Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

Neural network-based method for visual recognition of driver’s voice commands using attention mechanism

https://doi.org/10.17586/2226-1494-2023-23-4-767-775

Abstract

Visual speech recognition or automated lip-reading systems actively apply to speech-to-text translation. Video data proves to be useful in multimodal speech recognition systems, particularly when using acoustic data is diffcult or not available at all. The main purpose of this study is to improve driver command recognition by analyzing visual information to reduce touch interaction with various vehicle systems (multimedia and navigation systems, phone calls, etc.) while driving. We propose a method of automated lip-reading the driver’s speech while driving based on a deep neural network of 3DResNet18 architecture. Using neural network architecture with bi-directional LSTM model and attention mechanism allows achieving higher recognition accuracy with a slight decrease in performance. Two different variants of neural network architectures for visual speech recognition are proposed and investigated. When using the frst neural network architecture, the result of voice recognition of the driver was 77.68 %, which was lower by 5.78 % than when using the second one the accuracy of which was 83.46 %. Performance of the system which is determined by a real-time indicator RTF in the case of the frst neural network architecture is equal to 0.076, and the second — RTF is 0.183 which is more than two times higher. The proposed method was tested on the data of multimodal corpus RUSAVIC recorded in the car. Results of the study can be used in systems of audio-visual speech recognition which is recommended in high noise conditions, for example, when driving a vehicle. In addition, the analysis performed allows us to choose the optimal neural network model of visual speech recognition for subsequent incorporation into the assistive system based on a mobile device.

About the Authors

A. A. Axyonov
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Russian Federation

Alexandr A. Axyonov —Junior Researcher

sc 57203963345

Saint Petersburg, 199178



E. V. Ryumina
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Russian Federation

Elena V. Ryumina — Junior Researcher

sc 57220572427

Saint Petersburg, 199178



D. A. Ryumin
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Russian Federation

Dmitry A. Ryumin — PhD, Senior Researcher

sc 57191960214

Saint Petersburg, 199178



D. V. Ivanko
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Russian Federation

Denis V. Ivanko — PhD, Senior Researcher

sc 57190967993

Saint Petersburg, 199178



A. A. Karpov
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Russian Federation

Alexey A. Karpov — D.Sc., Professor, Head of Laboratory

sc 57219469958

Saint Petersburg, 199178



References

1. Lin S.C., Hsu C.H., Talamonti W., Zhang Y., Oney S., Mars J., Tang L. Adasa: A conversational in-vehicle digital assistant for advanced driver assistance features // Proc. of the 31st Annual ACM Symposium on User Interface Software and Technology. 2018. P. 531–542. https://doi.org/10.1145/3242587.3242593

2. Lee B., Hasegawa-Johnson M., Goudeseune C., Kamdar S., Borys S., Liu M., Huang T. AVICAR: Audio-visual speech corpus in a car environment // Proc. of the 8th International Conference on Spoken Language Processing. 2004. P. 2489–2492. https://doi.org/10.21437/Interspeech.2004-424

3. Ivanko D., Ryumin D., Kashevnik A., Axyonov A., Karpov A. Visual speech recognition in a driver assistance system // Proc. of the 30th European Signal Processing Conference (EUSIPCO). 2022. P. 1131– 1135. https://doi.org/10.23919/EUSIPCO55093.2022.9909819

4. Xu B., Wang J., Lu C., Guo Y. Watch to listen clearly: Visual speech enhancement driven multi-modality speech recognition // Proc. of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). 2020. P. 1637–1646. https://doi.org/10.1109/wacv45572.2020.9093314

5. Afouras T., Chung, J.S., Senior A., Vinyals O., Zisserman A. Deep audio-visual speech recognition // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2022. V. 44. N 12. P. 8717–8727. https://doi.org/10.1109/TPAMI.2018.2889052

6. Kukharev G.A., Matveev Yu.N., Oleinik A.L. Mutual image transformation algorithms for visual information processing and retrieval. Scientifc and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 1, pp. 62–74. (in Russian). https://doi.org/10.17586/2226-1494-2017-17-1-62-74

7. Shi B., Hsu W.N., Mohamed A. Robust self-supervised audio-visual speech recognition // Proc. of the International Conference INTERSPEECH. 2022. P. 2118–2122. https://doi.org/10.21437/interspeech.2022-99

8. Chand H.V., Karthikeyan J. CNN based driver drowsiness detection system using emotion analysis // Intelligent Automation & Soft Computing. 2022. V. 31. N 2. P. 717–728. https://doi.org/10.32604/iasc.2022.020008

9. Ivanko D., Kashevnik A., Ryumin D., Kitenko A., Axyonov A., Lashkov I., Karpov A. MIDriveSafely: Multimodal interaction for drive safely // Proc. of the 2022 International Conference on Multimodal Interaction (ICMI). 2022. P. 733–735. https://doi.org/10.1145/3536221.3557037

10. Biswas A., Sahu P.K., Chandra M. Multiple cameras audio visual speech recognition using active appearance model visual features in car environment // International Journal of Speech Technology. 2016. V. 19. N 1. P. 159–171. https://doi.org/10.1007/s10772-016-9332-x

11. Nambi A.U., Bannur S., Mehta I., Kalra H., Virmani A., Padmanabhan V.N., Bhandari R., Raman B. HAMS: Driver and driving monitoring using a smartphone // Proc. of the 24th Annual International Conference on Mobile Computing and Networking. 2018. P. 840–842. https://doi.org/10.1145/3241539.3267723

12. Kashevnik A., Lashkov I., Gurtov A. Methodology and mobile application for driver behavior analysis and accident prevention // IEEE Transactions on Intelligent Transportation Systems. 2020. V. 21. N 6. P. 2427–2436. https://doi.org/10.1109/TITS.2019.2918328

13. Jang S.W., Ahn B. Implementation of detection system for drowsy driving prevention using image recognition and IoT // Sustainability. 2020. V. 12. N 7. P. 3037. https://doi.org/10.3390/su12073037

14. Mishra R.K., Urolagin S., Jothi J.A.A., Gaur P. Deep hybrid learning for facial expression binary classifcations and predictions // Image and Vision Computing. 2022. V. 128. P. 104573. https://doi.org/10.1016/j.imavis.2022.104573

15. Sunitha G., Geetha K., Neelakandan S., Pundir A.K.S., Hemalatha S., Kumar V. Intelligent deep learning based ethnicity recognition and classifcation using facial images // Image and Vision Computing. 2022. V. 121. P. 104404. https://doi.org/10.1016/j.imavis.2022.104404

16. Yuan Y., Tian C., Lu X. Auxiliary loss multimodal GRU model in audio-visual speech recognition // IEEE Access. 2018. V. 6. P. 5573– 5583. https://doi.org/10.1109/ACCESS.2018.2796118

17. Hou J.C., Wang S.S., Lai Y.H., Tsao Y., Chang H.W., Wang H.M. Audio-visual speech enhancement using multimodal deep convolutional neural networks // IEEE Transactions on Emerging Topics in Computational Intelligence. 2018. V. 2. N 2. P. 117–128. https://doi.org/10.1109/TETCI.2017.2784878

18. Chan Z.M., Lau C.Y., Thang K.F. Visual speech recognition of lips images using convolutional neural network in VGG-M model // Journal of Information Hiding and Multimedia Signal Processing. 2020. V. 11. N 3. P. 116–125.

19. Zhu X., Cheng D., Zhang Z., Lin S., Dai J. An empirical study of spatial attention mechanisms in deep networks // Proc. of the IEEE/ CVF International Conference on Computer Vision. 2019. P. 6688– 6697. https://doi.org/10.1109/iccv.2019.00679

20. Bhaskar S., Thasleema T.M. LSTM model for visual speech recognition through facial expressions // Multimedia Tools and Applications. 2023. V. 82. N 4. P. 5455–5472. https://doi.org/10.1007/s11042-022-12796-1

21. Hori T., Cho J., Watanabe S. End-to-end Speech recognition with word-based RNN language models // Proc. of the 2018 IEEE Spoken Language Technology Workshop (SLT). 2018. P. 389–396. https://doi.org/10.1109/SLT.2018.8639693

22. Serdyuk D.D., Braga O.P.F., Siohan O. Transformer-based video front-ends for audio-visual speech recognition for single and multiperson video // Proc. of the INTERSPEECH. 2022. P. 2833–2837. https://doi.org/10.21437/interspeech.2022-10920

23. Chen C.F.R., Fan Q., Panda R. CrossViT: Cross-attention multi-scale vision transformer for image classifcation // Proc. of the IEEE/CVF International Conference on Computer Vision (ICCV). 2021. P. 347– 356. https://doi.org/10.1109/iccv48922.2021.00041

24. Pan S.J., Yang Q. A survey on transfer learning // IEEE Transactions on Knowledge and Data Engineering. 2010. V. 22. N 10. P. 1345– 1359. https://doi.org/10.1109/tkde.2009.191

25. Romanenko A.N., Matveev Yu.N., Minker W. Knowledge transfer for Russian conversational telephone automatic speech recognition. Scientifc and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 2, pp. 236–242 (in Russian). https://doi.org/10.17586/2226-1494-2018-18-2-236-242

26. Sui C., Bennamoun M., Togneri R. Listening with your eyes: towards a practical visual speech recognition system using deep boltzmann machines. Proc. of the IEEE International Conference on Computer Vision (ICCV), 2015, pp. 154–162. https://doi.org/10.1109/iccv.2015.26

27. Ahmed N., Natarajan T., Rao K.R. Discrete cosine transform. IEEE Transactions on Computers, 1974, vol. C-23, no. 1, pp. 90–93. https://doi.org/10.1109/T-C.1974.223784

28. Xanthopoulos P., Pardalos P.M., Trafalis T.B. Linear discriminant analysis. Robust Data Mining, Springer New York, 2013, pp. 27–33. https://doi.org/10.1007/978-1-4419-9878-1_4

29. Tomashenko N.A., Khokhlov Yu.Yu., Larcher A., Estève Ya., Matveev Yu.N. Gaussian mixture models for adaptation of deep neural network acoustic models in automatic speech recognition systems. Scientifc and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 6, pp. 1063–1072. (in Russian). https://doi.org/10.17586/2226-1494-2016-16-6-1063-1072

30. Ma P., Petridis S., Pantic M. End-to-end audio-visual speech recognition with conformers // Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2021. P. 7613–7617. https://doi.org/10.1109/ICASSP39728.2021.9414567

31. Ryumin D., Ivanko D., Ryumina E. Audio-visual speech and gesture recognition by sensors of mobile devices // Sensors. 2023. V. 23. N 4. P. 2284. https://doi.org/10.3390/s23042284

32. Huang J., Kingsbury B. Audio-visual deep learning for noise robust speech recognition // Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing. 2013. P. 7596–7599. https://doi.org/10.1109/ICASSP.2013.6639140

33. Ivanko D., Ryumin D., Kashevnik A., Axyonov A., Kitenko A., Lashkov I., Karpov A. DAVIS: Driver’s audio-visual speech recognition // Proc. of the International Conference INTERSPEECH. 2022. P. 1141–1142.

34. Zhou P., Yang W., Chen W., Wang Y., Jia J. Modality attention for end-to-end audio-visual speech recognition // Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2019. P. 6565–6569. https://doi.org/10.1109/ICASSP.2019.8683733

35. Ivanko D., Axyonov A., Ryumin D., Kashevnik A., Karpov A. RUSAVIC Corpus: Russian audio-visual speech in cars // Proc. of the 13th Language Resources and Evaluation Conference (LREC). 2022. P. 1555–1559.

36. Kashevnik A., Lashkov I., Axyonov A., Ivanko D., Ryumin D., Kolchin A., Karpov A. Multimodal corpus design for audio-visual speech recognition in vehicle cabin // IEEE Access. 2021. V. 9. P. 34986–35003. https://doi.org/10.1109/ACCESS.2021.3062752

37. Lugaresi C., Tang J., Nash H., McClanahan C., Uboweja E., Hays M., Zhang F., Chang C.-L., Yong M., Lee J., Chang W.-T., Hua W., Georg M., Grundmann M. MediaPipe: A framework for perceiving and processing reality // Proc. of the 3rd Workshop on Computer Vision for AR/VR at IEEE Computer Vision and Pattern Recognition (CVPR). 2019. V. 2019. P. 1–4.

38. Zhang H., Cisse M., Dauphin Y.N., Lopez-Paz D. MixUp: Beyond empirical risk minimization // Proc. of the ICLR Conference. 2018. P. 1–13.

39. Feng D., Yang S., Shan S. An effcient software for building LIP reading models without pains // Proc. of the IEEE International Conference on Multimedia & Expo Workshops (ICMEW). 2021. P. 1–2. https://doi.org/10.1109/ICMEW53276.2021.9456014

40. Kim M., Hong J., Park S.J., Ro Y.M. Multi-modality associative bridging through memory: speech sound recollected from face video // Proc. of the IEEE/CVF International Conference on Computer Vision (ICCV). 2021. P. 296–306. https://doi.org/10.1109/iccv48922.2021.00036

41. Zhong Z., Lin Z.Q., Bidart R., Hu X., Daya I.B., Li Z., Zheng W., Li J., Wong A. Squeeze-and-attention networks for semantic segmentation // Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020. P. 13065–13074. https://doi.org/10.1109/cvpr42600.2020.01308

42. Axyonov A.A., Ryumin D.A., Kashevnik A.M., Ivanko D.V., Karpov A.A. Method for visual analysis of driver’s face for automatic lip-reading in the wild. Computer Optic, 2022, vol. 46, no. 6, pp. 955–962. (in Russian). https://doi.org/10.18287/2412-6179-CO-1092


Review

For citations:


Axyonov A.A., Ryumina E.V., Ryumin D.A., Ivanko D.V., Karpov A.A. Neural network-based method for visual recognition of driver’s voice commands using attention mechanism. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2023;23(4):767-775. (In Russ.) https://doi.org/10.17586/2226-1494-2023-23-4-767-775

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)