Preview

Научно-технический вестник информационных технологий, механики и оптики

Расширенный поиск

Численная модель импульсного подкритического стримерного сверхвысокочастотного разряда для задач плазменного поджига топливных смесей в газовой фазе

https://doi.org/10.17586/2226-1494-2022-22-4-792-803

Аннотация

Предмет исследования. Разработана и верифицирована приближенная модель, предназначенная для оценки плазменного нагрева и конверсии топливных смесей при помощи подкритического стримерного сверхвысокочастотного разряда. Поджиг топливной смеси происходит в среде с давлением 13 кПа и температурой 150 К при наличии внешнего потока воздуха со скоростью до 500 м/с. Для фокусировки электромагнитного излучения использованы антенна-инициатор и плоское зеркало. Стехиометрическая смесь пропана и воздуха или чистый пропан подаются через полость в антенне. Мощность излучения составила 3 кВт. Метод. Модель реализована на основе схемы расщепления по физическим процессам, что позволило снизить требования к вычислительным ресурсам. Область, занятая плазмой, и ее проводимость заданы исходя из выбранного набора экспериментальных данных. Расчет плазменного поджига состоял из трех этапов. На первом этапе решены уравнения Больцмана для электронного газа в среде в нульмерной постановке для заданных параметров внешнего электрического поля. В результате получены функции распределения электронной энергии и коэффициентов реакций. На втором этапе рассчитаны уравнения Гельмгольца для распределения напряженности электромагнитного поля вблизи антенны-инициатора с учетом заданной проводящей области. По полученным распределениям электрического поля вычислены мощности джоулева нагрева и значения коэффициентов реакций. На третьем этапе получены решения уравнений: Навье-Стокса и переноса различных сортов частиц для сжимаемой среды с учетом процессов горения при заданных источниках локального нагрева и плазменных реакций. Основные результаты. Получены распределения температуры, состава среды, скорости движения среды при заданных локальной мощности нагрева и дополнительных реакций в области, занятой плазмой. Стехиометрическая смесь пропана с воздухом или чистый пропан, подаваемые через антенну, подожжены плазмой: смесь горит в небольшой области, а пропан окисляется в тонком слое смешения с воздухом. Выполнены сравнения результатов расчетов с данными физического эксперимента: и полей температур, и состава среды с фотографиями пламени из эксперимента. Численное исследование показало, что во всех рассмотренных условиях модель дает близкие к эксперименту результаты, но имеется завышение требуемой для поджига мощности излучения практические в два раза. Практическая значимость. Изучение процессов поджига газообразных смесей подкритическим сверхвысокочастотным разрядом представляет интерес для проектирования двигательных установок с повышенной надежностью и возможностью использования трудновоспламенимых смесей. Предлагаемая модель дает приближенные оценки, позволяя снизить требования к вычислительным ресурсам и времени счета по сравнению с традиционными моделями.

Об авторах

П. В. Булат
Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова
Россия

Булат Павел Викторович — доктор физико-математических наук, кандидат экономических наук, главный научный сотрудник

sc 55969578400

Санкт-Петербург, 190005



К. Н. Волков
Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова; Университет Кингстона
Россия

Волков Константин Николаевич — доктор физико-математических наук, ведущий научный сотрудник; лектор

sc 8663950000

Санкт-Петербург, 190005

Лондон, SW15 3DW



А. И. Мельникова
Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова
Россия

Мельникова Анжелика Игоревна — младший научный сотрудник

sc 57222383655

Санкт-Петербург, 190005



М. Е. Ренев
Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова; Санкт-Петербургский государственный университет
Россия

Ренев Максим Евгеньевич — младший научный сотрудник; аспирант

sc 57211271545

Санкт-Петербург, 190005

Санкт-Петербург, 199034



Список литературы

1. Feng R., Wang Z., Sun M., Wang H., Huang Y., Yang Y., Liu X., Wang C., Tian Y., Luo T., Zhu J. Multi-channel gliding arc plasma-assisted ignition in a kerosene-fueled model scramjet engine // Aerospace Science and Technology. 2022. V. 126. P. 107606. https://doi.org/10.1016/j.ast.2022.107606

2. Starikovskaia S.M. Plasma assisted ignition and combustion // Journal of Physics D: Applied Physics. 2006. V. 39. N 16. P. R265–R299. https://doi.org/10.1088/0022-3727/39/16/R01

3. Bulat M.P., Bulat P.V., Denissenko P.V., Esakov I.I., Grachev L.P., Lavrov P.V., Volkov K.N., Volobuev I.A. Plasma-assisted ignition and combustion of lean and rich air/fuel mixtures in low- and high-speed flows // Acta Astronautica. 2020. V. 176. P. 700–709. https://doi.org/10.1016/j.actaastro.2020.04.028

4. Chen Q., Ge J., Zheng T., Che X., Nie W. The role of non-equilibrium plasma kinetic effect on GCH4/GOX rocket engine combustion performance // Journal of Physics: Conference Series. 2020. V. 1707. P. 012015. https://doi.org/10.1088/1742-6596/1707/1/012015

5. Kotel’nikov V.A., Kotel’nikov M.V., Filippov G.S. Electrical and physical parameters of plasma fluxes in exhaust from a liquid-propellant rocket engine // Journal of Machinery Manufacture and Reliability. 2018. V. 47. N 6. P. 488–494. https://doi.org/10.3103/S1052618818060067

6. Janev R.K., Reiter D. Collision processes of C2,3Hy and C2,3Hy+ hydrocarbons with electrons and protons // Physics of Plasmas. 2004. V. 11. N 2. P. 780–829. https://doi.org/10.1063/1.1630794

7. Zhou S., Nie W., Tian Y. High frequency combustion instability control by discharge plasma in a model rocket engine combustor // Acta Astronautica. 2021. V. 179. P. 391–406. https://doi.org/10.1016/j.actaastro.2020.11.010

8. Bulat M.P., Bulat P.V., Denissenko P.V., Esakov I.I., Grachev L.P., Volkov K.N., Volobuev I.A. Ignition of lean and stoichiometric air–propane mixture with a subcritical microwave streamer discharge // Acta Astronautica. 2018. V. 150. P. 153–161. https://doi.org/10.1016/j.actaastro.2017.11.030

9. Kim W., Cohen J. Plasma-assisted combustor dynamics control at ambient and realistic gas turbine conditions // Proceedings of the ASME Turbo Expo. 2017. V. 4A. P. V04AT04A037. https://doi.org/10.1115/GT2017-63477

10. Bulat M., Bulat P., Denissenko P., Esakov I., Grachev L., Volkov K., Volobuev I. Numerical Simulation of ignition of premixed air/fuel mixtures by microwave streamer discharge // IEEE Transactions on Plasma Science. 2019. V. 47. N 1. P. 62–68. https://doi.org/10.1109/TPS.2018.2869259

11. Sharma A., Subramaniam V., Solmaz E., Raja L. Fully coupled modeling of nanosecond pulsed plasma assisted combustion ignition // Journal of Physics D: Applied Physics. 2019. V. 52. N 9. P. 095204. https://doi.org/10.1088/1361-6463/aaf690

12. Saifutdinov A.I., Kustova E.V. Dynamics of plasma formation and gas heating in a focused-microwave discharge in nitrogen // Journal of Applied Physics. 2021. V. 129. N 2. P. 023301. https://doi.org/10.1063/5.0031020

13. Bityurin V.A., Bocharov A.N., Dobrovolskaya A.S., Kuznetsova T.N., Popov N.A., Filimoniva E.A. Numerical modeling of pulse-periodic nanosecond discharges // Journal of Physics: Conference Series. 2021. V. 2100. N 1. P. 012032. https://doi.org/10.1088/1742-6596/2100/1/012032

14. Popov N.A., Starikovskaia S.M. Relaxation of electronic excitation in nitrogen/oxygen and fuel/air mixtures: fast gas heating in plasma-assisted ignition and flame stabilization // Progress in Energy and Combustion Science. 2022. V. 91. P. 100928. https://doi.org/10.1016/j.pecs.2021.100928

15. Zheng T., Che X., Li L., Chen C., Nie W., Li X. Numerical study of plasma assisted combustion for a rocket combustor using GCH4/GOX as propellants // Journal of Physics: Conference Series. 2018. V. 1064. P. 012013. https://doi.org/10.1088/1742-6596/1064/1/012013

16. Zheng Z., Nie W., Zhou S., Tian Y., Zhu Y., Shi T., Tong Y. Characterization of the effects of a plasma injector driven by AC dielectric barrier discharge on ethylene-air diffusion flame structure // Open Physics. 2020. V. 18. N 1. P. 58–73. https://doi.org/10.1515/phys-2020-0008

17. Deng J., He L., Liu X., Chen Y. Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber // Plasma Science and Technology. 2018. V. 20. N 12. P. 125502. https://doi.org/10.1088/2058-6272/aacdef

18. Zettervall N., Fureby C., Nilsson E.J.K. A reduced chemical kinetic reaction mechanism for kerosene-air combustion // Fuel. 2020. V. 269. P. 117446. https://doi.org/10.1016/j.fuel.2020.117446

19. Ma J.Z., Luan M.Y., Xia Z.-J., Wang J.-P., Zhang S.-J., Yao S.-B., Wang B. Recent progress, development trends, and consideration of continuous detonation engines // AIAA Journal. 2020. V. 58. N 12. P. 4976–5035. https://doi.org/10.2514/1.J058157

20. Bulat P.V., Chernyshov P., Esakov I.I., Grachev L., Lavrov P., Melnikova A.I., Volkov K.N., Volobuev I.A. Multi-point ignition of air/fuel mixture by the initiated subcritical streamer discharge // Acta Astronautica. 2022. V. 194. P. 504–513. https://doi.org/10.1016/j.actaastro.2021.09.043

21. Dobrov Y.V., Lashkov V.A., Mashek I.Ch., Khoronzhuk R.S. Investigation of heat flux on aerodynamic body in supersonic gas flow with local energy deposition // AIP Conference Proceedings. 2018. V. 1959. P. 050009. https://doi.org/10.1063/1.5034637

22. Булат П.В., Есаков И.И., Грачев Л.П., Денисенко П.В., Булат М.П., Волобуев И.А. Математическое и компьютерное моделирование горения и детонации подкритическим стримерным разрядом // Научно-технический вестник информационных технологий, механики и оптики. 2017. Т. 17. № 4. С. 569–592. https://doi.org/10.17586/2226-1494-2017-17-4-569-592

23. Kossyi I.A., Kostinsky A.Yu., Matveyev A.A., Silakov V.P. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures // Plasma Sources Science and Technology. 1992. V. 1. N 3. P. 207–220. https://doi.org/10.1088/0963-0252/1/3/011


Рецензия

Для цитирования:


Булат П.В., Волков К.Н., Мельникова А.И., Ренев М.Е. Численная модель импульсного подкритического стримерного сверхвысокочастотного разряда для задач плазменного поджига топливных смесей в газовой фазе. Научно-технический вестник информационных технологий, механики и оптики. 2022;22(4):792-803. https://doi.org/10.17586/2226-1494-2022-22-4-792-803

For citation:


Bulat P.V., Volkov K.N., Melnikova A.I., Renev M.E. Numerical model of a pulsed subcritical streamer microwave discharge for problems of plasma ignition of fuel mixtures in the gas phase. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2022;22(4):792-803. (In Russ.) https://doi.org/10.17586/2226-1494-2022-22-4-792-803

Просмотров: 10


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)