Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

A study of silicon p-n structures with mono- and multifacial photosensitive surfaces

https://doi.org/10.17586/2226-1494-2022-22-1-25-32

Abstract

Increase in the efficiency and reduction of silicon consumption in production of solar cells are relevant problems. Designing two and three facial solar cells can be seen as a solution for such tasks. Compared to usual SC, the output power of two and three facial solar cells exceeds by 1.72 times by 2.81 times, respectively. Illumination of solar cells with high intensity light makes the temperature of its heating an important characteristic. Therefore, the paper investigates the influence of temperature on properties of multifacial solar cells. We defined the nature of change of temperature coefficients for the main photovoltaic parameters that are inherent to silicon solar cells under various (one, two and three facial) conditions of lighting. Temperature coefficients of three facial solar cells are 2.52·10–3 V/K for open circuit voltage and 1.8·10–3 K–1 for fill factor of I-V. At temperature change of SC from 300 K to 350 K, the density of short circuit current decreases only by 4 %.

About the Authors

A. Mirzaalimov
Andijan State University
Uzbekistan

Avazbek Mirzaalimov — PhD Student

sc 55807268500

Andijan, 170100



J. Gulomov
Andijan State University
Uzbekistan

Jasurbek Gulomov — Student

sc 57221531752

Andijan, 170100



R. Aliev
Andijan State University
Uzbekistan

Rayimjon Aliev — D.Sc., Full Professor

sc 7102561277

Andijan, 170100



N. Mirzaalimov
Andijan State University
Uzbekistan

Navruzbek Mirzaalimov — PhD Student

sc 57223835161

Andijan, 170100



S. Aliev
Andijan Machine-Building Institute
Uzbekistan

Suhrob Aliev — PhD, Vice-rector

sc 7006390145

Andijan, 170100



References

1. Mardani A., Jusoh A., Zavadskas E.K., Cavallaro F., Khalifah Z. Sustainable and renewable energy: An overview of the application of multiple criteria decision making techniques and approaches. Sustainability, 2015, vol. 7, no. 10, pp. 13947–13984. https://doi.org/10.3390/SU71013947

2. Guangul F.M., Chala G.T. Solar energy as renewable energy source: SWOT analysis. Proc. 4th MEC International Conference on Big Data and Cmart City (ICBDSC), 2019, pp. 8645580. https://doi.org/10.1109/ICBDSC.2019.8645580

3. Fath P., Keller S., Winter P., Jooß W., Herbst W. Status and perspective of crystalline silicon solar cell production. Proc. of the 34th IEEE Conference Photovoltaic Specialists, 2009, pp. 002471–002476. https://doi.org/10.1109/PVSC.2009.5411274

4. Shockley W., Queisser H.J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, vol. 32, no. 3, pp. 510–519. https://doi.org/10.1063/1.1736034

5. Schmidt J., Werner F., Veith B., Zielke D., Steingrube S., Altermatt P.P., Gatz S., Dullweber T., Brendel R. Advances in the surface passivation of silicon solar cells. Energy Procedia, 2012, vol. 15, pp. 30–39. https://doi.org/10.1016/J.EGYPRO.2012.02.004

6. Gulomov J., Aliev R. The way of the increasing two times the efficiency of silicon solar cell. Physics and Chemistry of Solid State, 2021, vol. 22, no. 4, pp. 756–760. https://doi.org/10.15330/pcss.22.4.756-760

7. Hiroshi M. Radiation energy transducing device. Patent US3278811A. Available at: https://patents.google.com/patent/US3278811A/en (accessed: 14.09.2021).

8. Hübner A., Aberle A.G., Hezel R. Novel cost-effective bifacial silicon solar cells with 19.4% front and 18.1% rear efficiency. Applied Physics Letters, 1997, vol. 70, no. 8, pp. 1008–1010. https://doi.org/10.1063/1.118466

9. Aliev R., Muxtarov E., Mirzaalimov A. Quyosh generator. Patent UZ. № FAP00623, 2011.

10. Gulomov J., Aliev R. Numerical analysis of the effect of illumination intensity on photoelectric parameters of the silicon solar cell with various metal nanoparticles. Nanosystems: Physics, Chemistry, Mathematics, 2021, vol. 12, no. 5, pp. 569–574. https://doi.org/10.17586/2220-8054-2021-12-5-569-574

11. Gulomov J., Aliev R. Study of the temperature coefficient of the main photoelectric parameters of silicon solar cells with various nanoparticles. Journal of Nano- and Electronic Physics, 2021, vol. 13, no. 4, pp. 04033. https://doi.org/10.21272/JNEP.13(4).04033

12. Pal S., Reinders A., Saive R. Simulation of bifacial and monofacial silicon solar cell short-circuit current density under measured spectroangular solar irradiance. IEEE Journal of Photovoltaics, 2020, vol. 10, no. 6, pp. 1803–1815. https://doi.org/10.1109/JPHOTOV.2020.3026141

13. Tiedje T., Engelbrecht D.A. Temperature dependence of the limiting efficiency of bifacial silicon solar cells. Proc. of the 47th IEEE Photovoltaic Specialists Conference (PVSC), 2020, pp. 1789–1791. https://doi.org/10.1109/PVSC45281.2020.9300921

14. Wang H., Cheng X., Yang H. Temperature coefficients and operating temperature verification for passivated emitter and rear cell bifacial silicon solar module. IEEE Journal of Photovoltaics, 2020, vol. 10, no. 3, pp. 729–739. https://doi.org/10.1109/JPHOTOV.2020.2974289


Review

For citations:


Mirzaalimov A., Gulomov J., Aliev R., Mirzaalimov N., Aliev S. A study of silicon p-n structures with mono- and multifacial photosensitive surfaces. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2022;22(1):25-32. https://doi.org/10.17586/2226-1494-2022-22-1-25-32

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)