Errors in the demodulation algorithm with a generated carrier phase introduced by the low-pass flter
https://doi.org/10.17586/2226-1494-2023-23-4-795-802
Abstract
In this paper, we study the errors of the homodyne demodulation method based on arctangent function solutions (PGC-ATAN) which are associated with the use of a low-pass flter (LPF) in this signal phase demodulation algorithm. The method of demodulation of an interference signal by PGC-ATAN method is investigated in order to detect and consider in more detail the errors at the fltering stage (the article considers the moving average method), and corrections to the signal are analytically calculated, taking into account the error introduced by the low-pass flter. We obtained formulas for calculating corrections to the signals S1(t), S2(t), S3(t), S4(t) which received by fltering the original signal multiplied by the reference oscillator signal, the calculations were compared with the results of mathematical modeling of the interference signal processing by the PGC-ATAN method. The demodulation of the signal, taking into account the corrections, showed that, in general, the effect on the signal phase is small at a low heating rate, however, for high-speed processes, the error can lead to serious distortions of the desired signal phase. These calculated corrections for processed interference signal will improve the demodulation method based on the calculations of the arc tangent function and more accurately calculate the desired phase of the signal.
About the Authors
G. P. MiroshnichenkoRussian Federation
George P. Miroshnichenko — D.Sc. (Physics & Mathematics), Full Professor
sc 55401299600
Saint Petersburg, 197101
A. N. Arzhanenkova
Russian Federation
Alina N. Arzhanenkova — PhD Student
sc 57674300400
Saint Petersburg, 197101
M. Yu. Plotnikov
Russian Federation
Michael Yu. Plotnikov — PhD, Senior Researcher
sc 57193069973
Saint Petersburg, 197101
References
1. Dandridge A., Tveten A.B., Giallorenzi T.G. Homodyne demodulation scheme for fber optic sensors using phase generated carrier // IEEE Journal of Quantum Electronics. 1982. V. 18. N 10. P. 1647–1653. https://doi.org/10.1109/jqe.1982.1071416
2. McGarrity C., Jackson D. Improvement on phase generated carrier technique for passive demodulation of miniature interferometric sensors // Optics Communications. 1994. V. 109. N 3-4. P. 246–248. https://doi.org/10.1016/0030-4018(94)90687-4
3. Kersey A.D. A Review of recent developments in fber optic sensor technology // Optical Fiber Technology. 1996. V. 2. N 3. P. 291–317. https://doi.org/10.1006/ofte.1996.0036
4. Wu K., Min Z., Liao Y. Signal dependence of the phase-generated carrier method // Optical Engineering. 2007. V. 46. N 10. P. 105602. https://doi.org/10.1117/1.2799518
5. Lin W.-W., Huang S.-C., Chen M.-H. Fiber optic microampere dc current sensor // Optical Engineering. 2003. V. 42. N 9. P. 2551–2557. https://doi.org/10.1117/1.1597675
6. Feng L., He J., Duan J.-Y., Li F., Liu Y.-L. Implementation of phase generated carrier technique for FBG laser sensor multiplexed system based on compact RIO // Proc. 1st Asia-Pacifc Optical Fiber Sensors Conference, APOS. 2008. https://doi.org/10.1109/APOS.2008.5226295
7. Liu Y., Wang L., Tian C., Zhang M., LiaoY. Analysis and optimization of the PGC method in all digital demodulation systems // Journal of Lightwave Technology. 2008. V. 26. N 18. P. 3225–3233. https://doi.org/10.1109/jlt.2008.928926
8. He J., Wang L., Li F., Liu Y. An ameliorated phase generated carrier demodulation algorithm with low harmonic distortion and high stability // Journal of Lightwave Technology. 2010. V. 28. N 22. P. 3258–3265. https://doi.org/10.1109/jlt.2010.2081347
9. Azmi A.I., Leung I., Chen X., Zhou S., Zhu Q., Gao K., Childs P., Peng G. Fiber laser based hydrophone systems // Photonic Sensors 2011. V. 1. N 3. P. 210–221. https://doi.org/10.1007/s13320-011-0018-3
10. Plotnikov M.J., Kulikov A.V., Strigalev V.E., Meshkovsky I.K. Dynamic range analysis of the phase generated carrier demodulation technique // Advances in Optical Technologies. 2014. V. 2014. P. 815108. https://doi.org/10.1155/2014/815108
11. Zhang A., Zhang S. High stability fber-optics sensors with an improved PGC demodulation algorithm // IEEE Sensors Journal. 2016. V. 16. N 21. P. 7681–7684. https://doi.org/10.1109/jsen.2016.2604348
12. Belikin M.N., Plotnikov M.Yu., Strigalev V.E., Kulikov A.V., Kireenkov A.Yu. Experimental comparison of homodyne demodulation algorithms for phase fber-optic sensor. Scientifc and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 6, pp. 1008–1014. (in Russian). https://doi.org/10.17586/2226-1494-2015-15-6-1008-1014
13. Volkov A.V., Plotnikov M.Y., Mekhrengin M.V., Miroshnichenko G.P., Aleynik A.S. Phase modulation depth evaluation and correction technique for the PGC demodulation scheme in fber-optic interferometric sensors // IEEE Sensors Journal. 2017. V. 17. N 13. P. 4143–4150. https://doi.org/10.1109/jsen.2017.2704287
14. Zhang Z., Zhang Z., Cheng J., Kong Y., Zhang L., Zhang D., Zhuang S., Peng W., Wu F., Zhu Y., Cui X. An improved phase generated carrier demodulation algorithm with high stability and low harmonic distortion // Optics Communications. 2022. V. 524. P. 128800. https://doi.org/10.1016/j.optcom.2022.128800
15. Zhang S., Chen Y., Chen B., Yan L., Xie J., Lou Y. A PGC-DCDM demodulation scheme insensitive to phase modulation depth and carrier phase delay in an EOM-based SPM interferometer // Optics Communications. 2020. V. 474. P. 126183. https://doi.org/10.1016/j.optcom.2020.126183
16. Li Q., Huang H., Lin F., Wu X. Optical micro-particle size detection by phase-generated carrier demodulation // Optics Express. 2016. V. 24. N 11. P. 11458–11465. https://doi.org/10.1364/OE.24.011458
17. Yu Z., Dai H., Zhang M., Zhang J., Liu L., Jin X., Luo Y. High stability and low harmonic distortion PGC demodulation technique for interferometric optical fber sensors // Optics & Laser Technology. 2019. V. 109. P. 8–13. https://doi.org/10.1016/j.optlastec.2018.07.055
18. Christian T.R., Frank P.A., Houston B.H. Real-time analog and digital demodulator for interferometric fber optic sensors // Proceedings of SPIE. 1994. V. 2191. P. 324–336. https://doi.org/10.1117/12.173962
19. Zhang S., Zhang A., Pan H. Eliminating light intensity disturbance with reference compensation in interferometers // IEEE Photonics Technology Letters. 2015. V. 27. N 17. P. 1888–1891. https://doi.org/10.1109/lpt.2015.2444421
20. Tong Y., Zeng H., Li L., Zhou Y. Improved phase generated carrier demodulation algorithm for eliminating light intensity disturbance and phase modulation amplitude variation // Applied Optics. 2012. V. 51. N 29. P. 6962–6967. https://doi.org/10.1364/AO.51.006962
21. Yang X., Chen Z., Ng J.H., Pallayil V., Unnikrishnan C.K.C. A PGC demodulation based on differential-cross-multiplying (DCM) and arctangent (ATAN) algorithm with low harmonic distortion and high stability // Proceedings of SPIE. 2012. V. 8421. P. 84215J. https://doi.org/10.1117/12.974939
22. Wang G.-Q., Xu T.-W., Li F. PGC demodulation technique with high stability and low harmonic distortion // IEEE Photonics Technology Letters. 2012. V. 24. N 23. P. 2093–2096. https://doi.org/10.1109/lpt.2012.2220129
23. He J., Li F., Zhang W., Wang L., Xu T., Liu Y. High performance wavelength demodulator for DFB fber laser sensor using novel PGC algorithm and reference compensation method // Proceedings of SPIE. 2011. V. 7753. P. 775333. https://doi.org/10.1117/12.885823
24. Zhang W., Xia H., Pan C., Huang W., Li F. Differential selfmultiplying-integrate phase generated carrier method for fber optic sensors // Proceedings of SPIE. 2014. V. 9233. P. 92331U. https://doi.org/10.1117/12.2069764
25. Peng F., Hou L., Yang J., Yuan Y., Li C., Yan D., Yuan L., Zheng H., Chang Z., Ma K., Yang J. An improved fxed phased demodulation method combined with phase generated carrier (PGC) and ellipse ftting algorithm // Proceedings of SPIE. 2015. V. 9620. P. 96200S. https://doi.org/10.1117/12.2190842
26. Wu B., Yuan Y., Yang J., Liang S., Yuan L. Optimized phase generated carrier (PGC) demodulation algorithm insensitive to C value // Proceedings of SPIE. 2015. V. 9655. P. 96550C. https://doi.org/10.1117/12.2184268
27. Bateman H., Erdélyi A. Higher Transcendental Functions. Vol. 2. McGraw-Hill, 1954.
Review
For citations:
Miroshnichenko G.P., Arzhanenkova A.N., Plotnikov M.Yu. Errors in the demodulation algorithm with a generated carrier phase introduced by the low-pass flter. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2023;23(4):795-802. (In Russ.) https://doi.org/10.17586/2226-1494-2023-23-4-795-802