Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

Reduction of LSB detectors set with definite reliability

https://doi.org/10.17586/2226-1494-2022-22-1-74-81

Abstract

The article focuses on decreasing the set of steganalytical methods that determine the payload value in the image spatial domain using quantitative detectors of Least Significant Bits (LSB) steganography. It is supposed that methods can trace the same image regularities, and hence their results can correlate. The work presents the results of the development and testing of the technique for reducing the set of steganalytical methods taking into account the accuracy and reliability to the diminution of the computational complexity of steganalytical expertise. The theoretical basis of the proposed solution is the approximation of regression of the first kind by linear regression of the second kind for multivariate random variables. To verify the results, the computational experiment was performed. The payloads were implemented in 10 % increments by automating the freeware steganographic programs CryptArkan and The Third Eye with AutoIt. The steganalytical methods, such as Weighted Stego, Sample Pairs, Triples analysis, Asymptotically Uniformly Most Powerful detection, Pair of Values, were used. The datasets were built in the MATLAB environment; the program was implemented in Python. For the experiment’s reproducibility, the datasets and program code are provided in Kaggle. Interval estimates of methods correlation are calculated based on experimental data for various payload values. The developed technique includes a mathematical model, an algorithm for implementing the model, and a computer program. The proposed technique can be applied in those tasks where accuracy and reliability are taken into account. One of the subject areas demanding such assessments is computer forensics dealing with expertise with probabilistic conclusions. These estimates allow the analyst to vary the number of methods depending on the available computing resources and the time frame of the research.

About the Authors

R. A. Solodukha
Voronezh Institute of the Ministry of Internal Affairs of Russia
Russian Federation

Roman A. Solodukha — PhD, Associate Professor, Associate Professor

sc 57201778092

Voronezh, 394065



G. V. Perminov
Russian State University of Justice (Central Branch)
Russian Federation

Gennadiy V. Perminov — PhD, Associate Professor

Voronezh, 394006



I. V. Atlasov
Kikot Moscow University of the Ministry of Internal Affairs of Russia
Russian Federation

Igor V. Atlasov — D.Sc., Full Professor

sc 57201775678

Moscow, 117997



References

1. Zhizhina M.V. Forensic Handwriting Document Expertise. Moscow, JURLITINFORM Publ., 2006, pp. 110–116. (in Russian)

2. Usov A.I., Gradusova O.B., Kuz’min S.A. The use of probabilistic and statistical methods to test the significance of scientific evidence: comparative analysis of current forensic practices in russia and abroad. Theory and Practice of Forensic Science, 2018, vol. 13, no. 4, pp. 6–15. (in Russian). https://doi.org/10.30764/1819-2785-2018-13-4-6-15

3. Förster E., Rönz B. Methoden der Korrelations — und Regressionsanalyse. Berlin, 1979, 324 p.

4. Atlasov I.V., Solodukha R.A. Steganography of Digital Images: Automatization, Optimization and Reliability. Voronezh, Voronezhskij institut MVD Rossii. Available at: www.kaggle.com/dataset/c736afc689f328127816c59961677b3106468ce9f8e4399f3d18a12745c9e94c (accessed: 10.11.2021). (in Russian)

5. Atlasov I., Solodukha R. Reduction of steganalytical methods set with determined reliability // Proc. 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA). 2019. P. 126–131. https://doi.org/10.1109/SUMMA48161.2019.8947470

6. Wishart J., Bartlett M.S. The distribution of second order moment statistics in a normal system // Mathematical Proceedings of the Cambridge Philosophical Society. 1932. V. 28. P. 455–459. https://doi.org/10.1017/S0305004100010690

7. Фишер Р.A. Статистические методы для исследователей. М.: Госстатиздат, 1958 . 268 с.

8. Bartlett M.S. On the theory of statistical regression // Proceedings of the Royal Society of Edinburgh. 1934. V. 53. P. 260–283. https://doi.org/10.1017/S0370164600015637

9. Ker A., Böhme R. Revisiting weighted stego-image steganalysis // Proceedings of SPIE. 2008. V. 6819. P. 681905. https://doi.org/10.1117/12.766820

10. Dumitrescu S., Wu X., Memon D. On steganalysis of random LSB embedding in continuous-tone images // IEEE International Conference on Image Processing. V. 3. 2002. P. 641–644.

11. Ker A. A general framework for structural steganalysis of LSB replacement // Lecture Notes in Computer Science. 2005. V. 3727. P. 296–311. https://doi.org/10.1007/11558859_22

12. Fillatre L. Adaptive steganalysis of Least Significant Bit replacement in grayscale natural images // IEEE Transactions on Signal Processing. 2012. V. 60. N 2. P. 556–569. https://doi.org/10.1109/TSP.2011.2174231

13. Westfeld A., Pfitzmann A. Attacks on steganographic systems: Breaking the steganographic utilities EzStego, Jsteg, Steganos and S-Tools-and Some Lessons Learned // Lecture Notes in Computer Science. 2000. V. 1768. P. 61–76. https://doi.org/10.1007/10719724_5

14. Pevný Т., Bas P., Fridrich J. Steganalysis by subtractive pixel adjacency matrix // IEEE Transactions on Information Forensics and Security. 2010. V. 5. N 2. P. 215–224. https://doi.org/10.1109/TIFS.2010.2045842

15. Fridrich J., Kodovský J. Rich models for steganalysis of digital images // IEEE Transactions on Information Forensics and Security. 2012. V. 7. N 3. P. 868–882. https://doi.org/10.1109/TIFS.2012.2190402

16. Chen C., Shi Y.Q. JPEG image steganalysis utilizing both intrablock and interblock correlations // Proc. of the IEEE International Symposium on Circuits and Systems (ISCAS). 2008. P. 3029–3032. https://doi.org/10.1109/ISCAS.2008.4542096


Review

For citations:


Solodukha R.A., Perminov G.V., Atlasov I.V. Reduction of LSB detectors set with definite reliability. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2022;22(1):74-81. (In Russ.) https://doi.org/10.17586/2226-1494-2022-22-1-74-81

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)