Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

Improving sign language processing via few-shot machine learning

https://doi.org/10.17586/2226-1494-2022-22-3-559-566

Abstract

Improving the efficiency of communication of deaf and hard of hearing people by processing sign language using artificial intelligence is an important task both socially and technologically. One of the ways to solve this problem is a fairly cheap and accessible marker method. The method is based on the registration of electromyographic (EMG) muscle signals using bracelets worn on the arm. To improve the quality of recognition of gestures recorded by the marker method, a modification of the marker method is proposed — duplication of EMG sensors in combination with a lowframe machine learning approach. We experimentally study the possibilities of improving the quality of processing of sign language by duplicating EMG sensors as well as by reducing the volume of the dataset required for training machine learning tools. In the latter case, we compare several technologies of the few-shot approach. Our experiments show that training with few-shot neural nets on 56k samples we can achieve better results than training on random forest with 160k samples. The use of a minimum number of sensors in combination with few-shot signal processing techniques provides the possibility of organizing quick and cost-effective interaction with people with hearing and speech disabilities.

About the Authors

G. F. Shovkoplias
ITMO University
Russian Federation

Grigory F. Shovkoplias — Engineer

Saint Petersburg, 197101



D. A. Strokov
ITMO University
Russian Federation

Dmitriy A. Strokov — Student

Saint Petersburg, 197101



D. V. Kasantsev
ITMO University
Russian Federation

Daniil V. Kasantsev —Senior Laboratory Assistant

Saint Petersburg, 197101



A. S. Vatian
ITMO University
Russian Federation

Aleksandra S. Vatian — Associate Professor

Saint Petersburg, 197101



A. A. Asadulaev
ITMO University
Russian Federation

Arip A. Asadulaev — Assistant

Saint Petersburg, 197101



I. V. Tomilov
ITMO University
Russian Federation

Ivan V. Tomilov — Senior Laboratory Assistant

Saint Petersburg, 197101



A. A. Shalyto
ITMO University
Russian Federation

Anatoly A. Shalyto — D. Sc., Full Professor

Saint Petersburg, 197101



N. F. Gusarova
ITMO University
Russian Federation

Natalia F. Gusarova — PhD, Senior Researcher, Associate Professor

Saint Petersburg, 197101



References

1. Agrawal S.C., Jalal A.S., Tripathi R.K. A survey on manual and nonmanual sign language recognition for isolated and continuous sign // International Journal of Applied Pattern Recognition. 2016. V. 3. N 2. P. 99–134. https://doi.org/10.1504/ijapr.2016.079048

2. Bragg D., Koller O., Bellard M., Berke L., Boudrealt P., Braffort A., Caselli N., Huenerfauth M., Kacorri H., Verhoef T., Vogler C., Morris M.R. Sign language recognition, generation, and translation: An interdisciplinary perspective // Proc. of the 21st International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS). 2019. P. 16–31. https://doi.org/10.1145/3308561.3353774

3. Kamal S.M., Chen Y., Li S., Shi X., Zheng J. Technical approaches to Chinese sign language processing: A review // IEEE Access. 2019. V. 7. P. 96926–96935. https://doi.org/10.1109/ACCESS.2019.2929174

4. O’Connor T.F., Fach M.E., Miller R., Root S.E., Mercier P.P., Lipomi D.J. The Language of Glove: Wireless gesture decoder with low-power and stretchable hybrid electronics // PLoS ONE. 2017. V. 12. N 7. P. e0179766. https://doi.org/10.1371/journal.pone.0179766

5. Song Y., Lee S., Choi Y., Han S., Won H., Sung T.-H., Choi Y., Bae J. Design framework for a seamless smart glove using a digital knitting system // Fashion and Textiles. 2021. V. 8. N 1. P. 6. https://doi.org/10.1186/s40691-020-00237-2

6. Zhou Z., Chen K., Li X., Zhang S., Wu Y., Zhou Y., Meng K., Sun C., He Q., Fan W., Fan E., Lin Z., Tan X., Deng W., Yang J., Chen J. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays // Nature Electronics. 2020. V. 3. N 9. P. 571–578. https://doi.org/10.1038/s41928-020-0428-6

7. Bernhardt P. Myo SDK Beta 7 [Электронный ресурс]. URL: https://developerblog.myo.com/myo-sdk-beta-7/ (дата обращения: 10.02.2022).

8. Abreu J.G., Teixeira J.M., Figueiredo L.S., Teichrieb V. Evaluating sign language recognition using the Myo armband // Proc. of the 18th Symposium on Virtual and Augmented Reality (SVR). 2016. P. 64–70. https://doi.org/10.1109/SVR.2016.21

9. Wang Y., Yao Q., Kwok J., Ni L.M. Generalizing from a few examples: A survey on few-shot learning // ACM Computing Surveys. 2020. V. 53. N 3. P. 63. https://dl.acm.org/doi/10.1145/3386252

10. Wang F., Zhao S., Zhou X., Li C., Li M., Zeng Z. An recognition–verification mechanism for real-time Chinese sign language recognition based on multi-information fusion // Sensors. 2019. V. 19. N 11. P. 2495. https://doi.org/10.3390/s19112495

11. Kim S., Kim J., Ahn S., Kim Y. Finger language recognition based on ensemble artificial neural network learning using armband EMG sensors // Technology and Health Care. 2018. V. 26. S. 1. P. 249–258. https://doi.org/10.3233/THC-174602

12. Paudyal P., Lee J., Banerjee A., Sandeep K.S. A comparison of techniques for sign language alphabet recognition using armband wearables // ACM Transactions on Interactive Intelligent Systems. 2019. V. 9. N 2-3. P. 1–26. https://doi.org/10.1145/3150974

13. Tateno S., Liu H., Ou J. Development of sign language motion recognition system for hearing-impaired people using electromyography signal // Sensors. 2020. V. 20. N 20. P. 5807. https://doi.org/10.3390/s20205807

14. Sheng X., Lv B., Guo W., Zhu X. Common spatial-spectral analysis of EMG signals for multiday and multiuser myoelectric interface // Biomedical Signal Processing and Control. 2019. V. 53. P. 101572. https://doi.org/10.1016/j.bspc.2019.101572

15. Zhang L., Shi Y., Wang W., Chu Y., Yuan X. Real-time and userindependent feature classification of forearm using EMG signals // Journal of the Society for Information Display. 2019. V. 27. N 2. P. 101–107. https://doi.org/10.1002/jsid.749

16. Das P., Paul S., Ghosh J., Palbhowmik S., Neo-Gi B., Ganguly A. An approach towards the representation of sign language by electromyography signals with fuzzy implementation // International Journal of Sensors, Wireless Communications and Control. 2017. V. 7. N 1. P. 26–32. https://doi.org/10.2174/2210327907666170222093839

17. Côté-Allard U., Fall C.L., Drouin A., Campeau-Lecours A., Gosselin C., Glette K., Laviolette F., Gosselin B. Deep learning for electromyographic hand gesture signal classification using transfer learning // IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2019. V. 27. N 4. P. 760–771. https://doi.org/10.1109/TNSRE.2019.2896269

18. Tsinganos P., Cornelis B., Cornelis J., Jansen B., Skodras A. Data augmentation of surface electromyography for hand gesture recognition // Sensors. 2020. V. 20. N 17. P. 4892. https://doi.org/10.3390/s20174892

19. Li W., Shi P., Yu H. Gesture recognition using surface electromyography and deep learning for prostheses hand: state-ofthe-art, challenges, and future // Frontiers in Neuroscience. 2021. V. 15. P. 621885 https://doi.org/10.3389/fnins.2021.621885

20. Rahimian E., Zabihi S., Asif A., Farina D., Atashzar S.F., Mohammadi A. FS-HGR: Few-shot learning for hand gesture recognition via electromyography // IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2021. V. 29. P. 1004–1015. https://doi.org/10.1109/TNSRE.2021.3077413

21. Finn C., Abbeel P., Levine S. Model-agnostic meta-learning for fast adaptation of deep networks // Proceedings of Machine Learning Research. 2017. V. 70. P. 1126–1135.

22. Lee Y., Choi S. Gradient-based meta-learning with learned layerwise metric and subspace // Proc. of the 35th International Conference on Machine Learning (ICML). V. 7. 2018. P. 4574–4586.

23. Koch G., Zemel R., Salakhutdinov R. Siamese neural networks for one-shot image recognition // ICML Deep Learning Workshop. V. 2. 2015.

24. Snell J., Swersky K., Zemel R. Prototypical networks for few-shot learning // Advances in Neural Information Processing Systems. 2017. P. 4077–4087.

25. Vaezi Joze H.R., Koller O. MS-ASL: A large-scale data set and benchmark for understanding American sign language // Proc. of the 30th British Machine Vision Conference (BMVC). 2019.

26. De Coster M., Van Herreweghe M., Dambre J. Sign language recognition with transformer networks // Proc. 12th International Conference on Language Resources and Evaluation. LREC. 2020. P. 6018–6024.

27. Pigou L., Van Herreweghe M., Dambre J. Sign classification in sign language corpora with deep neural networks // Proc. of the International Conference on Language Resources and Evaluation (LREC), Workshop. 2016. P. 175–178.

28. Pradhan A., He J., Jiang N. Performance optimization of surface electromyography based biometric sensing system for both verification and identification // IEEE Sensors Journal. 2021. V. 21. N 19. P. 21718–21729. https://doi.org/10.1109/JSEN.2021.3079428

29. Young A.J., Hargrove L.J., Kuike T.A. Improving myoelectric pattern recognition robustness to electrode shift by changing interelectrode distance and electrode configuration // IEEE Transactions on Biomedical Engineering, 2012, vol. 59, no. 3, pp. 645–652. https://doi.org/10.1109/TBME.2011.2177662

30. Benatti S., Farella E., Gruppioni E., Benini L. Analysis of robust implementation of an EMG pattern recognition based control. Proc. of the Analysis of Robust Implementation of an EMG Pattern Recognition Based Control (BIOSIGNALS), 2014, pp. 45–54. https://doi.org/10.5220/0004800300450054

31. George J.A., Neibling A., Paskett M.D., Clark G.A. Inexpensive surface electromyography sleeve with consistent electrode placement enables dexterous and stable prosthetic control through deep learning. arXiv, 2003, arXiv:2003.00070. https://doi.org/10.48550/arXiv.2003.00070

32. Vinyals O., Blundell C., Lillicrap T., Kavukcuoglu K., Wierstra D. Matching networks for one shot learning. Advances in Neural Information Processing Systems, 2016, pp. 3637–3645.

33. Kaczmarek P., Mańkowski T., Tomczyński J. putEMG–A surface electromyography hand gesture recognition dataset. Sensors, 2019, vol. 19, no. 16, pp. 3548. https://doi.org/10.3390/s19163548


Review

For citations:


Shovkoplias G.F., Strokov D.A., Kasantsev D.V., Vatian A.S., Asadulaev A.A., Tomilov I.V., Shalyto A.A., Gusarova N.F. Improving sign language processing via few-shot machine learning. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2022;22(3):559-566. https://doi.org/10.17586/2226-1494-2022-22-3-559-566

Views: 13


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)