Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

Large language models in information security and penetration testing: a systematic review of application possibilities

https://doi.org/10.17586/2226-1494-2025-25-1-42-52

Abstract

The development of artificial intelligence technologies, in particular, large language models (LLM), has led to changes in many areas of human life and activity. Information security (IS) has also undergone significant changes. Penetration testing (pentest) allows evaluating the security system in practice in “combat” conditions. LLMs can take practical security analysis to a qualitatively new level in terms of automation and the ability to generate non-standard attack patterns. The presented systematic review is aimed at determining the already known ways of applying LLM in cybersecurity, as well as identifying “blank spots” in the development of technology. The selection of literature sources was carried out in accordance with the multi-stage PRISMA guidelines based on the analysis of abstracts and keywords of publications. The resulting sample was supplemented using the “snowball” method and manual search of articles. The total number of publications was 50 works from January 2023 to March 2024. The conducted research allowed to analyze the ways of using LLM in the field of information security (goal setting and decision-making support, pentest automation, security analysis of LLM models and program code), determine the LLM architectures (GPT-4, GPT-3.5, Bard, LLaMA, LLaMA 2, BERT, Mixtral 8×7B Instruct, FLAN, Bloom) and software solutions based on LLM used in the field of information security (GAIL-PT, AutoAttacker, NetSecGame, Cyber Sentinel, Microsoft Counterfit, GARD project, GPTFUZZER, VuRLE), to establish limitations (finite “lifetime” of data for LLM training, insufficient cognitive abilities of language models, lack of independent goal setting and difficulties in adapting LLM to new task parameters), identify potential growth points and development of technology in the context of cyber defense (elimination of “hallucinations” of models and ensuring protection of LLM from jailbreaks, implementation of integration of known disparate solutions and software automation of tasks in the field of information security using LLM). The presented results can be useful in developing theoretical and practical solutions, educational and training datasets, software packages and tools for penetration testing, new approaches to building LLM and improving their cognitive abilities, taking into account aspects of working with jailbreaks and “hallucinations”, as well as for independent further multilateral study of the issue.

About the Authors

A. A. Konev
Tomsk State University of Control Systems and Radioelectronics (TUSUR)
Russian Federation

Anton A. Konev — PhD, Associate Professor, Deputy Director of the Institute of System Integration and Security, Associate Professor of the Department

Tomsk, 634050



T. I. Payusova
Tyumen State University
Russian Federation

Tatyana I. Payusova — Associate Professor

Tyumen, 625003



References

1. Konev A., Shelupanov A., Kataev M., Ageeva V., Nabieva A. A survey on threat-modeling techniques: protected objects and classification of threats // Symmetry. 2022. V. 14. N 3. P. 549. https://doi.org/10.3390/sym14030549

2. Shelupanov A., Evsyutin O., Konev A., Kostyuchenko E., Kruchinin D., Nikiforov D. Information security methods–Modern research directions // Symmetry. 2019. V. 11. N 2. P. 150. https://doi.org/10.3390/sym11020150

3. Yao Y., Duan J., Xu K., Cai Y., Sun Z., Zhang Y. A survey on large language model (LLM) security and privacy: The Good, the Bad, and the Ugly // High-Confidence Computing. 2024. V. 4. N 2. P. 100211. https://doi.org/10.1016/j.hcc.2024.100211

4. da Silva G.J.C., Westphall C.B. A Survey of Large Language Models in Cybersecurity // arXiv. 2024. arXiv:2402.16968. https://doi.org/10.48550/arXiv.2402.16968

5. Wang L., Ma C., Feng X., Zhang Z., Yang H., Zhang J., Chen Z., Tang J., Chen X., Lin Y., Zhao W., Wei Z., Wen J. A survey on large language model based autonomous agents // Frontiers of Computer Science. 2024. V. 18. N 6. P. 186345. https://doi.org/10.1007/s11704-024-40231-1

6. Gupta M., Akiri C., Aryal K., Parker E., Praharaj L. From ChatGPT to ThreatGPT: Impact of generative ai in cybersecurity and privacy // IEEE Access. 2023. V. 11. P. 80218–80245. https://doi.org/10.1109/ACCESS.2023.3300381

7. Happe A., Cito J. Getting pwn’d by ai: Penetration testing with large language models // Proc. of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 2023. P. 2082–2086. https://doi.org/10.1145/3611643.3613083

8. Chang Y., Wang X., Wang J., Wu Y., Yang L., Zhu K., Chen H., Yi X., Wang C., Wang Y., Ye W., Zhang Y., Chang Y., Yu P., Yang Q., Xie X. A survey on evaluation of Large Language Models // ACM Transactions on Intelligent Systems and Technology. 2024. V. 15. N 3. P. 1–45. https://doi.org/10.1145/3641289

9. Li Z., Cao Y., Xu X., Jiang J., Liu X., Teo Y., Lin S., Liu Y. LLMs for Relational Reasoning: How Far are We? // Proc. of the 1st International Workshop on Large Language Models for Code (LLM4Code'24). 2024. P. 119–126. https://doi.org/10.1145/3643795.3648387

10. Genevey-Metat C., Bachelot D., Gourmelen T., Quemat A., Satre P.‑M., Scotto L., Di Perrotolo, Chaux M., Delesques P., Gesny O. Red Team LLM: towards an adaptive and robust automation solution // Proc. of the Conference on Artificial Intelligence for Defense. 2023. hal-04328468.

11. Franco M.F., Rodrigues B., Scheid E., Jacobs A., Killer C., Granville L., Stiller B. SecBot: a business-driven conversational agent for cybersecurity planning and management // Proc. of the 16th International Conference on Network and Service management (CNSM). 2020. P. 1–7. https://doi.org/10.23919/cnsm50824.2020.9269037

12. Chamberlain D., Casey E. Capture the Flag with ChatGPT: Security Testing with AI ChatBots // Proc. of the 19th International Conference on Cyber Warfare and Security (ICCWS). 2024. V. 19. N 1. P. 43–54. https://doi.org/10.34190/iccws.19.1.2171

13. Timmins J., Knight S., Lachine B. Offensive cyber security trainer for platform management systems // Proc. of the IEEE International Systems Conference (SysCon). 2021. P. 1–8. https://doi.org/10.1109/syscon48628.2021.9447060

14. Raman R., Calyam P., Achuthan K. ChatGPT or Bard: Who is a better Certified Ethical Hacker? // Computers & Security. 2024. V. 140. P. 103804. https://doi.org/10.1016/j.cose.2024.103804

15. Abualhaija S., Arora C., Sleimi A., Briand L. Automated question answering for improved understanding of compliance requirements: A multi-document study // Proc. of the IEEE 30th International Requirements Engineering Conference (RE). 2022. P. 39–50. https://doi.org/10.1109/re54965.2022.00011

16. Renaud K., Warkentin M., Westerman G. From ChatGPT to HackGPT: Meeting the cybersecurity threat of generative AI // MIT Sloan Management Review. 2023.

17. Yamin M.M., Hashmi E., Ullah M., Katt B. Applications of LLMs for generating cyber security exercise scenarios // IEEE Access. 2024. V. 12. P. 143806–143822. https://doi.org/10.1109/access.2024.3468914

18. Heim M.P., Starckjohann N., Torgersen M. The Convergence of AI and Cybersecurity: An Examination of ChatGPT's Role in Penetration Testing and its Ethical and Legal Implications. BS thesis. NTNU, 2023.

19. Chen J., Hu S., Zheng H., Xing C., Zhang G. GAIL-PT: An intelligent penetration testing framework with generative adversarial imitation learning // Computers & Security. 2023. V. 126. P. 103055. https://doi.org/10.1016/j.cose.2022.103055

20. Ananyev V., Chelovechkova A. ChatGPT in information security. Informacionnaja bezopasnost' cifrovoj ekonomiki, 2023, pp. 77–83. (in Russian)

21. Prokhorov A.I. Cyberpolygon as a modern information security tool. Informatization in the Digital Economy, 2023, vol. 4, no. 4, pp. 363– 378. (in Russian). https://doi.org/10.18334/ide.4.4.119301

22. Chen Y., Yao Y., Wang X., Xu D., Yue C., Liu X., Chen K., Tang H., Liu B. Bookworm game: Automatic discovery of LTE vulnerabilities through documentation analysis // Proc. of the IEEE Symposium on Security and Privacy (SP). 2021. P. 1197–1214. https://doi.org/10.1109/sp40001.2021.00104

23. Ren Z., Ju X., Chen X., Shen H. ProRLearn: boosting prompt tuning-based vulnerability detection by reinforcement learning // Automated Software Engineering. 2024. V. 31. N 2. P. 38. https://doi.org/10.1007/s10515-024-00438-9

24. Hoffmann J. Simulated penetration testing: from "Dijkstra" to "Turing Test++" // Proc. of the 25th International Conference on Automated Planning and Scheduling. 2015. V. 25. N 1. P. 364–372. https://doi.org/10.1609/icaps.v25i1.13684

25. Dube R. Large Language Models in Information Security Research: A January 2024 Survey: preprint. 2024.

26. Ai Z., Luktarhan N., Zhou A., Lv D. Webshell attack detection based on a deep super learner // Symmetry. 2020. V. 12. N 9. P. 1406. https://doi.org/10.3390/sym12091406

27. Esmradi A., Yip D.W., Chan C.F. A Comprehensive Survey of Attack Techniques, Implementation, and Mitigation Strategies in Large Language Models // Communications in Computer and Information Science. 2024. V. 2034. P. 76–95. https://doi.org/10.1007/978-981-97-1274-8_6

28. Gabrys R., Bilinski M., Fugate S., Silva D. Using natural language processing tools to infer adversary techniques and tactics under the Mitre ATT&CK framework // Proc. of the IEEE 14th Annual Computing and Communication Workshop and Conference. 2024. P. 541–547. https://doi.org/10.1109/CCWC60891.2024.10427746

29. Ebert C., Beck M. Generative Artificial Intelligence for Automotive Cybersecurity // ATZelectronics worldwide. 2024. V. 19. N 1. P. 50– 54. https://doi.org/10.1007/s38314-023-1564-3

30. Kanakogi K., Washizaki H., Fukazawa Y., Ogata S., Okubo T., Kato T., Kanuka H., Hazeyama A., Yoshioka N. Tracing CVE Vulnerability Information to CAPEC Attack Patterns Using Natural Language Processing Techniques // Information. 2021. V. 12. N 8. P. 298. https://doi.org/10.3390/info12080298

31. Radanliev P., De Roure D., Santos O. Red Teaming Generative AI/ NLP, the BB84 Quantum Cryptography Protocol and the NIST-Approved Quantum-Resistant Cryptographic Algorithms. SSRN Electronic Journal. September 17, 2023. URL: https://ssrn.com/abstract=4574446 (дата обращения: 01.10.2024).

32. Sun Y., Wu D., Xue Y., Liu H., Wang H., Xu Z., Xie X., Liu Y. GPTScan: Detecting Logic Vulnerabilities in Smart Contracts by Combining GPT with Program Analysis // Proc. of the IEEE/ACM 46th International Conference on Software Engineering (ICSE 2024). 2024. N 166. P. 1–13. https://doi.org/10.1145/3597503.3639117

33. Al-Hawawreh M., Aljuhani A., Jararweh Y. Chatgpt for cybersecurity: practical applications, challenges, and future directions // Cluster Computing. 2023. V. 26. N 6. P. 3421–3436. https://doi.org/10.1007/s10586-023-04124-5

34. Tsingenopoulos I., Preuveneers D., Joosen W. AutoAttacker: A reinforcement learning approach for black-box adversarial attacks // Proc. of the IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). 2019. P. 229–237. https://doi.org/10.1109/EuroSPW.2019.00032

35. Rigaki M., Lukas O., Catania C., Garcia S. Out of the cage: how stochastic parrots win in cyber security environments // Proc. of the 16th International Conference on Agents and Artificial Intelligence. 2024. V. 3. P. 774–781. https://doi.org/10.5220/0012391800003636

36. Liu B., Xiao B., Jiang X., Cen S., He X., Dou W. Adversarial attacks on large language model-based system and mitigating strategies: A case study on ChatGPT // Security and Communication Networks. 2023. V. 2023. N 1. P. 8691095. https://doi.org/10.1155/2023/8691095

37. Campbell M., Jovanovic M. Disinfecting AI: Mitigating Generative AI’s Top Risks // Computer. 2024. V. 57. N 5. P. 111–116. https://doi.org/10.1109/MC.2024.3374433

38. Namiot D., Zubareva E. About AI Red Team. International Journal of Open Information Technologies, 2023, vol. 11, no. 10, pp. 130–139. (in Russian)

39. Shi Z., Wang Y., Yin F., Chen X., Chang K., Hsieh C. Red teaming language model detectors with language models // Transactions of the Association for Computational Linguistics. 2024. V. 12. P. 174–189. https://doi.org/10.1162/tacl_a_00639

40. Alawida M., Mejri S., Mehmood A., Chikhaoui B., Abiodun O. A comprehensive study of ChatGPT: advancements, limitations, and ethical considerations in natural language processing and cybersecurity // Information. 2023. V. 14. N 8. P. 462. https://doi.org/10.3390/info14080462

41. Chen Y., Arunasalam A., Celik Z.B. Can large language models provide Security & Privacy advice? measuring the ability of LLms to refute misconceptions // Proc. of the 39th Annual Computer Security Applications Conference. 2023. P. 366–378. https://doi.org/10.1145/3627106.3627196

42. Bang Y., Cahyawijaya S., Lee N., Dai W., Su D., Wilie B., Lovenia H., Ji Z., Yu T., Chung W., Do Q.V., Xu Y, Fung P. A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity // Proc. of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics. 2023. V. 1. P. 675–718. https://doi.org/10.18653/v1/2023.ijcnlp-main.45

43. Xie Y., Yi J., Shao J., Curl J., Lyu L., Chen Q., Xie X., Wu F. Defending ChatGPT against jailbreak attack via self-reminders // Nature Machine Intelligence. 2023. V. 5. N 12. P. 1486–1496. https://doi.org/10.1038/s42256-023-00765-8

44. Deng G., Liu Y., Li Y., Wang K., Zhang Y., Li Z., Wang H., Zhang T., Liu Y. MASTERKEY: Automated jailbreaking of large language model Chatbots // Proc. of the Network and Distributed System Security Symposium. 2024. P. 1–16. https://doi.org/10.14722/ndss.2024.24188

45. Schulhoff S., Pinto J., Khan A., Bouchard L., Si C., Anati S., Tagliabue V., Kost A., Carnahan C., Boyd-Graber J. Ignore This Title and HackAPrompt: Exposing Systemic Vulnerabilities of LLMs Through a Global Prompt Hacking Competition // Proc. of the Conference on Empirical Methods in Natural Language Processing. 2023. P. 4945– 4977. https://doi.org/10.18653/v1/2023.emnlp-main.302

46. Liang H., Li X., Xiao D., Liu J., Zhou Y., Wang A., Li J. Generative Pre-Trained Transformer-Based reinforcement learning for testing Web Application Firewalls // IEEE Transactions on Dependable and Secure Computing. 2024. V. 21. N 1. P. 309–324. https://doi.org/10.1109/TDSC.2023.3252523

47. Serobabov D.C., Razumov S.Y. Security of code created using Chat GPT: vulnerability analysis and correction. Fundamental'nye i prikladnye issledovanija molodyh uchjonyh, 2023, pp. 615–620. (in Russian)

48. Gasiba T.E., Oguzhan K., Kessba I., Lechner U., Pinto-Albuquerque M. I'm Sorry Dave, I'm Afraid I Can't Fix Your Code: On ChatGPT, CyberSecurity, and Secure Coding // Proc. of the 4th International Computer Programming Education Conference (ICPEC 2023). 2023.

49. Lu G., Ju X., Chen X., Pei W., Cai Z. GRACE: Empowering LLM-based software vulnerability detection with graph structure and in-context learning // Journal of Systems and Software. 2024. V. 212. P. 112031. https://doi.org/10.1016/j.jss.2024.112031

50. Wang J., Huang Y., Chen C., Liu Z., Wang S.,Wang Q. Software testing with Large Language Models: Survey, Landscape, and Vision // IEEE Transactions on Software Engineering. 2024. V. 50. N 4. P. 911–936. https://doi.org/10.1109/TSE.2024.3368208

51. Chaudhary P.K. AI, ML, and Large Language Models in cybersecurity // International Research Journal of Modernization in Engineering Technology and Science. 2024. V. 6. N 2. P. 2229–2234. https://www.doi.org/10.56726/IRJMETS49546

52. Botacin M. GPThreats-3: Is Automatic Malware Generation a Threat? // Proc. of the IEEE Security and Privacy Workshops (SPW). 2023. P. 238–254. https://www.doi.org/10.1109/SPW59333.2023.00027


Review

For citations:


Konev A.A., Payusova T.I. Large language models in information security and penetration testing: a systematic review of application possibilities. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2025;25(1):42-52. (In Russ.) https://doi.org/10.17586/2226-1494-2025-25-1-42-52

Views: 54


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)