Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

Improvement of the automatic temperature stabilisation process in the cryovacuum unit

https://doi.org/10.17586/2226-1494-2023-23-1-62-67

Abstract

This study concerns the issues of temperature stabilization in units used to research the properties of molecules at low and ultra-low temperatures. This research is relevant due to the need to increase the speed and accuracy of the data obtained. Using the LabView graphical programming environment tools, a control program was created for the LakeShore 325 thermocontroller which reacts when the current temperature is close to the control point temperature set by the researcher. By adding controls for the heating element power and PID controller boot times, it is possible to use them more flexibly. The method was verified for the temperature control points of 40 K, 100 K, 150 K and 200 K. A comparison of the proposed temperature stabilization program with the standard PID controller solution demonstrates the advantages of the former. The speed of reaching the control points was doubled. The digitalization of the LakeShore 325 thermocontroller makes it possible to work further on improving temperature stabilization. The resulting increase in the accuracy–time stabilization ratio makes it possible for those who conduct low-temperature experiments to improve the quality of their measurements dramatically. The introduction of a digital version of the temperature control device opens up possibilities for further automation of cryovacuum units by linking the thermal control program with other programs, for example, recording the spectra at specific temperature values.

About the Authors

O. Yu. Golikov
Al-Farabi Kazakh National University
Kazakhstan

Oleg Yu. Golikov - Junior Researcher, Doctoral Student

Almaty, 050040



D. Yerezhep
Al-Farabi Kazakh National University
Kazakhstan

Darkhan Yerezhep - PhD, Senior Researcher

Almaty, 050040



D. Yu. Sokolov
Al-Farabi Kazakh National University
Kazakhstan

Dmitriy Yu. Sokolov - PhD, Associate Professor

Almaty, 050040



References

1. Lee Y., Halperin W.P. Recent progress and new challenges in quantum fluids and solids // Journal of Low Temperature Physics. 2017. V. 189. N 1. P. 1–14. https://doi.org/10.1007/s10909-017-1800-4

2. Jones A.T., Scheller C.P., Prance J.R., Kalyoncu Y.B., Zumbühl D.M., Haley R.P. Progress in cooling nanoelectronic devices to ultra-low temperatures // Journal of Low Temperature Physics. 2020. V. 201. N 5. P. 772–802. https://doi.org/10.1007/s10909-020-02472-9

3. Debenedetti P.G., Stillinger F.H. Supercooled liquids and the glass transition // Nature. 2001. V. 410. N 6825. P. 259–267. https://doi.org/10.1038/35065704

4. Cavagna A. Supercooled liquids for pedestrians // Physics Reports. 2009. V. 476. N 4-6. P. 51–124. https://doi.org/10.1016/j.physrep.2009.03.003

5. Ediger M.D., Angell C.A., Nagel S.R. Supercooled liquids and glasses // The Journal of Physical Chemistry. 1996. V. 100. N 31. P. 13200–13212. https://doi.org/10.1021/jp953538d

6. Hodge I.M. Enthalpy relaxation and recovery in amorphous materials // Journal of Non-Crystalline Solids. 1994. V. 169. N 3. P. 211–266. https://doi.org/10.1016/0022-3093(94)90321-2

7. Yokoyama D. Molecular orientation in small-molecule organic lightemitting diodes // Journal of Materials Chemistry. 2011. V. 21. N 48. P. 19187–19202. https://doi.org/10.1039/C1JM13417E

8. Galliou S., Imbaud J., Goryachev M., Bourquin R., Abbé P. Losses in high quality quartz crystal resonators at cryogenic temperatures // Applied Physics Letters. 2011. V. 98. N 9. P. 091911. https://doi.org/10.1063/1.3559611

9. Buehler W.J., Gilfrich J.V., Wiley R.C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi // Journal of Applied Physics. 1963. V. 34. N 5. P. 1475–1477. https://doi.org/10.1063/1.1729603

10. Öberg K.I., Garrod R.T., van Dishoeck E.F., Linnartz H. Formation rates of complex organics in UV irradiated CH3OH-rich ices. I. Experiments // Astronomy & Astrophysics. 2009. V. 504. N 3. P. 891–913. http://doi.org/10.1051/0004-6361/200912559

11. Parise B., Castets A., Herbst E., Caux E., Ceccarelli C., Mukhopadhyay I., Tielens A.G.G.M. First detection of triplydeuterated methanol // Astronomy & Astrophysics. 2004. V. 416. N 1. P. 159–163. http://doi.org/10.1051/0004-6361:20034490

12. Drobyshev A., Aldiyarov A., Sokolov D., Shinbaeva A., Nurmukan A. IR Spectrometry studies of methanol cryovacuum condensates // Low Temperature Physics. 2019. V. 45. N 4. P. 441–451. https://doi.org/10.1063/1.5093525

13. Aldiyarov A., Aryutkina M., Drobyshev A., Kaikanov M., Kurnosov V. Investigation of dynamic glass transitions and structural transformations in cryovacuum condensates of ethanol // Low Temperature Physics. 2009. V. 35. N 4. P. 251–255. https://doi.org/10.1063/1.3114588

14. Drobyshev A., Aldiyarov A., Zhumagaliuly D., Kurnosov V., Tokmoldin N. Thermal desorption and IR spectrometric investigation of polyamorphic and polymorphic transformations in cryovacuum condensates of water // Low Temperature Physics. 2007. V. 33. N 5. P. 472–480. https://doi.org/10.1063/1.2737563

15. Aldiyarov A., Aryutkina M., Drobyshev A., Kurnosov V. IR spectroscopy of ethanol in nitrogen cryomatrices with different concentration ratios // Low Temperature Physics. 2011. V. 37. N 6. P. 524–531. https://doi.org/10.1063/1.3622633

16. Drobyshev A., Aldiyarov A., Katpaeva K., Korshikov E., Kurnosov V., Sokolov D. Transformation of cryovacuum condensates of ethanol near the glass transition temperature // Low Temperature Physics. 2013. V. 39. N 8. P. 714–718. https://doi.org/10.1063/1.4818634

17. Pontoppidan K.M., Fraser H.J., Dartois E., Thi W.-F., van Dishoeck E.F., Boogert A.C.A., d’Hendecourt L., Tielens A.G.G.M., Bisschop S.E. A 3-5 μm VLT spectroscopic survey of embedded young low mass stars I Structure of the CO ice // Astronomy & Astrophysics. 2003. V. 408. N 3. P. 981–1007. https://doi.org/10.1051/0004-6361:20031030

18. McCarthy C., Castillo-Rogez J.C. Planetary ices attenuation properties // The Science of Solar System Ices. New York: Springer, 2013. P. 183–225. https://doi.org/10.1007/978-1-4614-3076-6_7

19. Moore M.H., Hudson R.L. Far-infrared spectra of cosmic-type pure and mixed ices // Astronomy and Astrophysics Supplement Series. 1994. V. 103. P. 45–56.

20. Interstellar Dust: Proceedings of the 135th Symposium of the International Astronomical Union, Held in Santa Clara, California, July 26–30, 1988 / ed by L.J. Allamandola, A.G.G.M. Tielens. Springer Science & Business Media, 1989. XVI, 526 p. https://doi.org/10.1007/978-94-009-2462-8

21. Baragiola R.A. Water ice on outer solar system surfaces: Basic properties and radiation effects // Planetary and Space Science. 2003. V. 51. N 14-15. P. 953–961. https://doi.org/10.1016/j.pss.2003.05.007

22. Ferraro J.R., Sill G., Fink U. Infrared intensity measurements of cryodeposited thin films of NH3, NH4HS, H2S, and assignments of absorption bands // Applied Spectroscopy. 1980. V. 34. N 5. P. 525–533. https://doi.org/10.1366/0003702804731339

23. Warren S.G. Optical constants of carbon dioxide ice // Applied Optics. 1986. V. 25. N 16. P. 2650–2674. https://doi.org/10.1364/AO.25.002650


Review

For citations:


Golikov O.Yu., Yerezhep D., Sokolov D.Yu. Improvement of the automatic temperature stabilisation process in the cryovacuum unit. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2023;23(1):62-67. https://doi.org/10.17586/2226-1494-2023-23-1-62-67

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)