Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

Application of Raman spectroscopy to study the inactivation process of bacterial microorganisms

https://doi.org/10.17586/2226-1494-2023-23-4-676-684

Abstract

Raman spectroscopy (RS) is one of the promising approaches for structural and functional studies of various biological objects, including bacterial microorganisms. Both traditional biochemical tests and genetic methods which require expensive reagents, consumables and are time-consuming are used for bacterial analysis. Spectroscopic methods are positioned as noninvasive, highly sensitive, and requiring minimal sample preparation. In this work we investigated the possibility of using the RS method using optical sensors based on gold anisotropic nanoparticles. The applicability of the method was demonstrated by studying the effect of a broad-spectrum cephalosporin antibiotic and an extract of Viburnum opulus L (VO) on Escherichia coli (E. Coli) colonies. The studies were performed by Raman spectroscopy using a Virsa spectrometer (Renishaw). Raman signal amplifcation was carried out using two original optical sensors proposed by the authors. To create sensors, we used a chemical method of depositing gold nanostars on APTES-modifed quartz glasses and a physical method for creating sensors based on anodizing titanium surfaces. The results of the study showed the high sensitivity and information content of the proposed method. The possibility of using the RS method for studying the inactivation of bacterial microorganisms is shown. Spectral Raman bands of E. Coli were determined and identifed before and after exposure to VO extract and antibiotic as a control. A decrease in the intensity of spectral modes corresponding to amino acids and purine metabolites was found in the average Raman spectrum of E. Coli after exposure to VO extract. For the frst time, a study of the antimicrobial effect of an aqueous extract of VO fruits was carried out by the method of Raman scattering. It has been shown that the use of plant extracts, including VO fruit extracts, to inactivate the vital activity of bacterial colonies is a promising approach to the search for new alternative antibacterial agents. The results obtained are in good agreement with the already known scientifc studies and confrm the effectiveness of the proposed method.

About the Authors

K. I. Matveeva
Immanuel Kant Baltic Federal University
Russian Federation

Karina I. Matveeva — PhD (Physics & Mathematics), Researcher

sc 57200305996

Kaliningrad, 236041



A. A. Kundalevich
Immanuel Kant Baltic Federal University
Russian Federation

Anna A. Kundalevich — Research Edgineer

sc 57219604837

Kaliningrad, 236041



A. I. Kapitunova
Immanuel Kant Baltic Federal University
Russian Federation

Anastasia I. Kapitunova — Research Engineer

sc 57219899495

Kaliningrad, 236041



A. S. Zozulya
Immanuel Kant Baltic Federal University
Russian Federation

Aleksandr S. Zozulya — Technician

sc 57952671000

Kaliningrad, 236041



S. A. Sukhikh
Immanuel Kant Baltic Federal University
Russian Federation

Stanislav A. Sukhikh — D.Sc., Associate Professor, Head of Laboratory

sc 57200609482

Kaliningrad, 236041



A. V. Tsibulnikova
Immanuel Kant Baltic Federal University
Russian Federation

Anna V. Tsibulnikova — PhD (Physics & Mathematics), Senior Researcher

sc 57193169565

Kaliningrad, 236041



A. Yu. Zyubin
Immanuel Kant Baltic Federal University
Russian Federation

Andrey Yu. Zyubin — PhD (Physics & Mathematics), Senior Researcher

sc 57193159520

Kaliningrad, 236041



I. G. Samusev
Immanuel Kant Baltic Federal University
Russian Federation

Ilia G. Samusev — PhD (Physics & Mathematics), Head of the Research & Educationl Center “Fundamental and Applied Photonics & Nanophotonics”

sc 12779220200

Kaliningrad, 236041



References

1. Coates A.R.M., Halls G., Hu Y. Novel classes of antibiotics or more of the same? // British Journal of Pharmacology. 2011. V. 163. N 1. P. 184–194. https://doi.org/10.1111/j.1476-5381.2011.01250.x

2. Cheesman M.J., Ilanko A., Blonk B. Developing new antimicrobial therapies: are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? // Pharmacognosy Reviews. 2017. V. 11. N 22. P. 57. https://doi.org/10.4103/phrev.phrev_21_17

3. Aminov R.I. The role of antibiotics and antibiotic resistance in nature // Environmental Microbiology. 2009. V. 11. N 12. P. 2970–2988. https://doi.org/10.1111/j.1462-2920.2009.01972.x

4. Njimoh D.L., Assob J.C.N., Mokake S.E., Nyhalah D.J., Yinda C.K., Sandjon B. Antimicrobial activities of a plethora of medicinal plant extracts and hydrolates against human pathogens and their potential to reverse antibiotic resistance // International Journal of M i c r o b i o l o g y. 2 0 1 5 . V. 2015. P. 1–5. https://doi.org/10.1155/2015/547156

5. Kothari V., Gupta A., Naraniwal M. Comparative study of various methods for extraction of antioxidant and antibacterial compounds from plant seeds // Journal of Natural Remedies. 2012. V. 12. N 2. P. 162–173. https://doi.org/10.18311/jnr/2012/271

6. Chiode M.M.M., Colonello G.P., Kabadayan F., de Souza Silva J., Suffredini I.B., Saraceni C.H.C. Plant extract incorporated into glass ionomer cement as a photosensitizing agent for antimicrobial photodynamic therapy on Streptococcus mutans // Photodiagnosis and Photodynamic Therapy. 2022. V. 38. P. 102788. https://doi.org/10.1016/j.pdpdt.2022.102788

7. Sarker M.A.R., Ahn Y.H. Green phytoextracts as natural photosensitizers in LED-based photodynamic disinfection of multidrug-resistant bacteria in wastewater effuent // Chemosphere. 2 0 2 2 . V. 297. P. 134157. https://doi.org/10.1016/j.chemosphere.2022.134157

8. Ozkan G., Kostka T., Dräger G., Capanoglu E., Esatbeyoglu T. Bioaccessibility and transepithelial transportation of cranberrybush (Viburnum opulus) phenolics: Effects of non-thermal processing and food matrix // Food Chemistry. 2022. V. 380. P. 132036. https://doi.org/10.1016/j.foodchem.2021.132036

9. Kajszczak D., Zakłos-Szyda M., Podsędek A. Viburnum opulus L. A review of phytochemistry and biological effects // Nutrients. 2020. V. 12. N 11. P. 3398. https://doi.org/10.3390/nu12113398

10. Perova I.B., Zhogova A.A., Cherkashin A.V., Éller K.I., Ramenskaya G.V., Samylina I.A. Biologically active substances from European guelder berry fruits // Pharmaceutical Chemistry Journal. 2014. V. 48. N 5. P. 332–339. https://doi.org/10.1007/s11094-014-1105-8

11. Balouiri M., Sadiki M., Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: A review // Journal of Pharmaceutical Analysis. 2016. V. 6. N 2. P. 71–79. https://doi.org/10.1016/j.jpha.2015.11.005

12. Jung G.B., Nam S.W., Choi S., Lee G.-J., Park H.-K. Evaluation of antibiotic effects on Pseudomonas aeruginosa bioflm using Raman spectroscopy and multivariate analysis // Biomedical Optics Express. 2014. V. 5. N 9. P. 3238–3251. https://doi.org/10.1364/boe.5.003238

13. Macias G., Alba M., Marsal L.F., Mihi A. Surface roughness boosts the SERS performance of imprinted plasmonic architectures // Journal of Materials Chemistry C. 2016. V. 4. N 18. P. 3970–3975. https://doi.org/10.1039/c5tc02779a

14. Barbillon G. Latest novelties on plasmonic and non-plasmonic nanomaterials for SERS sensing // Nanomaterials. 2020. V. 10. N 6. P. 1200. https://doi.org/10.3390/nano10061200

15. Khoury C.G., Vo-Dinh T. Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization // The Journal of Physical Chemistry C. 2008. V. 112. N 48. P. 18849–18859. https://doi.org/10.1021/jp8054747

16. Tcibulnikova A.V., Khankaev A.A., Samusev I.G., Slezhkin V.A., Bryukhanov V.V., Demin M.V., Myslitskaya N.A., Lyatun I.I., Medvedskaya P.N. Polarized plasmon resonance spectra of electrochemically modifed titanium surfaces with gold nanoparticles // Materials Research Express. 2020. V. 7. N 12. P. 125802. https://doi.org/10.1088/2053-1591/abce9e

17. Zyubin A., Rafalskiy V., Tcibulnikova A., Moiseeva E., Matveeva K., Tsapkova A., Lyatun I., Medvedskaya P., Samusev I., Demin M. Surface-enhanced Raman spectroscopy for antiplatelet therapy effectiveness assessment // Laser Physics Letters. 2020. V. 17. N 4. P. 045601. https://doi.org/10.1088/1612-202x/ab7be5

18. Zyubin A.Yu., Kon I.I., Kundalevich A.A., Demishkevich E.A., Matveeva K.I., Zozulya A.S., Evtifeev D.O., Poltorabatko D.A., Samusev I.G. Optical properties of planar plasmon active surfaces modifed with gold nanostars. Scientifc and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 5, pp. 824–831. (in Russian). https://doi.org/10.17586/2226-1494-2022-22-5-824-831

19. Durovich E., Evtushenko E., Senko O., Stepanov N., Efremenko E., Eremenko A., Kurochkin I. Molecular origin of surface-enhanced Raman spectra of E. coli suspensions excited at 532 and 785 nm using silver nanoparticle sols as sers substrates // Bulletin of Russian State Medical University. 2018. N 6. P. 25–32. https://doi.org/10.24075/brsmu.2018.088

20. Noothalapati Venkata H.N. Raman Micro-spectroscopic and Imaging Studies of Escherichia coli Bioflm in situ and Intracellular Dynamics of Fission Yeasts in vivo Using Stable Isotope Labelling: PhD Thesis / National Chiao Tung University, Department of Applied Chemistry, 2013. 68 p.

21. Teng L., Wang X., Wang X., Gou H., Ren L., Wang T., Wang Y., Ji Y., Huang W.E., Xu J. Label-free, rapid and quantitative phenotyping of stress response in E. coli via ramanome // Scientifc Reports. 2016. V. 6. N 1. P. 34359. https://doi.org/10.1038/srep34359

22. Moritz T.J., Polage C.R., Taylor D.S., Krol D.M., Lane S.M., Chan J.W. Evaluation of Escherichia coli cell response to antibiotic treatment by use of Raman spectroscopy with laser tweezers // Journal of Clinical Microbiology. 2010. V. 48. N 11. P. 4287–4290. https://doi.org/10.1128/jcm.01565-10

23. Li R., Dhankhar D., Chen J., Krishnamoorthi A., Cesario Th.C., Rentzepis P.M. Identifcation of live and dead bacteria: A Raman spectroscopic study // IEEE Access. 2019. V. 7. P. 23549–23559. https://doi.org/10.1109/access.2019.2899006

24. Gu P., Yang F., Kang J., Wang Q., Qi Q. One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of L-tryptophan in Escherichia coli // Microbial Cell Factories. 2012. V. 11. N 1. P. 1–9. https://doi.org/10.1186/1475-2859-11-30

25. Gu P., Su T., Wang Q., Liang Q., Qi Q. Tunable switch mediated shikimate biosynthesis in an engineered non-auxotrophic Escherichia coli // Scientifc Reports. 2016. V. 6. N 1. P. 29745. https://doi.org/10.1038/srep29745


Review

For citations:


Matveeva K.I., Kundalevich A.A., Kapitunova A.I., Zozulya A.S., Sukhikh S.A., Tsibulnikova A.V., Zyubin A.Yu., Samusev I.G. Application of Raman spectroscopy to study the inactivation process of bacterial microorganisms. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2023;23(4):676-684. (In Russ.) https://doi.org/10.17586/2226-1494-2023-23-4-676-684

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)