Directional variance-based algorithm for digital image smoothing
https://doi.org/10.17586/2226-1494-2025-25-1-78-86
Abstract
Image smoothing is vital in image processing as it attenuates the texture and unnecessary high-frequency components and provides a smooth image with a preserved structure to facilitate subsequent operations or analysis. Smoothed images are required in many image processing applications, such as details boost, sharpening, High Dynamic Range imaging, edge detection, stylization, abstraction, etc. Still, not all existing smoothing methods are successful in this task, as some undesirable problems may be introduced, such as removing significant details, introducing excessive blurring, processing flaws, halos, and other artifacts. Thus, the opportunity still stands to provide a new algorithm that smooths an image efficiently. This study concisely explores smoothing via the Directional Variances (DV) concept. The proposed algorithm leverages the DV concept to minimize energy, seeking a balance between essential structural preservation and smoothness. The proposed algorithm iteratively smooths the image using DV, diffusion, regularization, and energy minimization. A thorough evaluation is conducted on diverse images, showcasing the effectiveness of the developed algorithm. The results demonstrate that the developed DV-based algorithm has superb abilities in smoothing different images while preserving structural details, making it a valuable tool for various applications in digital image processing.
About the Author
Al-Ameen ZohairIraq
Zohair Al-Ameen — PhD (Computer Science), Associate Professor, Researcher
Mosul, 41002
References
1. Sun X., Lv X., Zhu G., Fang B., Jiang L. Fast additive half-quadratic iterative minimization for lp — lq image smoothing // IET Image Processing. 2023. V. 17. N 6. P. 1739–1751. https://doi.org/10.1049/ipr2.12751
2. Huang J., Wang H., Wang X., Ruzhansky M. Semi-sparsity for smoothing filters // IEEE Transactions on Image Processing. 2023. V. 32. P. 1627–1639. https://doi.org/10.1109/TIP.2023.3247181
3. Liu W., Zhang P., Huang X., Yang J., Shen C., Reid I. Real-time image smoothing via iterative least squares // ACM Transactions on Graphics. 2020. V. 39. N 3. P. 1–24. https://doi.org/10.1145/3388887
4. Wang Z., Wang H. Image smoothing with generalized random walks: Algorithm and applications // Applied Soft Computing. 2016. V. 46. P. 792–804. https://doi.org/10.1016/j.asoc.2016.01.003
5. Dou Z., Song M., Gao K., Jiang Z. Image Smoothing via Truncated Total Variation // IEEE Access. 2017. V. 5. P. 27337–27344. https://doi.org/10.1109/access.2017.2773503
6. Ma G.H., Zhang M.L., Li X.M., Zhang C.M. Image smoothing based on image decomposition and sparse high frequency gradient // Journal of Computer Science and Technology. 2018. V. 33. N 3. P. 502–510. https://doi.org/10.1007/s11390-018-1834-3
7. Wang N., Chen Y., Yao L., Zhang Q., Jia L., Gui Z. Image smoothing via adaptive fourth-order partial differential equation model // Journal of Engineering. 2019. V. 2019. N 11. P. 8198–8206. https://doi.org/10.1049/joe.2018.5443
8. Liu Y., Ma X., Li X., Zhang C. Two-stage image smoothing based on edge-patch histogram equalisation and patch decomposition // IET Image Processing. 2020. V. 14. N 6. P. 1132–1140. https://doi.org/10.1049/iet-ipr.2019.0484
9. Liu C., Feng Y., Yang C., Wei M., Wang J. Multi-scale selective image texture smoothing via intuitive single clicks // Signal Processing: Image Communication. 2021. V. 97. P. 116357. https://doi.org/10.1016/j.image.2021.116357
10. Ye-Peng L., De-Zhi Y., Si-Yuan L., Fan Z., Cai-Ming Z. Image smoothing based on image decomposition and relative total variation // Journal of Graphics. 2022. V. 43. N 6. P. 1143–1149. https://doi.org/10.11996/JG.j.2095-302X.2022061143
11. Zeng L., Chen Y., Yang Y., Pan Z. Edge-aware image smoothing via weighted sparse gradient reconstruction // Signal, Image and Video Processing. 2023. V. 17. N 8. P. 4285–4293. https://doi.org/10.1007/s11760-023-02661-5
12. Zuo Z., Lan X., Deng L., Yao S., Wang X. An improved medical image compression technique with lossless region of interest // Optik. 2015. V. 126. N 21. P. 2825–2831. https://doi.org/10.1016/j.ijleo.2015.07.005
13. Beylerian E. Finding a needle in a haystack: An image processing approach // SIAM Undergraduate Research Online. 2013. V. 6. P. 54– 66. https://doi.org/10.1137/12s0119008
14. Ghita O., Robinson K., Lynch M., Whelan P.F. MRI diffusion-based filtering: a note on performance characterization // Computerized Medical Imaging and Graphics. 2005. V. 29. N 4. P. 267–277. https://doi.org/10.1016/j.compmedimag.2004.12.003
15. Wang J., Lucier B.J. Error bounds for finite-difference methods for Rudin–Osher–Fatemi image smoothing // SIAM Journal on Numerical Analysis. 2011. V. 49. N 2. P. 845–868. https://doi.org/10.1137/090769594
16. Wan M., Zhao D., Zhao B. Combining Max pooling-Laplacian theory and k-means clustering for novel camouflage pattern design // Frontiers in Neurorobotics. 2022. V. 16. P. 1041101. https://doi.org/10.3389/fnbot.2022.1041101
17. Fahnun B.U., Andani L.S., Fadlillah H.M., Putra H.D. Color image enhancement using filtering and contrast enhancement // Jurnal Mantik. 2023. V. 7. N 1. P. 177–184. https://doi.org/10.35335/mantik.v7i1.3678
18. Lin T.Y., Maire M., Belongie S., Hays J., Perona P., Ramanan D., Dollár P., Zitnick C.L. Microsoft COCO: Common objects in context // Lecture Notes in Computer Science. 2014. V. 8693. P. 740– 755. https://doi.org/10.1007/978-3-319-10602-1_48
19. Singh K.R., Chaudhury S. Comparative analysis of texture feature extraction techniques for rice grain classification // IET Image Processing. 2020. V. 14. N 11. P. 2532–2540. https://doi.org/10.1049/iet-ipr.2019.1055
20. Li C., Ju Y., Bovik A.C., Wu X., Sang Q. No-training, no-reference image quality index using perceptual features // Optical Engineering. 2013. V. 52. N 5. P. 057003. https://doi.org/10.1117/1.oe.52.5.057003
21. Yang Y., He T., Zeng L., Zhao Y., Wang X. Soft clustering based on high- and low-level features for image smoothing // Journal of Electronic Imaging. 2023. V. 32. N 1. P. 013028. https://doi.org/10.1117/1.jei.32.1.013028
Review
For citations:
Zohair A. Directional variance-based algorithm for digital image smoothing. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2025;25(1):78-86. https://doi.org/10.17586/2226-1494-2025-25-1-78-86