Attacks based on malicious perturbations on image processing systems and defense methods against them
https://doi.org/10.17586/2226-1494-2023-23-4-720-733
Abstract
Systems implementing artifcial intelligence technologies have become widespread due to their effectiveness in solving various applied tasks including computer vision. Image processing through neural networks is also used in security-critical systems. At the same time, the use of artifcial intelligence is associated with characteristic threats including disruption of machine learning models. The phenomenon of triggering an incorrect neural network response by introducing perturbations that are visually imperceptible to a person was frst described and attracted the attention of researchers in 2013. Methods of attacks on neural networks based on malicious perturbations have been continuously improved, ways of disrupting the operation of neural networks in processing various types of data and tasks of the target model have been proposed. The threat of disrupting the functioning of neural networks through these attacks has become a signifcant problem for systems implementing artifcial intelligence technologies. Thus, research in the feld of countering attacks based on malicious perturbations is very relevant. This article describes current attacks, provides an overview and comparative analysis of such attacks on image processing systems based on artifcial intelligence. Approaches to the classifcation of attacks based on malicious perturbations are formulated. Defense methods against such attacks are considered, their shortcomings are revealed. The limitations of the applied defense methods that reduce the effectiveness of counteraction to attacks are shown. Approaches and practical measures to detect and eliminate harmful disturbances are proposed.
About the Authors
D. A. EsipovRussian Federation
Dmitry A. Esipov — Engineer
Saint Petersburg, 197101
A. Y. Buchaev
Russian Federation
Abdulhamid Y. Buchaev — Engineer
sc 57219568840
Saint Petersburg, 197101
A. Kerimbay
Russian Federation
Akylzhan Kerimbay — Engineer
Saint Petersburg, 197101
Y. V. Puzikova
Russian Federation
Yana V. Puzikova — Engineer
Saint Petersburg, 197101
S. K. Saidumarov
Russian Federation
Semen K. Saidumarov — Student
Saint Petersburg, 197101
N. S. Sulimenko
Russian Federation
Nikita S. Sulimenko — Student
Saint Petersburg, 197101
I. Yu. Popov
Russian Federation
Ilya Yu. Popov — PhD, Associate Professor
sc 57202195632
Saint Petersburg, 197101
N. S. Karmanovskiy
Russian Federation
Nikolay S. Karmanovskiy — PhD, Associate Professor
sc 57192385103
Saint Petersburg, 197101
References
1. Goldberg Y. A primer on neural network models for natural language processing // Journal of Artifcial Intelligence Research. 2016. V. 57. P. 345–420. https://doi.org/10.1613/jair.4992
2. Nassif A.B., Shahin I., Attili I., Azzeh M., Shaalan K. Speech recognition using deep neural networks: A systematic review // IEEE Access. 2019. V. 7. P. 19143–19165. https://doi.org/10.1109/access.2019.2896880
3. Almabdy S., Elrefaei L. Deep convolutional neural network-based approaches for face recognition // Applied Sciences. 2019. V. 9. N 20. P. 4397. https://doi.org/10.3390/app9204397
4. Khan M.Z., Harous S., Hassan S. U., Khan M. U. G., Iqbal R., Mumtaz S. Deep unifed model for face recognition based on convolution neural network and edge computing // IEEE Access. 2019. V. 7. P. 72622–72633. https://doi.org/10.1109/access.2019.2918275
5. Zhang Y., Shi D., Zhan X., Cao D., Zhu K., Li Z. Slim-ResCNN: A deep residual convolutional neural network for fngerprint liveness detection // IEEE Access. 2019. V. 7. P. 91476–91487. https://doi.org/10.1109/access.2019.2927357
6. Sarvamangala D.R., Kulkarni R.V. Convolutional neural networks in medical image understanding: a survey // Evolutionary Intelligence. 2022. V. 15. N 1. P. 1–22. https://doi.org/10.1007/s12065-020-00540-3
7. Mahmood M., Al-Khateeb B., Alwash W. A review on neural networks approach on classifying cancers // IAES International Journal of Artifcial Intelligence. 2020. V. 9. N 2. P. 317–326. http://doi.org/10.11591/ijai.v9.i2.pp317-326
8. Singh V., Singh S., Gupta P. Real-time anomaly recognition through CCTV using neural networks // Procedia Computer Science. 2020. V. 173. P. 254–263. https://doi.org/10.1016/j.procs.2020.06.030
9. Severino A., Curto S., Barberi S., Arena F., Pau G. Autonomous vehicles: an analysis both on their distinctiveness and the potential impact on urban transport systems // Applied Sciences. 2021. V. 11. N 8. P. 3604. https://doi.org/10.3390/app11083604
10. Wang L., Fan X., Chen J., Cheng J., Tan J., Ma X. 3D object detection based on sparse convolution neural network and feature fusion for autonomous driving in smart cities // Sustainable Cities and Society. 2020. V. 54. P. 102002. https://doi.org/10.1016/j.scs.2019.102002
11. Chen L., Lin S., Lu X., Cao D., Wu H., Guo C., Wang F. Y. Deep neural network based vehicle and pedestrian detection for autonomous driving: A survey // IEEE Transactions on Intelligent Transportation Systems. 2021. V. 22. N 6. P. 3234–3246. https://doi.org/10.1109/tits.2020.2993926
12. Chen P. Y., Liu S. Holistic adversarial robustness of deep learning models // Proceedings of the AAAI Conference on Artifcial Intelligence. 2023. V. 37. N 13. P. 15411–15420. https://doi.org/10.1609/aaai.v37i13.26797
13. Huang X., Kroening D., Ruan W., Sharp J., Sun Y., Thamo E., Min W., Yi X. A survey of safety and trustworthiness of deep neural networks: Verifcation, testing, adversarial attack and defence, and interpretability // Computer Science Review. 2020. V. 37. P. 100270. https://doi.org/10.1016/j.cosrev.2020.100270
14. Szegedy C., Zaremba W., Sutskever I., Bruna J., Erhan D., Goodfellow I., Fergus R. Intriguing properties of neural networks // arXiv. 2013. arXiv:1312.6199. https://doi.org/10.48550/arXiv.1312.6199
15. Song Y., Shu R., Kushman N., Ermon S. Constructing unrestricted adversarial examples with generative models // Advances in Neural Information Processing Systems. 2018. V. 31.
16. Sayghe A., Zhao J., Konstantinou C. Evasion attacks with adversarial deep learning against power system state estimation // Proc. of the 2020 IEEE Power & Energy Society General Meeting (PESGM). 2020. P. 1–5. https://doi.org/10.1109/pesgm41954.2020.9281719
17. Goodfellow I.J., Shlens J., Szegedy C. Explaining and harnessing adversarial examples // arXiv. 2014. arXiv:1412.6572. https://doi.org/10.48550/arXiv.1412.6572
18. Paul R., Schabath M., Gillies R., Hall L., Goldgof D. Mitigating adversarial attacks on medical image understanding systems // Proc. of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). 2020. P. 1517–1521. https://doi.org/10.1109/isbi45749.2020.9098740
19. Rozsa A., Rudd E.M., Boult T.E. Adversarial diversity and hard positive generation // Proc. of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2016. P. 25– 32. https://doi.org/10.1109/cvprw.2016.58
20. Dong Y., Liao F., Pang T., Su H., Zhu J., Hu X., Li J. Boosting adversarial attacks with momentum // Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018. P. 9185–9193. https://doi.org/10.1109/cvpr.2018.00957
21. Miyato T., Maeda S.I., Koyama M., Ishii S. Virtual adversarial training: a regularization method for supervised and semi-supervised learning // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2019. V. 41. N 8. P. 1979–1993. https://doi.org/10.1109/tpami.2018.2858821
22. Kurakin A., Goodfellow I.J., Bengio S. Adversarial examples in the physical world // Artifcial Intelligence Safety and Security. Chapman and Hall/CRC, 2018. P. 99–112. https://doi.org/10.1201/9781351251389-8
23. Mądry A., Makelov A., Schmidt L., Tsipras D., Vladu A. Towards deep learning models resistant to adversarial attacks // Stat. 2017. V. 1050. P. 9.
24. Xie C., Zhang Z., Zhou Y., Bai S., Wang J., Ren Z., Yuille A.L. Improving transferability of adversarial examples with input diversity // Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. P. 2730–2739. https://doi.org/10.1109/cvpr.2019.00284
25. Dong X., Han J., Chen D., Liu J., Bian H., Ma Z., Li H., Wang X., Zhang W., Yu N. Robust superpixel-guided attentional adversarial attack // Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020. P. 12895–12904. https://doi.org/10.1109/cvpr42600.2020.01291
26. Sriramanan G., Addepalli S., Baburaj A. Guided adversarial attack for evaluating and enhancing adversarial defenses // Advances in Neural Information Processing Systems. 2020. V. 33. P. 20297–20308.
27. Rony J., Hafemann L.G., Oliveira L.S., Ayed I.B., Sabourin R., Granger E. Decoupling direction and norm for effcient gradientbased L2 adversarial attacks and defenses // Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. P. 4322–4330. https://doi.org/10.1109/cvpr.2019.00445
28. Moosavi-Dezfooli S.M., Fawzi A., Frossard P. DeepFool: a simple and accurate method to fool deep neural networks // Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. P. 2574–2582. https://doi.org/10.1109/cvpr.2016.282
29. Carlini N., Wagner D. Towards evaluating the robustness of neural networks // Proc. of the IEEE Symposium on Security and Privacy (SP). 2017. P. 39–57. https://doi.org/10.1109/sp.2017.49
30. Yao Z., Gholami A., Xu P., Keutzer K., Mahoney M. W. Trust region based adversarial attack on neural networks // Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019. P. 11350–11359. https://doi.org/10.1109/cvpr.2019.01161
31. Papernot N., McDaniel P., Jha S., Fredrikson M., Celik Z. B., Swami A. The limitations of deep learning in adversarial settings // Proc. of the 2016 IEEE European Symposium on Security and Privacy (EuroS&P). 2016. P. 372–387. https://doi.org/10.1109/eurosp.2016.36
32. Su J., Vargas D.V., Sakurai K. One pixel attack for fooling deep neural networks // IEEE Transactions on Evolutionary Computation. 2019. V. 23. N 5. P. 828–841. https://doi.org/10.1109/tevc.2019.2890858
33. Moosavi-Dezfooli S.M., Fawzi A., Fawzi O., Frossard P. Universal adversarial perturbations // Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. P. 1765– 1773. https://doi.org/10.1109/cvpr.2017.17
34. Brendel W., Rauber J., Bethge M. Decision-based adversarial attacks: Reliable attacks against black-box machine learning models // Advances in Reliably Evaluating and Improving Adversarial Robustness. 2021. P. 77.
35. Chen J., Jordan M.I., Wainwright M.J. HopSkipJumpAttack: A queryeffcient decision-based attack // Proc. of the 2020 IEEE Symposium on Security and Privacy (SP). 2020. P. 1277–1294. https://doi.org/10.1109/sp40000.2020.00045
36. Liu Y., Moosavi-Dezfooli S.M., Frossard P. A geometry-inspired decision-based attack // Proc. of the IEEE/CVF International Conference on Computer Vision (ICCV). 2019. P. 4890–4898. https://doi.org/10.1109/iccv.2019.00499
37. Rahmati A., Moosavi-Dezfooli, S.M., Frossard P., Dai H. GeoDA: a geometric framework for black-box adversarial attacks // Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020. P. 8446–8455. https://doi.org/10.1109/cvpr42600.2020.00847
38. Du J., Zhang H., Zhou J.T., Yang Y., Feng J. Query-effcient meta attack to deep neural networks // Proc. of the International Conference on Learning Representations. 2020.
39. Li J., Ji R., Liu H., Liu J., Zhong B., Deng C., Tian Q. Projection & probability-driven black-box attack // Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020. P. 362–371. https://doi.org/10.1109/cvpr42600.2020.00044
40. Li H., Xu X., Zhang X., Yang S., Li B. QEBA: Query-effcient boundary-based blackbox attack // Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020. P. 1221– 1230. https://doi.org/10.1109/cvpr42600.2020.00130
41. Cheng M., Singh S., Chen P., Chen P.Y., Liu S., Hsieh C.J. Sign-OPT: A query-effcient hard-label adversarial attack // Proc. of the International Conference on Learning Representations. 2020.
42. Brunner T., Diehl F., Le M.T., Knoll A. Guessing smart: Biased sampling for effcient black-box adversarial attacks // Proc. of the IEEE/CVF International Conference on Computer Vision (ICCV). 2019. P. 4958–4966. https://doi.org/10.1109/iccv.2019.00506
43. Maho T., Furon T., Le Merrer E. SurFree: a fast surrogate-free blackbox attack // Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021. P. 10430–10439. https://doi.org/10.1109/cvpr46437.2021.01029
44. Shi Y., Han Y., Tian Q. Polishing decision-based adversarial noise with a customized sampling // Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020. P. 1030– 1038. https://doi.org/10.1109/cvpr42600.2020.00111
45. Huang Z., Zhang T. Black-box adversarial attack with transferable model-based embedding // Proc. of the International Conference on Learning Representations. 2020.
46. Zhou M., Wu J., Liu Y., Liu S., Zhu C. DaST: Data-free substitute training for adversarial attacks // Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020. P. 234– 243. https://doi.org/10.1109/cvpr42600.2020.00031
47. Zou J., Pan Z., Qiu J., Liu X., Rui T., Li W. Improving the transferability of adversarial examples with resized-diverse-inputs, diversity-ensemble and region ftting // Lecture Notes in Computer Science. 2020. V. 12367. P. 563–579. https://doi.org/10.1007/978-3-030-58542-6_34
48. Wang X., He K. Enhancing the transferability of adversarial attacks through variance tuning // Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021. P. 1924–1933. https://doi.org/10.1109/cvpr46437.2021.00196
49. Wu W., Su Y., Lyu M.R., King I. Improving the transferability of adversarial samples with adversarial transformations // Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021. P. 9024–9033. https://doi.org/10.1109/cvpr46437.2021.00891
50. Hosseini H., Poovendran R. Semantic adversarial examples // Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2018. P. 1614–1619. https://doi.org/10.1109/cvprw.2018.00212
51. Engstrom L., Tran B., Tsipras D., Schmidt L., Madry A. A rotation and a translation suffce: Fooling cnns with simple transformations [Электронный ресурс]. URL: https://openreview.net/forum?id=BJfvknCqFQ (дата обращения: 29.05.2023).
52. Joshi A., Mukherjee A., Sarkar S., Hegde C. Semantic adversarial attacks: Parametric transformations that fool deep classifers // Proc. of the IEEE/CVF International Conference on Computer Vision (ICCV). 2019. P. 4773–4783. https://doi.org/10.1109/iccv.2019.00487
53. Liu A., Wang J., Liu X., Cao B., Zhang C., Yu H. Bias-based universal adversarial patch attack for automatic check-out // Lecture Notes in Computer Science. 2020. V. 12358. P. 395–410. https://doi.org/10.1007/978-3-030-58601-0_24
54. Swathi P., Sk S. DeepFake creation and detection: A survey // Proc. of the 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA). 2021. P. 584–588. https://doi.org/10.1109/icirca51532.2021.9544522
55. Chadha A., Kumar V., Kashyap S., Gupta M. Deepfake: An Overview // Lecture Notes in Networks and Systems. 2021. V. 203. P. 557–566. https://doi.org/10.1007/978-981-16-0733-2_39
56. Nakka K.K., Salzmann M. Indirect local attacks for context-aware semantic segmentation networks // Lecture Notes in Computer Science. 2020. V. 12350. P. 611–628. https://doi.org/10.1007/978-3-030-58558-7_36
57. He Y., Rahimian S., Schiele B., Fritz M. Segmentations-leak: Membership inference attacks and defenses in semantic image segmentation // Lecture Notes in Computer Science. 2020. V. 12368. P. 519–535. https://doi.org/10.1007/978-3-030-58592-1_31
58. Choi J.H. Zhang H., Kim J.H., Hsieh C.J., Lee J.S. Evaluating robustness of deep image super-resolution against adversarial attacks // Proc. of the IEEE/CVF International Conference on Computer Vision (ICCV). 2019. P. 303–311. https://doi.org/10.1109/iccv.2019.00039
59. Jiang L., Ma X., Chen S., Bailey J., Jiang Y.G. Black-box adversarial attacks on video recognition models // Proc. of the 27th ACM International Conference on Multimedia. 2019. P. 864–872. https://doi.org/10.1145/3343031.3351088
60. Li S., Aich A., Zhu S., Asif S., Song C., Roy-Chowdhury A., Krishnamurthy S. Adversarial attacks on black box video classifers: Leveraging the power of geometric transformations // Advances in Neural Information Processing Systems. 2021. V. 34. P. 2085–2096.
61. Chen X., Li S., Huang H. Adversarial attack and defense on deep neural network-based voice processing systems: An overview // Applied Sciences. 2021. V. 11. N 18. P. 8450. https://doi.org/10.3390/app11188450
62. Kwon H., Kim Y., Yoon H., Choi D. Selective audio adversarial example in evasion attack on speech recognition system // IEEE Transactions on Information Forensics and Security. 2020. V. 15. P. 526–538. https://doi.org/10.1109/tifs.2019.2925452
63. Usama M., Qayyum A., Qadir J., Al-Fuqaha A. Black-box adversarial machine learning attack on network traffc classifcation // Proc. of the 15th International Wireless Communications & Mobile Computing Conference (IWCMC). 2019. P. 84–89. https://doi.org/10.1109/iwcmc.2019.8766505
64. Imam N.H., Vassilakis V.G. A survey of attacks against twitter spam detectors in an adversarial environment // Robotics. 2019. V. 8. N 3. P. 50. https://doi.org/10.3390/robotics8030050
65. Zhong H., Liao C., Squicciarini A.C., Zhu S., Miller D. Backdoor embedding in convolutional neural network models via invisible perturbation // Proc. of the Tenth ACM Conference on Data and Application Security and Privacy. 2020. P. 97–108. https://doi.org/10.1145/3374664.3375751
66. Liu X., Yang H., Liu Z., Song L., Li H., Chen Y. Dpatch: An adversarial patch attack on object detectors // arXiv. 2018. arXiv:1806.02299. https://doi.org/10.48550/arXiv.1806.02299
67. Liu Y., Ma X., Bailey J., Lu F. Refection backdoor: A natural backdoor attack on deep neural networks // Lecture Notes in Computer Science. 2020. V. 12355. P. 182–199. https://doi.org/10.1007/978-3-030-58607-2_11
68. Nguyen A., Tran A. WaNet - imperceptible warping-based backdoor attack // Proc. of the International Conference on Learning Representations. 2021.
69. Kostyumov V. A Survey and systematization of evasion attacks in computer vision. International Journal of Open Information Technologies, 2022, vol. 10, no. 10, pp. 11–20. (in Russian)
70. Papernot N., McDaniel P., Wu X., Jha S., Swami A. Distillation as a defense to adversarial perturbations against deep neural networks // Proc. of the 2016 IEEE Symposium on Security and Privacy (SP). 2016. P. 582–597. https://doi.org/10.1109/sp.2016.41
71. Steihaug T. The conjugate gradient method and trust regions in large scale optimization // SIAM Journal on Numerical Analysis. 1983. V. 20. N 3. P. 626–637. https://doi.org/10.1137/0720042
72. Curtis A.R., Powell M.J.D., Reid J.K. On the estimation of sparse Jacobian matrices // IMA Journal of Applied Mathematics. 1974. V. 13. N 1. P. 117–120. https://doi.org/10.1093/imamat/13.1.117
73. Niebur E. Saliency map // Scholarpedia. 2007. V. 2. N 8. С. 2675. https://doi.org/10.4249/scholarpedia.2675
74. Das S., Suganthan P.N. Differential evolution: A survey of the stateof-the-art // IEEE Transactions on Evolutionary Computation. 2011. V. 15. N 1. P. 4–31. https://doi.org/10.1109/tevc.2010.2059031
75. Badrinarayanan V., Kendall A., Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017. V. 39. N 12. P. 2481–2495. https://doi.org/10.1109/tpami.2016.2644615
76. Lowd D., Meek C. Adversarial learning // Proc. of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. 2005. P. 641–647. https://doi.org/10.1145/1081870.1081950
77. Xu W., Evans D., Qi Y. Feature squeezing: Detecting adversarial examples in deep neural networks // Proc. of the 2018 Network and Distributed System Security Symposium (NDSS). 2018.
78. Liao F., Liang M., Dong Y., Pang T., Hu X., Zhu J. Defense against adversarial attacks using high-level representation guided denoiser // Proc. of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018. P. 1778–1787. https://doi.org/10.1109/cvpr.2018.00191
79. Zhang D., Ye M., Gong C., Zhu Z., Liu Q. Black-box certifcation with randomized smoothing: A functional optimization based framework // Advances in Neural Information Processing Systems. 2020. V. 33. P. 2316–2326.
80. Fischer M., Baader M., Vechev M. Certifed defense to image transformations via randomized smoothing // Advances in Neural Information Processing Systems. 2020. V. 33. P. 8404–8417.
81. Yang R., Chen X.Q., Cao T.J. APE-GAN++: An improved APE-GAN to eliminate adversarial perturbations // IAENG International Journal of Computer Science. 2021. V. 48. N 3. P. 827–844.
82. Glenn T.C., Zare A., Gader P.D. Bayesian fuzzy clustering // IEEE Transactions on Fuzzy Systems. 2015. V. 23. N 5. P. 1545–1561. https://doi.org/10.1109/tfuzz.2014.2370676
83. Plackett R.L. Karl Pearson and the chi-squared test // International Statistical Review / Revue Internationale de Statistique. 1983. V. 51. N 1. P. 59–72. https://doi.org/10.2307/1402731
84. McLachlan G.J. Mahalanobis distance // Resonance. 1999. V. 4. N 6. P. 20–26. https://doi.org/10.1007/BF02834632
Review
For citations:
Esipov D.A., Buchaev A.Y., Kerimbay A., Puzikova Y.V., Saidumarov S.K., Sulimenko N.S., Popov I.Yu., Karmanovskiy N.S. Attacks based on malicious perturbations on image processing systems and defense methods against them. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2023;23(4):720-733. (In Russ.) https://doi.org/10.17586/2226-1494-2023-23-4-720-733