Spectral and kinetic properties of silver sulfide quantum dots in an external electric field
https://doi.org/10.17586/2226-1494-2022-22-6-1098-1103
Abstract
The effect of an external electric field on the luminescence characteristics of silver sulfide nanoparticles embedded in a film based on an optically passive dielectric matrix has been studied. The luminescence characteristics were studied using methods of optical and time-resolved spectroscopy involving the time-correlated single-photon counting technique. The morphology of the nanoparticles was studied using transmission electron microscopy. It was shown that in an external electric field, an increase in the intensity of the recombination luminescence band is observed for silver sulfide nanoparticles, together with an increase in the electronic relaxation rate. This effect is explained by the fact that the electric field enhances the transport of free holes to electron traps which are radiative recombination centers. The observed effects indicate that silver sulfide nanoparticles can be effectively used as active layers of organic lightemitting diodes, where an external field of the order of 500 kV/cm will not lead to a deterioration in their operating luminescence characteristics.
Keywords
About the Authors
D. S. DaibagyaRussian Federation
Daniil S. Daibagya – Student; Assistant; Junior Researcher
Moscow, 105005;
Moscow, 107023;
Moscow, 119991
sc 57673090900
S. A. Ambrozevich
Russian Federation
Sergey A. Ambrozevich – PhD (Physics & Mathematics), Senior Researcher; Associate Professor
Moscow, 105005;
Moscow, 119991
sc 12789274600
A. S. Perepelitsa
Russian Federation
Aleksey S. Perepelitsa – PhD (Physics & Mathematics), Senior Lecturer
Voronezh, 394018
sc 55793662400
Ivan A. Zakharchuk
Russian Federation
Ivan A. Zakharchuk – Student
Moscow, 105005
sc 57672815700
A. V. Osadchenko
Russian Federation
Anna V. Osadchenko – Student; Assistant
Moscow, 105005;
Moscow, 107023
sc 57439684100
D. M. Bezverkhnyaya
Russian Federation
Daria M. Bezverkhnyaya – Student; Laboratory Assistant
Moscow, 105005;
Moscow, 119991
A. I. Avramenko
Russian Federation
Anton I. Avramenko – Science Editor
Moscow, 125190
A. S. Selyukov
Russian Federation
Alexandr S. Selyukov – PhD (Physics & Mathematics), Junior Researcher; Senior Lecturer
Moscow, 107023;
Moscow, 119991
References
1. Luo J., Rong X.-F., Ye Y.-Y., Li W.-Z., Wang X.-Q., Wang W. Research progress on triarylmethyl radical-based high-efficiency OLED. Molecules, 2022, vol. 27, no. 5, pp. 1632. https://doi.org/10.3390/molecules27051632
2. Corrêa Santos D., Vieira Marques M.D.F. Blue light polymeric emitters for the development of OLED devices. Journal of Materials Science: Materials in Electronics, 2022, vol. 33, no. 16, pp. 12529–12565. https://doi.org/10.1007/s10854-022-08333-3
3. Vashchenko A.A., Osadchenko A.V., Selyukov A.S., Ambrozevich S.A., Zakharchuk I.A., Daibagya D.S., Shliakhtun O., Volodin N.Y., Cheptsov D.A., Dolotov S.M., Traven V.F. Electroluminescence of coumarin-based dyes. Bulletin of the Lebedev Physics Institute, 2022, vol. 49, no. 3, pp. 74–77. https://doi.org/10.3103/S106833562203006X
4. Vashchenko A.A., Vitukhnovskii A.G., Lebedev V.S., Selyukov A.S., Vasiliev R.B., Sokolikova M.S. Organic light emitting diode with an emitter based on a planar layer of cdse semiconductor nanoplatelets. JETP Letters, 2014, vol. 100, no. 2, pp. 86–90. https://doi.org/10.1134/S0021364014140124
5. Selyukov A.S., Vitukhnovskii A.G., Lebedev V.S., Vashchenko A.A., Vasiliev R.B., Sokolikova M.S. Electroluminescence of colloidal quasi-two-dimensional semiconducting CdSe nanostructures in a hybrid light-emitting diode. Journal of Experimental and Theoretical Physics, 2015, vol. 120, no. 4, pp. 595–606. https://doi.org/10.1134/S1063776115040238
6. Bauri J., Choudhary R.B., Mandal G. Recent advances in efficient emissive materials-based OLED applications: a review. Journal of Materials Science, 2021, vol. 56, no. 34, pp. 18837–18866. https://doi.org/10.1007/s10853-021-06503-y
7. Wu P., He T., Zhu H., Wang Y., Li Q., Wang, Z., Fu X., Wang F., Wang P., Shan C., Fan Z., Liao L., Zhou P., Hu W. Next-generation machine vision systems incorporating two-dimensional materials: Progress and perspectives. InfoMat, 2022, vol. 4, no. 1, pp. e12275. https://doi.org/10.1002/inf2.12275
8. Jiang P., Tian Z.-Q., Zhu C.-N., Zhang Z.-L., Pang D.-W. Emissiontunable near-infrared Ag2S quantum dots. Chemistry of Materials, 2012, vol. 24, no. 1, pp. 3–5. https://doi.org/10.1021/cm202543m
9. Grevtseva I.G., Ovhinnikov O.V., Smirnov M.S., Perepelitsa A.S., Chevychelova T.A., Derepko V.N., Osadchenko A.V., Selyukov A.S. The structural and luminescence properties of plexcitonic structures based on Ag2S/l-Cys quantum dots and Au nanorods. RSC Advances, 2022, vol. 12, no. 11, pp. 6525–6532. https://doi.org/10.1039/D1RA08806H
10. Lin S., Feng Y., Wen X., Zhang P., Woo S., Shrestha S., Conibeer G., Huang S. Theoretical and experimental investigation of the electronic structure and quantum confinement of wet-chemistry synthesized Ag2S nanocrystals. The Journal of Physical Chemistry, 2015, vol. 119, no. 1, pp. 867–872. https://doi.org/10.1021/jp511054g
11. Grevtseva I., Ovchinnikov O., Smirnov M., Perepelitsa A., Chevychelova T., Derepko V., Osadchenko A., Selyukov A. IR luminescence of plexcitonic structures based on Ag2S/L-Cys quantum dots and Au nanorods. Optics Express, 2022, vol. 30, no. 4, pp. 4668–4679. https://doi.org/10.1364/OE.447200
12. Bozyigit D., Yarema O., Wood V. Origins of low quantum efficiencies in quantum dot LEDs. Advanced Functional Materials, 2013, vol. 23, no. 24, pp. 3024–3029. https://doi.org/10.1002/adfm.201203191
13. Vitukhnovsky A.G., Selyukov A.S., Solovey V.R., Vasiliev R.B., Lazareva E.P. Photoluminescence of CdTe colloidal quantum wells in external electric field. Journal of Luminescence, 2017, vol. 186, pp. 194–198. https://doi.org/10.1016/j.jlumin.2017.02.041
14. Ovchinnikov O.V., Aslanov S.V., Smirnov M.S., Grevtseva I.G., Perepelitsa A.S. Photostimulated control of luminescence quantum yield for colloidal Ag2S/2-MPA quantum dots. RSC Advances, 2019, vol. 9, no. 64, pp. 37312–37320. https://doi.org/10.1039/C9RA07047H
15. Katsaba A.V., Fedyanin V.V., Ambrozevich S.A., Vitukhnovsky A.G., Lobanov A.N., Selyukov A.S., Vasiliev R.B., Samatov I.G.,Brunkov P.N. Characterization of defects in colloidal cdse nanocrystals by the modified thermostimulated luminescence technique. Semiconductors, 2013, vol. 47, no. 10, pp. 1328–1332. https://doi.org/10.1134/S1063782613100138
16. Ovchinnikov O.V., Grevtseva I.G., Smirnov M.S., Kondratenko T.S. Reverse photodegradation of infrared luminescence of colloidal Ag2S quantum dots. Journal of Luminescence, 2019, vol. 207, pp. 626–632. https://doi.org/10.1016/j.jlumin.2018.12.019
17. Derepko V.N., Ovchinnikov O.V., Smirnov M.S., Grevtseva I.G., Kondratenko T.S., Selyukov A.S., Turishchev S.Y. Plasmon-exciton nanostructures, based on CdS quantum dots with exciton and trap state luminescence. Journal of Luminescence, 2022, vol. 248, pp. 118874. https://doi.org/10.1016/j.jlumin.2022.118874
18. Smirnov M.S., Ovchinnikov O.V. IR luminescence mechanism in colloidal Ag2S quantum dots. Journal of Luminescence, 2020, vol. 227, pp. 117526. https://doi.org/10.1016/j.jlumin.2020.117526
19. Smirnov M.S., Ovchinnikov O.V., Grevtseva I.G., Zvyagin A.I., Perepelitsa A.S., Ganeev R.A. Photoinduced degradation of the optical properties of colloidal Ag2S and CdS quantum dots passivated by thioglycolic acid. Optics and Spectroscopy, 2018, vol. 124, no. 5, pp. 681–686. https://doi.org/10.1134/S0030400X18050211
Review
For citations:
Daibagya D.S., Ambrozevich S.A., Perepelitsa A.S., Zakharchuk I.A., Osadchenko A.V., Bezverkhnyaya D.M., Avramenko A.I., Selyukov A.S. Spectral and kinetic properties of silver sulfide quantum dots in an external electric field. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2022;22(6):1098-1103. (In Russ.) https://doi.org/10.17586/2226-1494-2022-22-6-1098-1103