Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

Characterization of the holographic photopolymer Bayfol HX in the IR region

https://doi.org/10.17586/2226-1494-2023-23-1-1-13

Abstract

The possibility of creating holographic optical elements operating in the near infrared spectral range based on the Bayfol HX holographic photopolymer has been considered. The dynamic range of the refractive index of the photopolymer and the amplitude-phase nature of the holograms in the infrared range have been studied. The influence of recording parameters (power density of recording radiation, recording time) on the distribution of the dynamic range of the refractive index between grating harmonics has been studied. The analysis of the amplitude-phase nature of holograms was carried out by measuring the transmission spectra of the studied photopolymer after the photopolymerization reaction. The dynamic range of the refractive index of a photopolymer evaluated in the spectral range from 405 nm to 2099 nm. For this purpose, the angular selectivity contours of holograms with periods from 414 nm to 2100 nm, optimized for different parts of the specified spectral range, were measured and analyzed. The influence of recording parameters on the distribution of the dynamic range of the refractive index between the grating harmonics was analyzed by calculating the amplitudes of the first and second harmonics of the refractive index modulation from the experimentally measured angular selectivity contours of holograms recorded with different recording time at a constant irradiation dose. It was shown that the dynamic range of the refractive index of the photopolymer in the near infrared spectral range, as compared with the long-wavelength part of the visible region of the spectrum, differs by a value that does not exceed the measurement accuracy. A pronounced violation of the reciprocity was demonstrated with scaling of the interference pattern or with changing of the power density of the recording radiation. The optimal recording conditions for holograms calculated for the infrared spectral range for the studied photopolymer were found. The possibility of using of the studied holographic material in telecommunication optics has been demonstrated.

About the Authors

V. N. Borisov

Russian Federation

Vladimir N. Borisov - PhD (Physics & Mathematics), Independent Researcher

Saint Petersburg



A. D. Zverev
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Andrey D. Zverev - Acting Junior Researcher

Moscow, 119991



V. A. Kamynin
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Vladimir A. Kamynin - PhD (Physics & Mathematics), Senior Researcher

Moscow, 119991



M. S. Kopyeva
RUDN University
Russian Federation

Maria S. Kopyeva - Acting Junior Researcher; PhD Student

Moscow, 117198



R. A. Okun
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Roman A. Okun - Acting Junior Researcher

Moscow, 119991



V. B. Tsvetkov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Vladimir B. Tsvetkov - D.Sc., Deputy Director

Moscow, 119991



References

1. Quintana J.A., Boj P.G., Crespo J., Pardo M., Satorre M.A. Linefocusing holographic mirrors for solar ultraviolet energy concentration. Applied Optics, 1997, vol. 36, no. 16, pp. 3689–3693. https://doi.org/10.1364/AO.36.003689

2. Glebov L.B., Smirnov V., Rotari E., Cohanoschi I., Glebova L., Smolski O.V., Lumeau J., Lantigua C., Glebov A. Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses. Optical Engineering, 2014, vol. 53, no. 5, pp. 051514. https://doi.org/10.1117/1.OE.53.5.051514

3. Berneth H., Bruder F.-K., Fäcke T., Hagen R., Hönel D., Jurbergs D., Rölle T., Weiser M.-S. Holographic recording aspects of highresolution Bayfol HX photopolymer. Proceedings of SPIE, 2011, vol. 7957, pp. 79570H. https://doi.org/10.1117/12.876202

4. Bruder F.-K., Hansen S., Kleinschmidt T., Künzel R., Manecke C., Orselli E., Rewitz C., Rölle T. Integration of volume holographic optical elements (vHOE) made with Bayfol® HX into plastic optical parts. Proceedings of SPIE, 2019, vol. 10944, pp. 1094402. https:// doi.org/10.1117/12.2510109

5. Vázquez-Martín I., Gómez-Climente M., Marín-Sáez J., Collados M.V., Atencia J. True colour Denisyuk-type hologram recording in Bayfol HX self-developing photopolymer. Proceedings of SPIE, 2017, vol. 10233, pp. 102331U. https://doi.org/10.1117/12.2265802

6. Marín-Sáez J., Atencia J., Chemisana D., Collados M.V. Full modeling and experimental validation of cylindrical holographic lenses recorded in Bayfol HX photopolymer and partly operating in the transition regime for solar concentration. Optics Express, 2018, vol. 26, no. 10, pp. A398–A412. https://doi.org/10.1364/OE.26.00A398

7. Bruder F.-K., Fäcke T., Grote F., Hagen R., Hönel D., Koch E., Rewitz C., Walze G., Wewer B. Performance optimization in mass production of volume holographic optical elements (vHOEs) using Bayfol HX photopolymer film. Proceedings of SPIE, 2017, vol. 10233, pp. 102330G. https://doi.org/10.1117/12.2265022

8. Berneth H., Bruder F.-K., Fäcke T., Jurbergs D., Hagen R., Hönel D., Rölle T., Walze G. Bayfol HX photopolymer for full-color transmission volume Bragg gratings. Proceedings of SPIE, 2014, vol. 9006, pp. 900602. https://doi.org/10.1117/12.2038399

9. Bruder F.-K., Fäcke T., Hagen R., Hönel D., Orselli E., Rewitz C., Rölle T., Walze G. Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol® HX photopolymer film. Proceedings of SPIE, 2015, vol. 9626, pp. 96260T. https://doi.org/10.1117/12.2191587

10. Bruder F.-K., Bang H., Fäcke T., Hagen R., Hönel D., Orselli E., Rewitz C., Rölle T., Vukicevic D., Walze G. Precision holographic optical elements in Bayfol HX photopolymer. Proceedings of SPIE, 2016, vol. 9771, pp. 977103. https://doi.org/10.1117/12.2209636

11. Bruder F.-K., Fäcke T., Hagen R., Hönel D., Kleinschmidt T.P., Orselli E., Rewitz C., Rölle T., Walze G. Diffractive optics in large sizes: computer-generated holograms (CGH) based on Bayfol HX photopolymer. Proceedings of SPIE, 2015, vol. 9385, pp. 93850C. https://doi.org/10.1117/12.2077139

12. Marín-Sáez J., Atencia J., Chemisana D., Collados M.V. Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications. Optics Express, 2016, vol. 24, no. 6, pp. A720–A730. https://doi.org/10.1364/OE.24.00A720

13. Bruder F.-K., Frank J., Hansen S., Lorenz A., Manecke C., Meisenheimer R., Mills J., Pitzer L., Pochorovski I., Rölle T. Expanding the property profile of Bayfol HX films towards NIR recording and ultra-high index modulation. Proceedings of SPIE, 2021, vol. 11765, pp. 117650J. https://doi.org/10.1117/12.2579235

14. Peng H., Nair D.P., Kowalski B.A., Xi W., Gong T., Wang C., Cole M., Cramer N.B., Xie X., McLeod R.R., Bowman C.N. High performance graded rainbow holograms via two-stage sequential orthogonal thiol–click chemistry. Macromolecules, 2014, vol. 47, no. 7, pp. 2306–2315. https://doi.org/10.1021/ma500167x

15. Monte F.D., Martínez O., Rodrigo J. A., Calvo M. L., Cheben P. A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species. Advanced Materials, 2006, vol. 18, no. 15, pp. 2014–2017. https:// doi.org/10.1002/adma.200502675

16. Bruder F.-K., Fäcke T., Rölle T. The chemistry and physics of Bayfol® HX film holographic photopolymer. Polymers, 2017, vol. 9, no. 10, pp. 472. https://doi.org/10.3390/polym9100472

17. Kargaran A., Ebrahimi M., Riazi M., Hosseiny A., Jafari G.R. Quartic balance theory: Global minimum with imbalanced triangles. Physical Review, 2020, vol. 102, no. 1, pp. 012310. https://doi.org/10.1103/PhysRevE.102.012310

18. Spiegler K.S., Kedem O. Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes. Desalination, 1966, vol. 1, no. 4, pp. 311–326. https://doi.org/10.1016/S0011-9164(00)80018-1

19. Lucarini V., Saarinen J.J., Peiponen K.-E., Vartiainen E.M. Kramers-Kronig Relations in Optical Materials Research. Springer Science & Business Media, 2005. 162 p. Springer Series in Optical Sciences, vol. 110. https://doi.org/10.1007/b138913

20. Kopyeva M.S., Filatova S.A., Kamynin V.A., Trikshev A.I., Kozlikina E.I., Astashov V.V., Loschenov V.B., Tsvetkov V.B. Exvivo exposure on biological tissues in the 2-μm spectral range with an all-fiber continuous-wave holmium laser. Photonics, 2021, vol. 9, no. 1, pp. 20. https://doi.org/10.3390/photonics9010020

21. Kogelnik H. Coupled wave theory for thick hologram gratings. Bell System Technical Journal, 1969, vol. 48, no. 9, pp. 2909–2947. https://doi.org/10.1002/j.1538-7305.1969.tb01198.x

22. Borisov V.N., Angervaks A.E., Ryskin A.I., Veniaminov A.V. Twomodel spectral study of volume holograms in materials with diffusionbased mechanisms. Optical Engineering, 2019, vol. 58, no. 2, pp. 024102. https://doi.org/10.1117/1.OE.58.2.024102

23. Mees E.K., James T.H. The Theory of the Photographic Process. New York, Macmillan, 1967, chap. 7, pp. 132.

24. Pottier P., Strain M.J., Packirisamy M. Integrated microspectrometer with elliptical Bragg mirror enhanced diffraction grating on silicon on insulator. ACS Photonics, 2014, vol. 1, no. 5, pp. 430−436. https:// doi.org/10.1021/ph400165j

25. Liu P., Zhao Y., Li Z., Sun X. Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer. Optics Express, 2018, vol. 26, no. 6, pp. 6993–7004. https://doi.org/10.1364/OE.26.006993

26. Sheridan J.T., Lawrence J.R. Nonlocal-response diffusion model of holographic recording in photopolymer. Journal of the Optical Society of America A, 2000, vol. 17, no. 6, pp. 1108–1114. https://doi.org/10.1364/JOSAA.17.001108

27. Zhao G., Mouroulis P. Diffusion model of hologram formation in dry photopolymer materials. Journal of Modern Optics, 1994, vol. 41, no. 10, pp. 1929–1939. https://doi.org/10.1080/09500349414551831

28. Kelly J.V., O’Neill F.T., Sheridan J.T., Neipp C., Gallego S., Ortuno M. Holographic photopolymer materials with nonlocal and nonlinear response. Proceedings of SPIE, 2003, vol. 5216, pp. 127–138. https://doi.org/10.1117/12.509138

29. Bruder F.-K., Deuber F., Fäcke T., Hagen R., Hönel D., Jurbergs D., Rölle T., Weiser M.-S. Reaction-diffusion model applied to high resolution Bayfol HX photopolymer. Proceedings of SPIE, 2010, vol. 7619, pp. 76190I. https://doi.org/10.1117/12.841956


Review

For citations:


Borisov V.N., Zverev A.D., Kamynin V.A., Kopyeva M.S., Okun R.A., Tsvetkov V.B. Characterization of the holographic photopolymer Bayfol HX in the IR region. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2023;23(1):1-13. (In Russ.) https://doi.org/10.17586/2226-1494-2023-23-1-1-13

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)