-24-5-709-716

Abstract

The results of investigation of the gain properties of 1300 nm vertical-cavity surface-emitting lasers active regions based on In0.60Ga0.40As/In0.53Al0.20Ga0.27As superlattices and threshold characteristics comparison of superlattices and highly lattice mismatched In0.74Al0.16Ga0.10As quantum wells are presented. The heterostructure of injection lasers with an In0.60Ga0.40As/In0.53Al0.20Ga0.27As superlattice was grown by molecular beam epitaxy. Mesa structure of injection lasers was obtained by selective liquid etching followed by the application of ohmic contacts. The formation of injection lasers with various cavity lengths is performed using the method of manually cleaving mirrors. The output characteristics were measured in a pulsed mode using a large area calibrated germanium photodiode. Spectral characteristics were measured using a spectrophotometer based on monochromator. The achieved threshold characteristics (modal gain about 40 cm–1, transparency current density about 650 A/cm2, internal optical losses about 8 cm–1) of injection lasers based on In0.60Ga0.40As/In0.53Al0.20Ga0.27As superlattices with low lattice mismatch InGaAs layers are comparable to previously presented lasers based on active regions with strongly strained In0.74Al0.16Ga0.10As quantum wells. The characteristic temperatures T0 and T1 were 60 K and 87 K for injection lasers with a cavity length of 1 mm. An increase in the frequency of small-signal modulation of vertical-cavity surface-emitting lasers and their temperature stability is associated with the use of highly strained In0.74Ga0.26As/In0.53Al0.25Ga0.21As superlattices. The proposed active regions based on InGaAs-InP superlattices have the potential to be used in the development of vertical-cavity surface-emitting lasers in the 1300 nm spectral range. The findings of this work can be applied in the realization of experimental species and optimization of modulation parameters for vertical-cavity lasers operating in the 1300 nm wavelength range.

About the Authors

P. E. Kopytov
ITMO University
Russian Federation

Pavel E. Kopytov - Engineer-Researcher

Saint Petersburg, 197101



V. V. Andryushkin
ITMO University
Russian Federation

Vladislav V. Andryushkin - PhD, Junior Researcher

Saint Petersburg, 197101



E. V. Pirogov
Alferov University
Russian Federation

Evgeniy V. Pirogov - Scientific Researcher

Saint Petersburg, 194021



M. S. Sobolev
Alferov University
Russian Federation

Maxim S. Sobolev - PhD (Physics & Mathematics), Head of Laboratory

Saint Petersburg, 194021



A. V. Babichev
ITMO University
Russian Federation

Andrey V. Babichev - PhD (Physics & Mathematics), Senior Researcher

Saint Petersburg, 197101



Yu. M. Shernyakov
Ioffe Institute
Russian Federation

Yuri M. Shernyakov - PhD (Physics & Mathematics), Senior Researcher

Saint Petersburg, 194021



M. V. Maximov
Ioffe Institute
Russian Federation

Mikhail V. Maximov - D.Sc. (Physics & Mathematics), Head of Laboratory

Saint Petersburg, 194021



A. V. Lyutetskiy
Ioffe Institute
Russian Federation

Andrey V. Lyutetskiy - PhD (Physics & Mathematics), Leading Researcher

Saint Petersburg, 194021



N. A. Pikhtin
Ioffe Institute
Russian Federation

Nikita A. Pikhtin - PhD, Head of Laboratory

Saint Petersburg, 194021



L. Ya. Karachinsky
ITMO University
Russian Federation

Leonid Ya. Karachinsky - D.Sc., Leading Researcher

Saint Petersburg, 197101



I. I. Novikov
ITMO University
Russian Federation

Innokenty I. Novikov - PhD (Physics & Mathematics), Senior
researcher

Saint Petersburg, 197101



Tian Sicong
Bimberg Chinese-German Center for Green Photonics
China

Sicong Tian - PhD, Head of Laser Fabrication

Changchun, 130033



A. Yu. Egorov
ITMO University
Russian Federation

Anton Yu. Egorov - D.Sc. (Physics & Mathematics), Professor

Saint Petersburg, 197101



References

1. Grasse C., Mueller M., Gruendl T., Boehm G., Roenneberg E., Wiecha P., Rosskopf J., Ortsiefer M., Meyer R., Amann M.-C. AlGaInAsPSb-based high-speed short-cavity VCSEL with singlemode emission at 1.3 μm grown by MOVPE on InP substrate. Journal of Crystal Growth, 2016, vol. 370, pp. 217–220. https://doi.org/10.1016/j.jcrysgro.2012.06.051

2. Camargo Silva M.T., Sih J.P., Chou T.M., Kirk J.K., Evans G.A., Butler J.K. 1.3 μm strained MQW AlGaInAs and InGaAsP ridgewaveguide lasers-a comparative study. Proc. of the SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference. V. 1, 1999, pp. 10–12. https://doi.org/10.1109/IMOC.1999.867027

3. Savolainen P., Toivonen M., Orsila S., Saarinen M., Melanen P., Vilokkinen V., Dumitrescu M., Panarello T., Pessa M. AlGaInAs/InP strained-layer quantum well lasers at 1.3 μm grown by solid source molecular beam epitaxy. Journal of Electronic Materials, 1999, vol. 28, no. 8, pp. 980–985. https://doi.org/10.1007/s11664-999-0208-6

4. Park M.-R., Kwon O.-K., Han W.-S., Lee K.-H., Park S.-J., Yoo B.-S. All-epitaxial InAlGaAs-InP VCSELs in the 1.3-1.6-μm wavelength range for CWDM band applications. IEEE Photonics Technology Letters, 2006, vol. 18, no. 16, pp. 1717–1719. https://doi.org/10.1109/LPT.2006.879940

5. Jewell J., Graham L., Crom M., Maranowski K., Smith J., Fanning T., Schnoes M. Commercial GaInNAs VCSELs grown by MBE. Physica Status Solidi C, 2008, vol. 5, no. 9, pp. 2951–2956. https://doi.org/10.1002/pssc.200779295

6. Naone R.L., Jackson A.W., Feld S.A., Galt D., Malone K.J., Hindi J.J. Monolithic GaAs-based 1.3 μm VCSEL directly-modulated at 10 Gb/s. Proc. of the Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Postconference Technical Digest (IEEE Cat. No.01CH37170), 2001, pp. CPD13-CP1. https://doi.org/10.1109/CLEO.2001.948231

7. Boehm G., Ortsiefer M., Shau R., Rosskopf J., Lauer C., Maute M., Köhler F., Mederer F., Meyer R., Amann M.-C. InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0 μm. Journal of Crystal Growth, 2003, vol. 251, no. 1-4, pp. 748–753. https://doi.org/10.1016/S0022-0248(02)02193-0

8. Hofmann W., Müller M., Wolf P., Mutig A., Gründl T., Böhm G., Bimberg D., Amann M.-C. 40 Gbit/s modulation of 1550 nm VCSEL. Electronics Letters, 2011, vol. 47, no. 4, pp. 270–271. https://doi.org/10.1049/el.2010.3631

9. Grundl T., Debernardi P., Muller M., Grasse C., Ebert P., Geiger K., Ortsiefer M., Bohm G., Meyer R., Amann M.-C. Record single-mode, high-power VCSELs by inhibition of spatial hole burning. IEEE Journal of Selected Topics in Quantum Electronics, 2013, vol. 19, no. 4, pp. 1700913. https://doi.org/10.1109/JSTQE.2013.2244572

10. Wolf P., Li H., Caliman A., Mereuta A., Iakovlev V., Sirbu A., Kapon E., Bimberg D. Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3 μm wafer-fusion VCSELs for optical interconnects. ACS Photonics, 2017, vol. 4, no. 8, pp. 2018–2024. https://doi.org/10.1021/acsphotonics.7b00403

11. Zhang J., Hao C., Zheng W., Bimberg D., Liu A. Demonstration of electrically injected vertical-cavity surface-emitting lasers with postsupported high-contrast gratings. Photonics Research, 2022, vol. 10, no. 5, pp. 1170–1176. https://doi.org/10.1364/PRJ.447633

12. Rapp S., Salomonsson F., Streubel K., Mogg S., Wennekes F., Bentell J., Hammar M. All-epitaxial single-fused 1.55 μm vertical cavity laser based on an InP Bragg reflector. Japanese Journal of Applied Physics, 1999, vol. 38, no. 2S, pp. 1261. https://doi.org/10.1143/JJAP.38.1261

13. Müller M., Grasse C., Amann M.C. InP-based 1.3 μm and 1.55 μm short-cavity VCSELs suitable for telecom- and datacom-applications. Proc. of the 14th International Conference on Transparent Optical Networks (ICTON), 2012, pp. 1–4. https://doi.org/10.1109/icton.2012.6254394

14. Sirbu A., Caliman A., Mereuta A., Iakovlev V., Suruceanu G., Kapon E. Recent progress in wafer-fused VCSELs emitting in the 1550-nm band. Proc. of the 13th International Conference on Transparent Optical Networks, 2011, pp. 1–4. https://doi.org/10.1109/ICTON.2011.5970822

15. Novikov I.I., Nadtochiy A.M., Potapov A.Yu., Gladyshev A.G., Kolodeznyi E.S., Rochas S.S., Babichev A.V., Andryushkin V.V., Denisov D.V., Karachinsky L.Ya., Egorov A.Yu., Bougrov V.E. Influence of the doping type on the temperature dependencies of the photoluminescence efficiency of InGaAlAs/InGaAs/InP heterostructures. Journal of Luminescence, 2021, vol. 239, pp. 118393. https://doi.org/10.1016/j.jlumin.2021.118393

16. Blokhin S.A., Babichev A.V., Gladyshev A.G., Karachinsky L.Ya., Novikov I.I., Blokhin A.A., Bobrov M.A., Maleev N.A., Andryushkin V.V., Denisov D.V., Voropaev K.O., Zhumaeva I.O., Ustinov V.M., Egorov A.Yu., Ledentsov N.N. High power single mode 1300-nm superlattice based VCSEL: Impact of the buried tunnel junction diameter on performance. IEEE Journal of Quantum Electronics, 2022, vol. 58, no. 2, pp. 2400115. https://doi.org/10.1109/JQE.2022.3141418

17. Karachinsky L.Ya., Novikov I.I., Babichev A.V., Gladyshev A.G., Kolodeznyi E.S., Rochas S.S., Kurochkin A.S., Bobretsova Yu.K., Klimov A.A., Denisov D.V., Voropaev K.O., Ionov A.S., Bougrov V.E., Egorov A.Yu. Optical gain in laser heterostructures with an active area based on an InGaAs/InGaAlAs superlattice. Optics and Spectroscopy, 2019, vol. 127, no. 6, pp. 1053–1056. https://doi.org/10.1134/s0030400x19120099

18. Blokhin S.A., Babichev A.V., Gladyshev A.G., Karachinsky L.Ya., Novikov I.I., Blokhin A.A., Bobrov M.A., Maleev N.A., Kuzmenkov A.G., Nadtochiy A.M., Nevedomskiy V.N., Andryushkin V.V., Rochas S.S., Denisov D.V., Voropaev K.O., Zhumaeva I.O., Ustinov V.M., Egorov A.Yu., Bougrov V.E. Investigation of the characteristics of the InGaAs/InAlGaAs superlattice for 1300 nm range vertical-cavity surface-emitting lasers. Technical Physics, 2022, vol. 67, no. 15, pp. 2432–2440. https://doi.org/https://doi.org/10.21883/tp.2022.15.55271.240-21

19. Zubov F.I., Kryzhanovskaya N.V., Maximov M.V., Zhukov A.E., Semenova E.S., Kulkova I.V., Yvind K. On the high characteristic temperature of an InAs/GaAs/InGaAsP QD laser with an emission wavelength of ~1.5 μm on an InP substrate. Semiconductors, 2017, vol. 51, no. 10, pp. 1332–1336. https://doi.org/10.1134/s1063782617100207

20. Dashkov A.S., Kostromin N.A., Babichev A.V., Goray L.I., Egorov A.Yu. Simulation of the energy-band structure of superlattice of quaternary alloys of diluted nitrides. Semiconductors, 2023, vol. 57, no. 3, pp. 203–210. https://doi.org/10.21883/sc.2023.03.56237.4163


Review

For citations:


Kopytov P.E., Andryushkin V.V., Pirogov E.V., Sobolev M.S., Babichev A.V., Shernyakov Yu.M., Maximov M.V., Lyutetskiy A.V., Pikhtin N.A., Karachinsky L.Ya., Novikov I.I., Sicong T., Egorov A.Yu. Gain characteristics of In0.60Ga0.40As/In0.53Al0.20Ga0.27As superlattice active regions for vertical-cavity surface-emitting lasers. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2024;24(5):709-716. (In Russ.) https://doi.org/10.17586/2226-1494-2024-24-5-709-716

Views: 23


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)