Preview

Научно-технический вестник информационных технологий, механики и оптики

Расширенный поиск

Применение методов детектирования отказов для обнаружения информационных атак на систему управления

https://doi.org/10.17586/2226-1494-2022-22-3-480-491

Аннотация

Обеспечение безопасности систем управления – важная и актуальная проблема. Она состоит в исключении влияния отказов и атак на объекты управления, окружающую среду и др. Большое значение имеет предотвращение критических отказов. Выполнен анализ сходств последствий атак на сложные технические системы и отказов этих систем. Рассмотрено влияние информационных атак на динамику систем автоматического управления. В ходе работы представлена гипотеза о сходстве влияния отказов и информационных атак на сложную техническую систему. Как информационные атаки, так и отказы вызывают отклонения динамики объекта управления. Анализ отклонения динамики объекта управления от нормального режима функционирования позволит детектировать и изолировать информационные атаки и отказы. Проведено сравнение аномальной динамики объектов управления при атаках и отказах устройств, обнаружены зависимости, и сделаны выводы. Проанализировано сходство последствий информационных атак и отказов системы управления, разработана методика идентификации атак на основе методов, разработанных для детектирования отказов. Выполнено компьютерное моделирование влияния информационных атак и отказов на систему управления двигателем постоянного тока, приведены результаты в виде графиков. Результаты моделирования позволяют сделать вывод о применимости алгоритмов детектирования отказов для обнаружения атак. Показано, что отказы и информационные атаки могут привести к опасным последствиям для системы управления. Актуальным представляется исследование пересечения области информационной безопасности и детектирования отказов.

Об авторах

А. А. Маргун
Университет ИТМО; Институт проблем машиноведения РАН
Россия

Маргун Алексей Анатольевич — кандидат технических наук, доцент; научный сотрудник

Санкт-Петербург, 197101

sc 55521791600

Санкт-Петербург, 199178



Р. А. Юрьева
Университет ИТМО
Россия

Юрьева Радда Алексеевна — кандидат технических наук, доцент, доцент

Санкт-Петербург, 197101

sc 57190606805



Д. В. Колесникова
Университет ИТМО
Россия

Колесникова Дарья Викторовна — аспирант, ассистент

Санкт-Петербург, 197101

sc 57206781641



Список литературы

1. Lee J., Bagheri B., Kao H.A. A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 2015, vol. 3, pp. 18–23. https://doi.org/10.1016/j.mfglet.2014.12.001

2. Lasi H., Fettke P., Kemper H.G., Feld T., Hoffmann M. Industry 4.0. Business & Information Systems Engineering, 2014, vol. 6, no. 4, pp. 239–242. https://doi.org/10.1007/s12599-014-0334-4

3. Hwang I., Kim S., Kim Y., Seah C.E. A survey of fault detection, isolation, and reconfiguration methods. IEEE Transactions on Control Systems Technology, 2010, vol. 18, no. 3, pp. 636–653. https://doi.org/10.1109/TCST.2009.2026285

4. Patton R.J., Chen J. On eigenstructure assignment for robust fault diagnosis. International Journal of Robust and Nonlinear Control, 2000, vol. 10, no. 14, pp. 1193–1208. https://doi.org/10.1002/1099-1239(20001215)10:14<1193::AID-RNC523>3.0.CO;2-R

5. Wünnenberg J., Frank P.M. Sensor fault detection via robust observers. System Fault Diagnostics, Reliability and Related Knowledge-Based Approaches. V. 1. Springer, Dordrecht, 1987, pp. 147–160. https://doi.org/10.1007/978-94-009-3929-5_5

6. Watanabe K., Himmelblau D.M. Instrument fault detection in systems with uncertainties. International Journal of Systems Science, 1982, vol. 13, no. 2, pp. 137–158. https://doi.org/10.1080/00207728208926337

7. Frank P.M., Wünnenberg J. Robust fault diagnosis using unknown input observers schemes. Fault Diagnosis in Dynamic Systems: Theory and Application. New York, Prentice-Hall, 1989, pp. 47–98.

8. Gertler J. Fault detection and isolation using parity relations. Control Engineering Practice, 1997, vol. 5, no. 5, pp. 653–661. https://doi.org/10.1016/S0967-0661(97)00047-6

9. Patton R.J., Chen J. Robust fault detection using eigenstructure assignment: A tutorial consideration and some new results. Proc. of

10. Patton R.J., Chen J. Review of parity space approaches to fault diagnosis for aerospace systems. Journal of Guidance, Control, and Dynamics, 1994, vol. 17, no. 2, pp. 278–285. https://doi.org/10.2514/3.21194

11. Stoustrup J., Niemann H.H. Fault estimation — a standard problem approach. International Journal of Robust and Nonlinear Control, 2002, vol. 12, no. 8, pp. 649–673. https://doi.org/10.1002/rnc.716

12. Maqill D.T. Optimal adaptive estimation of sampled stochastic processes. IEEE Transactions on Automatic Control, 1965, vol. 10, no. 4, pp. 434–439. https://doi.org/10.1109/TAC.1965.1098191

13. Maybeck P.S. Stochastic Models, Estimation and Control. V. 1. Arlington, VA, Navtech Press, 1994, 423 p.

14. Maybeck P.S. Stochastic Models, Estimation and Control. V. 2. Arlington, VA, Navtech Press, 1994.

15. Wang H., Lin W. Applying observer based FDI techniques to detect faults in dynamic and bounded stochastic distributions. International Journal of Control, 2000, vol. 73, no. 15, pp. 1424–1436. https://doi.org/10.1080/002071700445433

16. Simani S., Fantuzzi C., Patton R.J. Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques. London, U.K., Springer, 2003, XV, 282 p. https://doi.org/10.1007/978-1-4471-3829-7

17. Chen R.H., Ng H.K., Speyer J.L., Guntur L.S., Carpenter R. Health monitoring of a satellite system. Journal of Guidance, Control, and Dynamics, 2006, vol. 29, no. 3, pp. 593–605. https://doi.org/10.2514/1.15012

18. Pertew M., Marquez H.J., Zhao Q. Design of unknown input observers for Lipschitz nonlinear systems. Proceedings of the American Control Conference, 2005, vol. 6, pp. 4198–4203. https://doi.org/10.1109/ACC.2005.1470637

19. Baroni P., Lamperti G., Pogliano P., Zanella M. Diagnosis of a class of distributed discrete-event systems. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 2000, vol. 30, no. 6, pp. 731–752. https://doi.org/10.1109/3468.895897

20. Lunze J., Schröder J. Sensor and actuator fault diagnosis of systems with discrete inputs and outputs. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, vol. 34, no. 2, pp. 1096–1107. https://doi.org/10.1109/TSMCB.2003.820593

21. Cordier M.O., Dugue P., Dumas M., Lévy F., Montmain J., Staroswiecki M., Travé Massuyès L. AI and automatic control approaches of model-based diagnosis: Links and underlying hypotheses. IFAC Proceedings Volumes, 2000, vol. 33, no. 11, pp. 279–284. https://doi.org/10.1016/S1474-6670(17)37373-1

22. Cordier M.O., Dague P., Lévy F., Mountmain J., Staroswiecki M., Travé-Massuyès L. Conflicts versus analytical redundancy relations: A comparative analysis of the model based diagnosis approach from the artificial intelligence and automatic control perspectives. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, vol. 34, no. 5, pp. 2163–2177. https://doi.org/10.1109/TSMCB.2004.835010

23. Blanke M., Kinnaert M., Lunze J., Staroswiecki M. Diagnosis and Fault-Tolerant Control. Berlin, Springer, 2006, XIX, 672 p. https://doi.org/10.1007/978-3-540-35653-0

24. Zhang Y., Jiang J. Bibliographical review on reconfigurable faulttolerant control systems. Annual Reviews in Control, 2008, vol. 32, no. 2, pp. 229–252. https://doi.org/10.1016/j.arcontrol.2008.03.008

25. Zhang X., Parisini T., Polycarpou M.M. Adaptive fault-tolerant control of nonlinear uncertain systems: an information-based diagnostic approach. IEEE Transactions on Automatic Control, 2004, vol. 49, no. 8, pp. 1259–1274. https://doi.org/10.1109/TAC.2004.832201

26. Iureva R.A., Margun A.A., Maltseva N.K., Vedernikov K. Electromechanical drive fault detection. IOP Conference Series: Materials Science and Engineering, 2019, vol. 643, no. 1, pp. 012114. https://doi.org/10.1088/1757-899X/643/1/012114

27. Zhang Y.M., Jiang J. Active fault-tolerant control system against partial actuator failures. IEE Proceedings: Control Theory and Applications, 2002, vol. 149, no. 1, pp. 95–104. https://doi.org/10.1049/ip-cta:20020110

28. Khurana H., Hadley M., Lu N., Frincke D.A. Smart-grid security issues. IEEE Security and Privacy, 2010, vol. 8, no. 1, pp. 81–85. https://doi.org/10.1109/MSP.2010.49

29. Desnitsky V.A., Levshun D.S., Chechulin A.A., Kotenko I.V. Design technique for secure embedded devices: Application for creation of integrated cyber-physical security system // Journal of Wireless Networks, Ubiquitous Computing, and Dependable Applications, 2016, vol. 7, no. 2, pp. 60–80. https://doi.org/10.22667/JOWUA.2016.06.31.060

30. Alguliyev R., Imamverdiyev Y., Sukhostat L. Cyber-physical systems and their security issues. Computers in Industry, 2018, vol. 100, pp. 212–223. https://doi.org/10.1016/j.compind.2018.04.017

31. Wang E.K., Ye Y., Xu X., Yiu S.M., Hui L.C.K., Chow K.P. Security issues and challenges for cyber physical system. Proc. of the IEEE/ ACM International Conference on Green Computing and Communications (GreenCom), 2010 IEEE/ACM International Conference on Cyber, Physical and Social Computing, (CPSCom), 2010, pp. 733–738. https://doi.org/10.1109/GreenComCPSCom.2010.36

32. Sicari S., Rizzardi A., Grieco L.A., Coen-Porisini A. Security, privacy and trust in Internet of Things: the road ahead. Computer Networks, 2015, vol. 76, pp. 146–164. https://doi.org/10.1016/j.comnet.2014.11.008

33. Sridhar S., Hahn A., Govindarasu M. Cyber-physical system security for the electric power grid. Proceedings of the IEEE, 2012, vol. 100, no. 1, pp. 210–224. https://doi.org/10.1109/JPROC.2011.2165269

34. Gifty R., Bharathi R., Krishnakumar P. Privacy and security of big data in cyber physical systems using Weibull distribution-based intrusion detection. Neural Computing and Applications, 2019, vol. 31, no. 1, pp. 23–34. https://doi.org/10.1007/s00521-018-3635-6

35. Iureva R.A., Kremlev A.S., Margun A.A., Vlasov S.M., Timko A.S. Measures to design secure cyber-physical things. Smart Innovation, Systems and Technologies, 2019, vol. 142, pp. 315–322. https://doi.org/10.1007/978-981-13-8311-3_27

36. Iureva R.A., Danenkov I.S., Timko A.S., Vlasov S.M., Vasilkov S.D. Optical sensors in IoT. Proceedings of SPIE, 2019, vol. 11028, pp. 1102816. https://doi.org/10.1117/12.2517076

37. Iureva R.A., Belov A.A., Margun A.A., Kremlev A.S. Electric drive attack detection based on state observers. Proc. of the 20th International Carpathian Control Conference (ICCC), 2019, pp. 8766015. https://doi.org/10.1109/carpathiancc.2019.8766015

38. Iureva R., Margun A., Maltseva N., Vedernikov K. Electromechanical drive fault detection. IOP Conference Series: Materials Science and Engineering, 2019, vol. 643, no. 1, pp. 012114. https://doi.org/10.1088/1757-899X/643/1/012114

39. Dobriborsci D., Margun A., Kolyubin S. Theoretical and experimental research of the discrete output robust controller for uncertain plant. Proc. of the 16th European Control Conference (ECC), 2018, pp. 533–538. https://doi.org/10.23919/ECC.2018.8550138

40. Chen J., Patton R.J. Robust Model-Based Fault Diagnosis for Dynamic Systems. Boston, MA, U.S.A., Kluwer Academic Publishers, 1999, pp. 354.

41. Patton R.J., Chen J. Observer-based fault detection and isolation: Robustness and applications. Control Engineering Practice, 1997, vol. 5, no. 5, pp. 671–682. https://doi.org/10.1016/S0967-0661(97)00049-X

42. Isermann R. Supervision, fault-detection and fault-diagnosis methods — An introduction. Control Engineering Practice, 1997, vol. 5, no. 5, pp. 639–652. https://doi.org/10.1016/S0967-0661(97)00046-4

43. Behzad H., Casavola A., Tedesco F., Sadrnia M.A. Fault-tolerant sensor reconciliation schemes based on unknown input observers. International Journal of Control, 2020, vol. 93, no. 3, pp. 669–679. https://doi.org/10.1080/00207179.2018.1484568

44. Morris T., Gao W. Industrial control system cyber attacks. Proc. of the 1st International Symposium for ICS & SCADA Cyber Security Research, 2013, pp. 22–29. https://doi.org/10.14236/ewic/icscsr2013.3

45. Yılmaza E.N., Gönenb S. Attack detection/prevention system against cyber-attack in industrial control systems. Computers and Security, 2018, vol. 77, pp. 94–105. https://doi.org/10.1016/j.cose.2018.04.004

46. Rathika R.K., Marimuthu A. An improved detection and prevention of DDoS attacks in nuclear power plants machine monitoring. Proc. of the Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), 2017, pp. 1–7. https://doi.org/10.1109/ICECCT.2017.8117897

47. Pasqualetti F., Dorfler F., Bullo F. Attack detection and identification in cyber-physical systems. IEEE Transactions on Automatic Control, 2013, vol. 58, no. 11, pp. 2715–2729. https://doi.org/10.1109/TAC.2013.2266831

48. Danenkov I., Kolesnikova D., Babikov A., Iureva R. Security by design development methodology for file hosting case // Smart Innovation, Systems and Technologies, 2020, vol. 188, pp. 383–390. https://doi.org/10.1007/978-981-15-5584-8_33

49. Belov А.А., Aranovskiy S., Ortega R., Barabanov N., Bobtsov А.А. Enhanced parameter convergence for linear systems identification: The DREM approach. Proc. of the 16th European Control Conference (ECC), 2018, pp. 2794–2799. https://doi.org/10.23919/ECC.2018.8550338


Рецензия

Для цитирования:


Маргун А.А., Юрьева Р.А., Колесникова Д.В. Применение методов детектирования отказов для обнаружения информационных атак на систему управления. Научно-технический вестник информационных технологий, механики и оптики. 2022;22(3):480-491. https://doi.org/10.17586/2226-1494-2022-22-3-480-491

For citation:


Margun A.A., Iureva R.A., Kolesnikova D.V. Application of failure detection methods to detect information attacks on the control system. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2022;22(3):480-491. https://doi.org/10.17586/2226-1494-2022-22-3-480-491

Просмотров: 9


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)