Information reconstruction from noisy channel using ghost imaging method with spectral multiplexing in visible range
https://doi.org/10.17586/2226-1494-2022-22-4-812-816
Abstract
The ghost imaging technique allows us to recover information about an object in conditions of noisy transmission channels, commensurate with the intensity of the speckle structures involved in the reconstruction. One of the main disadvantages of this technique is relatively slow reconstruction speed. This limits its applicability for study of dynamic processes or fast-moving objects. In this paper, we propose a modification of the computational ghost imaging technique that allows us to overcome this limitation. It is shown that the spectral multiplexing of the speckle patterns speeds up the image reconstruction. Increase in the number of spectral channels from 4 to 10 leads to the increase of the signal-to-noise ratio by the factor of 6. Simultaneously, under the same conditions and with the same number of measurements classical monochrome ghost imaging does not reconstruct the picture at all. This makes the proposed technique attractive for high-speed demanding applications such as communications and remote sensing.
About the Authors
E. N. OparinRussian Federation
Egor N. Oparin — Laboratory Assistant
sc 57209803630
Saint Petersburg, 197101
V. S. Shumigay
Russian Federation
Vladimir S. Shumigay — Laboratory Assistant
Saint Petersburg, 197101
A. O. Ismagilov
Russian Federation
Azat O. Ismagilov — Scientific Researcher
sc 57195673891
Saint Petersburg, 197101
A. N. Tsypkin
Russian Federation
Anton N. Tsypkin — D. Sc. (Physics & Mathematics), Scientific Researcher
sc 56366230300
Saint Petersburg, 197101
References
1. Willner A.E., Zhao Z., Liu C., Zhang R., Song H., Pang K., Manukyan K., Song H., Su X., Xie G., Ren Y., Yan Y., Tur M., Molisch A.F., Boyd R.W., Zhou H., Hu N., Minoofar A., Huang H. Perspectives on advances in high-capacity, free-space communications using multiplexing of orbital-angular-momentum beams. APL Photonics, 2021, vol. 6, no. 3, pp. 030901. https://doi.org/10.1063/5.0031230
2. Kaymak Y., Rojas-Cessa R., Feng J., Ansari N., Zhou M., Zhang T. A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications. IEEE Communications Surveys & Tutorials, 2018, vol. 20, no. 2, pp. 1104–1123. https://doi.org/10.1109/COMST.2018.2804323
3. Chan V.W.S. Free-space optical communications. Journal of Lightwave Technology, 2006, vol. 24, no. 12, pp. 4750–4762. https://doi.org/10.1109/JLT.2006.885252
4. Na Y., Ko D.K. Deep-learning-based high-resolution recognition of fractional-spatial-mode-encoded data for free-space optical communications. Scientific Reports, 2021, vol. 11, no. 1, pp. 2678. https://doi.org/10.1038/s41598-021-82239-8
5. Clemente P., Durán V., Torres-Company V., Tajahuerce E., Lancis J. Optical encryption based on computational ghost imaging. Optics Letters, 2010, vol. 35, no. 14, pp. 2391–2393. https://doi.org/10.1364/OL.35.002391
6. Shapiro J.H. Computational ghost imaging. Physical Review A, 2008, vol. 78, no. 6, pp. 061802. https://doi.org/10.1103/PhysRevA.78.061802
7. Zhang D.-J., Li H.-G., Zhao Q.-L., Wang S., Wang H.-B., Xiong J., Wang K. Wavelength-multiplexing ghost imaging. Physical Review A, 2015, vol. 92, no. 1, pp. 013823. https://doi.org/10.1103/PhysRevA.92.013823
8. Tcypkin A.N., Putilin S.E., Melnik M.V., Makarov E.A., Bespalov V.G., Kozlov S.A. Generation of high-intensity spectral supercontinuum of more than two octaves in a water jet. Applied Optics, 2016, vol. 55, no. 29, pp. 8390–8394. https://doi.org/10.1364/AO.55.008390
9. Harm W., Jesacher A., Thalhammer G., Bernet S., Ritsch-Marte M. How to use a phase-only spatial light modulator as a color display. Optics Letters, 2015, vol. 40, no. 4, pp. 581–584. https://doi.org/10.1364/OL.40.000581
Review
For citations:
Oparin E.N., Shumigay V.S., Ismagilov A.O., Tsypkin A.N. Information reconstruction from noisy channel using ghost imaging method with spectral multiplexing in visible range. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2022;22(4):812-816. (In Russ.) https://doi.org/10.17586/2226-1494-2022-22-4-812-816