Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

Modern approaches to the application of mathematical modeling methods in biomedical research

https://doi.org/10.17586/2226-1494-2023-23-2-218-226

Abstract

This paper presents a brief overview of the main approaches to mathematical modeling of the interaction of optical radiation with biological tissues. In the case of light propagation in tissue, the Monte Carlo method is an approximation of the solution of the radiation transfer equation. This is done by sampling the set of all possible trajectories of light quanta (photon packets) as they pass through the tissue. Such a stochastic model makes it possible to simulate the propagation of light in a turbid (scattering) medium. The main types of interaction between photons and tissue are considered: scattering, absorption, and reflection/refraction at the boundary of the medium. The algorithm of the method is based on the statistical approximation of the estimated parameters instead of using non-linear functional transformations. Efficient methods for modeling the problem of Raman spectroscopy in turbid media are shown, taking into account the parameters of the detector and the sample size. Two fundamental approaches to the numerical simulation of Raman scattering are considered. Based on data from open literary sources, a variant of modeling Raman scattering in normal multilayer human skin in the near infrared wavelength range is shown. The Raman spectra of ex vivo normal skin tissue sections are presented to quantify various intrinsic micro spectral properties of different skin layers. The reconstructed Raman spectrum of the skin is compared with clinically measured skin spectra in vivo. The overall good agreement between the simulated process and experimental data is shown. The possibility of using the sequential Monte Carlo method for data processing in correlation wide-field optical coherence tomography for the study of biological objects is shown.

About the Authors

I. V. Krasnikov
Immanuel Kant Baltic Federal University
Russian Federation

lya V. Krasnikov — PhD (Physics & Mathematics), Senior Researcher
Kaliningrad, 236041

sc 14015775100,



A. Yu. Seteikin
Immanuel Kant Baltic Federal University; Amur State University
Russian Federation

Alexey Yu. Seteikin — PhD (Physics & Mathematics), Associate Professor, Senior Researcher
Kaliningrad, 236041;

Associate Professor, Leading Researcher Blagoveshchensk, 675027

sc 8842686100



B. Roth
Centre for Optical Technologies
Germany

Bernhard Roth — D.Sc. (Natural Sciences), Professor, Director

Hannover, 30167



References

1. Tuchin V.V. Biological Tissue Optics. Light Scattering Methods in Medical Diagnostics. Moscow, Fizmatlit Publ., 2012, 812 p. (in Russian)

2. Arridge S.R. Optical tomography: forward and inverse problems. Inverse Problems, 2009, vol. 25, no. 12, pp. 123010. https://doi.org/10.1088/0266-5611/25/12/123010

3. Bassi A., D’Andrea C., Valentini G., Cubeddu R., Arridge S.R. Temporal propagation of spatial information in turbid media. Optics Letters, 2008, vol. 33, no. 23, pp. 2836–2838. https://doi.org/10.1364/OL.33.002836

4. Meglinski I., Doronin A.V. Monte Carlo modeling of photon migration for the needs of biomedical optics and biophotonics. Advanced Biophotonics, 2012, pp. 1–72.

5. Fischer D.G., Prahl S.A., Duncan D.D. Monte Carlo modeling of spatial coherence: free-space diffraction. Journal of the Optical Society of America A, 2008, vol. 25, no. 10, pp. 2571–2581. https://doi.org/10.1364/JOSAA.25.002571

6. Jacques S. Monte Carlo modeling of light transport in tissue. Optical thermal response of laser-irradiated tissue. Springer Netherlands, 2010, pp. 109–144. https://doi.org/10.1007/978-90-481-8831-4_5

7. Flock S.T., Patterson M.S., Wilson B.C., Wyman D.R. Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory. IEEE Transactions on Biomedical Engineering, 1989, vol. 36, no. 12, pp. 1162–1168. https://doi.org/10.1109/tbme.1989.1173624

8. Flock S.T., Wilson B.C., Patterson M.S. Monte Carlo modeling of light propagation in highly scattering tissues. II. Comparison with measurements in phantoms. IEEE Transactions on Biomedical Engineering, 1989, vol. 36, no. 12, pp. 1169–1173. https://doi.org/10.1109/10.42107

9. Alerstam E., Lo W., Han T., Rose J., Andersson-Engels S., Lilge L. Next-generation acceleration and code optimization for light transport in turbid media using GPUs. Biomedical Optics Express, 2010, vol. 1, no. 2, pp. 658–675. https://doi.org/10.1364/boe.1.000658

10. Li P., Liu C., Li X., He H., Ma H. GPU acceleration of Monte Carlo simulations for polarized photon scattering in anisotropic turbid media. Applied Optics, 2016, vol. 55, no. 27, pp. 7468–7476. https:// doi.org/10.1364/ao.55.007468

11. Doronin A., Meglinski I. Peer-to-peer Monte Carlo simulation of photon migration in topical applications of biomedical optics. Journal of Biomedical Optics, 2012, vol. 17, no. 9, pp. 090504. https://doi.org/10.1117/1.jbo.17.9.090504

12. Korhonen V.O., Myllyla T.S., Kirillin M.Yu., Popov A.P., Bykov A.V., Gorshkov A.V., Sergeeva E.A., Kinnunen M., Kiviniemi V. Light propagation in NIR spectroscopy of the human brain. IEEE Journal of Selected Topics in Quantum Electronics, 2014, vol. 20, no. 2, pp. 7100310. https://doi.org/10.1109/jstqe.2013.2279313

13. Wang L.V., Wu H.-I. Biomedical Optics: Principles and Imaging. Hoboken, NJ, USA, Wiley, 2009, 376 p.

14. Yun S.H., Kwok S.J. Light in diagnosis, therapy and surgery. Nature Biomedical Engineering, 2017, vol. 1, no. 1, pp. 0008. https://doi.org/10.1038/s41551-016-0008

15. Tian J., Liu K., Lu Y., Qin C., Yang X., Zhu S., Han D., Feng J., Ma X., Chang Z. Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse mode. Optics Express, 2010, vol. 18, no. 20, pp. 20988–21002. https://doi.org/10.1364/oe.18.020988

16. Jacques S.L., Wang L. Animated simulation of light transport in tissues. Proceedings of SPIE, 1994, vol. 2134, pp. 2134A. https://doi.org/10.1117/12.182939

17. Periyasamy V., Pramanik M. Advances in Monte Carlo simulation for light propagation in tissue. IEEE Reviews in Biomedical Engineering, 2017, vol. 10 , pp . 122 – 135 . https://doi.org/10.1109/rbme.2017,2739801

18. Gandjbakhche A.H., Weiss G.H., Bonner R.F., Nossal R. Photon path length distributions for transmission through optically turbid slabs. Physical Review E, 1993, vol. 48, no. 2, pp. 810–818. https://doi.org/10.1103/physreve.48.810

19. Li X., Ma L. Scaling law for photon transmission through optically turbid slabs based on random walk theory. Applied Sciences, 2012, vol. 2, no. 1, pp. 160–165. https://doi.org/10.3390/app2010160

20. Sun X., Li X., Ma L. A closed-form method for calculating the angular distribution of multiply scattered photons through isotropic turbid slabs. Optics Express, 2011, vol. 19, no. 24, pp. 23932–23937. https://doi.org/10.1364/oe.19.023932

21. Optical-Thermal Response of Laser-Irradiated Tissue. V. 2. Ed. by A.J. Welch, M.J. Van Gemert. Springer Science+Business Media B.V., 2011, 958 p. https://doi.org/10.1007/978-90-481-8831-4

22. Lin Y., Northrop W.F., Li X. Markov chain solution of photon multiple scattering through turbid slabs. Optics Express, 2016, vol. 24, no. 23, pp. 26942–26947. https://doi.org/10.1364/OE.24.026942

23. Xu F., Davis A.B., Sanghavi S.V., Martonchik J.V., Diner D. Linearization of Markov chain formalism for vector radiative transfer in a plane-parallel atmosphere/surface system. Applied Optics, 2012, vol. 51, no. 16, pp. 3491–3507. https://doi.org/10.1364/ao.51.003491

24. Zhu C., Liu Q. Review of Monte Carlo modeling of light transport in tissues. Journal of Biomedical Optics, 2013, vol. 18, no. 5, pp. 50902. https://doi.org/10.1117/1.jbo.18.5.050902

25. Drexler W., Liu M., Kumar A., Kamali T., Unterhuber A., Leitgeb R.A. Optical coherence tomography today: speed, contrast, and multimodality. Journal of Biomedical Optics, 2014, vol. 19, no. 7, pp. 71412. https://doi.org/10.1117/1.JBO.19.7.071412

26. Wieser W., Draxinger W., Klein T., Karpf S., Pfeiffer T., Huber R. High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s. Biomedical Optics Express, 2014, vol. 5, no. 9, pp. 2963–2977. https://doi.org/10.1364/BOE.5.002963

27. Kim J., Brown W., Maher J.R., Levinson H., Wax A. Functional optical coherence tomography: principles and progress. Physics in Medicine and Biology, 2015, vol. 60, no. 10, pp. 211–237. https://doi.org/10.1088/0031-9155/60/10/r211

28. Thrane L. Optical Coherence Tomography: Modeling and applications. Risø National Laboratory, 2001, 76 p.

29. Smithies D.J., Lindmo T., Chen Z., Nelson J.S., Milner T.E. Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation. Physics in Medicine and Biology, 1998, vol. 43, no. 10, pp. 3025–3044. https://doi.org/10.1088/0031-9155/43/10/024

30. Varkentin A., Otte M., Meinhardt-Wollweber M., Rahlves M., Mazurenka M., Morgner U., Roth B. Simple model to simulate OCT depth signal in weakly and strongly scattering homogeneous media. Journal of Optics, 2016, vol. 18, no. 12, pp. 125302. https://doi.org/10.1088/2040-8978/18/12/125302

31. Kirillin M., Farhat G., Sergeeva E., Kolios M., Vitkin A. Speckle statistics in OCT images: Monte Carlo simulations and experimental studies. Optics Letters, 2014, vol. 39, no. 12, pp. 3472–3475. https:// doi.org/10.1364/ol.39.003472

32. Kirillin M., Agrba P., Kamensky V. Mechanical compression in cross polarization OCT imaging of skin: In vivo study and Monte Carlo simulation. Photonics & Lasers in Medicine, 2014, vol. 3, no. 4, pp. 363–372. https://doi.org/10.1515/plm-2014-0015

33. Shih W.-C., Bechtel K.L., Feld M.S. Intrinsic Raman spectroscopy for quantitative biological spectroscopy. Part I: theory and simulations. Optics Express, 2008, vol. 16, no. 17, pp. 12726–12736. https://doi.org/10.1364/OE.16.012726

34. Krasnikov I., Suhr C., Seteikin A., Roth B., Meinhardt-Wollweber M. Two efficient approaches for modeling of Raman scattering in homogeneous turbid media. Journal of the Optical Society of America A, 2016, vol. 33, no. 3, pp. 426–433. https://doi.org/10.1364/JOSAA.33.000426

35. Everall N., Hahn T., Matousek P., Parker A.W., Towrie M. Photon migration in Raman spectroscopy. Applied Spectroscopy, 2004, vol. 58, pp. 591–597. https://doi.org/10.1366/000370204774103426

36. Krasnikov I., Seteikin A., Kniggendorf A.-K., Meinhardt Wollweber M., Roth B. Simulation of Raman scattering including detector parameters and sampling volume. Journal of the Optical Society of America A, 2017, vol. 34, no. 12, pp. 2138–2144. https:// doi.org/10.1364/JOSAA.34.002138

37. Zherebtsov E., Dremin V., Popov A., Doronin A., Kurakina D., Kirillin M., Meglinski I., Bykov A. Hyperspectral imaging of human skin aided by artificial neural networks. Biomedical Optics Express, 2019, vol. 10, no. 7, pp. 3545–3559. https://doi.org/10.1364/BOE.10.003545

38. Reble C., Gersonde I., Andree S., Eichler H.J., Helfmann J. Quantitative Raman spectroscopy in turbid media. Journal of Biomedical Optics, 2010, vol. 15, no. 3, pp. 037016. https://doi.org/10.1117/1.3456370

39. Handbook of Optical Biomedical Diagnostics. Vol. PM107. Ed. by V. Tuchin. Washington, SPIE Press, 2002, 1110 p.

40. Wang S., Zhao J., Lui H., He Q., Bai J., Zeng H. Monte Carlo simulation of in vivo Raman spectral measurements of human skinwith a multi-layered tissue optical model. Journal of Biophotonics, 2014, vol. 7, no. 9, pp. 703–712. https://doi.org/10.1002/jbio.201300045

41. Zeng H., MacAulay C., McLean D.I., Palcic B. Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation. Journal of Photochemistry and Photobiology B: Biology, 1997, vol. 38, no. 2-3, pp. 234–240. https://doi.org/10.1016/s1011-1344(96)00008-5

42. Chen R., Huang Z., Lui H., Hamzavi I., McLean D.I., Xie S., Zeng H. Monte Carlo simulation of cutaneous reflectance and fluorescence measurements – The effect of melanin contents and localization. Journal of Photochemistry and Photobiology B: Biology, 2007, vol. 86, no. 3, pp. 219–226. https://doi.org/10.1016/j.jphotobiol.2006.11.001

43. Wang S., Zhao J., Lui H., He Q., Zeng H. Monte Carlo simulation of near infrared autofluorescence measurements of in vivo skin. Journal of Photochemistry and Photobiology B: Biology, 2011, vol. 105, no. 3, pp. 183–189. https://doi.org/10.1016/j.jphotobiol.2011.08.008

44. Wang S., Zhao J., Lui H., He Q., Zeng H. A modular Raman microspectroscopy system for biological tissue analysis. Spectroscopy, 2010, vol. 24, no. 6, pp. 577–583. https://doi.org/10.1155/2010/592315

45.

46.


Review

For citations:


Krasnikov I.V., Seteikin A.Yu., Roth B. Modern approaches to the application of mathematical modeling methods in biomedical research. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2023;23(2):218-226. (In Russ.) https://doi.org/10.17586/2226-1494-2023-23-2-218-226

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)