Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

Synthesis and study of the structure and properties of photocatalytic nanocomposites of the Cu/ZnO-ZnCr2O4 system

https://doi.org/10.17586/2226-1494-2025-25-2-199-211

Abstract

Currently, the development of new nanocomposite materials with improved photocatalytic and antibacterial properties is a topical task for environmentally friendly technologies for water and air purification. This paper presents the results of a study of ZnO-ZnCr2O4 and Cu/ZnO-ZnCr2O4 powder nanocomposites obtained by the polymer-salt method. For the synthesis of nanocomposites, zinc and chromium nitrate solutions with the addition of polyvinylpyrrolidone as a soluble organic polymer were used. The structure and morphology of the nanocomposites were studied by XRD analysis and electron microscopy, optical and luminescent properties using spectroscopic methods. As a result of heat treatment at 550 °С, dispersed powders of nanocomposites were obtained, consisting of particles several micrometers in size, including hexagonal ZnO nanocrystals with an average size about16 nm and ZnCr2O4 spinel crystals. In the luminescence spectrum of the Cu/ZnO-ZnCr2O4 composite in the visible region, fluorescence bands are observed characteristic of ZnCr2O4 crystals and structural defects of ZnO crystals. It was found that the intensity of singlet oxygen photogeneration by the Cu/ZnO-ZnCr2O4 nanocomposite linearly depends on the power density of the exciting radiation (the wavelength is 405 nm). Antibacterial activity of the Cu/ZnO-ZnCr2O4 nanocomposite against Staphylococcus aureus ATCC 209P bacteria was also revealed. The obtained nanocomposite powders can be used in water and air purification and disinfection systems.

About the Authors

S. K. Evstropyev
JSC S.I. Vavilov State Optical Institute (SOI); Saint Petersburg State Technological Institute (Technical University); ITMO University
Russian Federation

Sergey K. Evstropyev — D.Sc. (Chemistry), Professor, Chief of Department, JSC S.I. Vavilov State Optical Institute (SOI); Professor, Saint Petersburg State Technological Institute (Technical University); Leading Engineer, ITMO University.

Saint Petersburg, 192171, 190013, 197101, sc 6507317768



A. A. Shelemanov
ITMO University
Russian Federation

Andrey A. Shelemanov — Assistant, ITMO University.

Saint Petersburg, 197101, sc 57292759900



N. V. Nikonorov
ITMO University
Russian Federation

Nikolay V. Nikonorov — D.Sc. (Physics & Mathematics), Professor, Head of the Research Center for Optical Material Engineering, ITMO University.

Saint Petersburg, 197101, sc 7003772604



A. V. Karavaeva
Saint Petersburg Chemical-Pharmaceutical University
Russian Federation

Anna V. Karavaeva — PhD (Biology), Associate Professor, Senior Researcher.

Saint Petersburg, 197022, sc 6602806968



K. V. Dukelskii
JSC S.I. Vavilov State Optical Institute (SOI)
Russian Federation

Konstantin V. Dukelskii – D.Sc., Associate Professor, First Deputy General Director, JSC S.I. Vavilov State Optical Institute (SOI).

Saint Petersburg, 192171, sc 6602633236



G. S. Polischuk
JSC S.I. Vavilov State Optical Institute (SOI)
Russian Federation

Grigorii S. Polischuk — PhD, CEO, JSC S.I. Vavilov State Optical Institute (SOI).

Saint Petersburg, 192171, sc 25926044900



M. A. Gavrilova
Saint Petersburg State Technological Institute (Technical University)
Russian Federation

Marianna A. Gavrilova — Engineer.

Saint Petersburg, 190013, sc 57983736200



K. A. Portnova
ITMO University
Russian Federation

Ksenia A. Portnova — Assistant, ITMO University.

Saint Petersburg, 197101



I. V. Bagrov
JSC S.I. Vavilov State Optical Institute (SOI)
Russian Federation

Igor V. Bagrov — PhD, Senior Researcher.

Saint Petersburg, 192171



References

1. Khomutinnikova L.L., Meshkovskii I.K., Evstropiev S.K., Litvinov M.Y., Bykov E.P., Plyastsov S.A. Method of methane detection by a fiber-optic sensor using a photocatalytic nanocomposite ZnO-SnO2-Fe2O3. Optics and Spectroscopy, 2023, vol. 131, no. 3, pp. 399–404. (in Russian). https://doi.org/10.61011/EOS.2023.03.56193.4525-23

2. Gaya U.I., Abdullah A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008, vol. 9, no. 1, pp. 1–12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003

3. Uribe-López M.C., Hidalgo-López M.C., López-González R., FríasMárquez D.M., Núñez-Nogueira G., Hernández-Castillo D., AlvarezLemus M.A. Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties. Journal of Photochemistry and Photobiology A: Chemistry, 2021, vol. 404, pp. 1 12866. https://doi.org/10.1016/j.jphotochem.2020.112866

4. Ong C.B., Ng L.Y., Mohammad A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews, 2018, vol. 81, part 1, pp. 536–551. https://doi.org/10.1016/j.rser.2017.08.020

5. Gusain R., Gupta K., Joshi P., Khatri O.P. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Advances in Colloid and Interface Science, 2019, vol. 272, pp. 102009. https://doi.org/10.1016/j.cis.2019.102009

6. Gavrilova M., Gavrilova D., Evstropiev S., Shelemanov A., Bagrov I. Porous ceramic ZnO nanopowders: features of photoluminescence, adsorption and photocatalytic properties. Ceramics, 2023, vol. 6, no. 3, pp. 1667–1681. https://doi.org/10.3390/ceramics6030103

7. Li R., Zhang L., Wang P. Rational design of nanomaterials for water treatment. Nanoscale, 2015, vol. 7, no. 41, pp. 17167–17194. https://doi.org/10.1039/C5NR04870B

8. Raghupathi K.R., Koodali R.T., Manna A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 2011, vol. 27, no. 7, pp. 4020–4028. https://doi.org/10.1021/la104825u

9. Qi K., Cheng B., Yu J., Ho W. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. Journal of Alloys and Compounds, 2017, vol. 727, pp. 792–820. https://doi.org/10.1016/j.jallcom.2017.08.142

10. Saratovskii A.S., Bulyga D.V., Evstrop’ev S.K., Antropova T.V. Adsorption and photocatalytic activity of the porous glass–ZnO–Ag composite and ZnO–Ag nanopowder. Glass Physics and Chemistry, 2022, vol. 48, no. 1, pp. 10–17. https://doi.org/10.1134/S1087659622010126

11. Wang T., Tian B., Han B., Ma D., Sun M., Hanif A., Xia D., Shang J. Recent advances on porous materials for synergetic adsorption and photocatalysis. Energy & Environmental Materials, 2022, vol. 5, no. 3, pp. 711–730. https://doi.org/10.1002/eem2.12229

12. Rao L.S., Rao T.V., Naheed Sd., Rao P.V. Structural and optical properties of zinc magnesium oxide nanoparticles synthesized by chemical co-precipitation. Materials Chemistry and Physics, 2018, vol. 203, pp. 133–140. https://doi.org/10.1016/j.matchemphys.2017.09.048

13. Bhatia S., Verma N. Photocatalytic activity of ZnO nanoparticles with optimization of defects. Materials Research Bulletin, 2017, vol. 95. pp. 468–476. https://doi.org/10.1016/j.materresbull.2017.08.019

14. Guo L., Yang S., Yang C., Yu P., Wang J., Ge,p W., Wong G.K.L. Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties. Applied Physics Letters, 2000, vol. 76, no. 20, pp. 2901–2903. https://doi.org/10.1063/1.126511

15. Chen X., Wu Z., Liu D., Gao Z. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Research Letters, 2017, vol. 12, no. 1, pp. 43. https://doi.org/10.1186/s11671-017-1904-4

16. Evstropiev S.K., Lesnykh L.V., Karavaeva A.V., Nikonorov N.V., Oreshkina K.V., Mironov L.Y., Maslennikov S.Y., Kolobkova E.V., Vasilyev V.N., Bagrov I.V. Intensification of photodecomposition of organics contaminations by nanostructured ZnO-SnO2 coatings prepared by polymer-salt method. Chemical Engineering and Processing — Process Intensification, 2019, vol. 142, pp. 107587. https://doi.org/10.1016/j.cep.2019.107587

17. Mimouni R., Askri B., Larbi T., Amlouk M., Meftah A. Photocatalytic degradation and photo-generated hydrophilicity of Methylene Blue over ZnO/ZnCr2O4 nanocomposite under stimulated UV light irradiation. Inorganic Chemistry Communications, 2020, vol. 115, pp. 107889. https://doi.org/10.1016/j.inoche.2020.107889

18. Mousavi Z., Soofivand F., Esmaeili-Zare M., Salavati-Niasari M., Bagheri S. ZnCr2O4 nanoparticles: facile synthesis, characterization and photocatalytic properties. Scientific Reports, 2016, vol. 6, pp. 20071. https://doi.org/10.1038/srep20071

19. Benrighi Y., Nasrallah N., Chaabane T., Sivasankar V., Darchen A., Baaloudj O. Photocatalytic performances of ZnCr2O4 nanoparticles for cephalosporins removal: Structural, optical and electrochemical properties. Optical Materials, 2021, vol. 115, pp. 111035. https://doi.org/10.1016/j.optmat.2021.111035

20. Peng C., Gao L. Optical and photocatalytic properties of spinel ZnCr2O4 nanoparticles synthesized by a hydrothermal route. Journal of the American Ceramic Society, 2008, vol. 91, no. 7, pp. 2388–2390. https://doi.org/10.1111/j.1551-2916.2008.02417.x

21. Das S., Misra A.J., Rahman A.P.H., Das B., Jayabalan R., Tamhankar A.J., Mishra A., Lundborg C.S., Tripathy S.K. Ag@ SnO2@ZnO core-shell nanocomposites assisted solar-photocatalysis downregulates multidrug resistance in Bacillus sp.: a catalytic approach to impede antibiotic resistance. Applied Catalysis B: Environmental, 2019, vol. 259, pp. 118065. https://doi.org/10.1016/j.apcatb.2019.118065

22. Lu Y.H., Xu M., Xu L.X. Zhang C.L., Zhang Q.P., Xu X.N., Xu S., Ostrikov K. Enhanced ultraviolet photocatalytic activity of Ag/ZnO nanoparticles synthesized by modified polymer-network gel method. Journal of Nanoparticle Research, 2015, vol. 17, no. 9, pp. 350. https://doi.org/10.1007/s11051-015-3150-y

23. Lavín A., Sivasamy R., Mosquera E., Morel M.J. High proportion ZnO/CuO nanocomposites: Synthesis, structural and optical properties, and their photocatalytic behavior. Surfaces and Interfaces, 2019, vol. 17, pp. 100367. https://doi.org/10.1016/j.surfin.2019.100367

24. Shelemanov A., Tincu A., Evstropiev S., Nikonorov N., Vasilyev V. Cu-doped porous ZnO-ZnAl2O4 nanocomposites synthesized by polymer-salt method for photocatalytic water purification. Journal of Composites Science, 2023, vol. 7, no. 7, pp. 263. https://doi.org/10.3390/jcs7070263

25. Wang C., Wang X., Xu B.Q., Zhao J.C., Mai B.X., Peng P., Sheng G.Y., Fu H.M. Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2004, vol. 168, no. 1-2, pp. 47–52. https://doi.org/10.1016/j.jphotochem.2004.05.014

26. Li B., Wang Y.F. Facile synthesis and photocatalytic activity of ZnO– CuO nanocomposite. Superlattices and Microstructures, 2010, vol. 47, no. 5, pp. 615–623. https://doi.org/10.1016/j.spmi.2010.02.005

27. Liu Y., Huang J., Feng X., Li H. Thermal-sprayed photocatalytic coatings for biocidal applications: a review. Journal of Thermal Spray Technology, 2021, vol. 30, no. 1-2, pp. 1–24. https://doi.org/10.1007/s11666-020-01118-2

28. Riaz N., Hassan M., Siddique M. Mahmood Q., Farooq U., Sarwar R., Khan M.S. Photocatalytic degradation and kinetic modeling of azo dye using bimetallic photocatalysts: effect of synthesis and operational parameters. Environmental Science and Pollution Research, 2020, vol. 27, no. 3, pp. 2992–3006. https://doi.org/10.1007/s11356-019-06727-1

29. Evstropiev S.K., Kislyakov I.M., Bagrov I.V., Belousova I.M. Stabilization of PbS quantum dots by high molecular polyvinylpyrrolidone. Polymers for Advanced Technologies, 2016, vol. 27, no. 3, pp. 314–317. https://doi.org/10.1002/pat.3642

30. Dukel’skiǐ K.V., Evstrop’ev S.K. Forming protective nanoscale coatings based on Al2O3 (Al2O3-AlF3) on a glass surface. Journal of Optical Technology, 2011, vol. 78, no. 2, pp. 137–144. https://doi.org/10.1364/JOT.78.000137

31. Gene S.A., Saion E., Shaari A.H., Kamarudin M.A., Al-Hada N.M. Kharazmi A. Structural, optical, and magnetic characterization of spinel zinc chromite nanocrystallines synthesised by thermal treatment method // Journal of Nanomaterials, 2014, vol. 2014, pp. 416765. https://doi.org/10.1155/2014/416765

32. Bokuniaeva A.O., Vorokh A.S. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. Journal of Physics: Conference Series, 2019, vol. 1410, no. 1, pp. 012057. https://doi.org/10.1088/1742-6596/1410/1/012057

33. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 1976, vol. 32, no. 5, pp. 751–767. https://doi.org/10.1107/S0567739476001551

34. Wang X., Ahmad M., Sun H. Three-dimensional ZnO hierarchical nanostructures: solution phase synthesis and applications. Materials, 2017, vol. 10, no. 11, pp. 1304. https://doi.org/10.3390/ma10111304

35. Børseth T.M., Svensson B.G., Kuznetsov A.Yu., Klason P., Zhao Q.X., Willander M. Identification of oxygen and zinc vacancy optical signals in ZnO. Applied Physics Letters, 2006, vol. 89, no. 26, pp. 262112. https://doi.org/10.1063/1.2424641

36. Rodnyi P.A., Chernenko K.A., Venevtsev I.D. Mechanisms of ZnO Luminescence in the Visible Spectral Region. Optics and Spectroscopy, 2018, vol. 125, no. 3, pp. 372–378. https://doi.org/10.1134/S0030400X18090205

37. Cao B.Q., Cai W.P., Zeng H.B. Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays. Applied Physics Letters, 2006, vol. 88, no. 16, pp. 161101. https://doi.org/10.1063/1.2195694

38. Vempati S., Mitra J., Dawson P. One-step synthesis of ZnO nanosheets: a blue-white fluorophore. Nanoscale Research Letters, 2012, vol. 7, pp. 470. https://doi.org/10.1186/1556-276X-7-470

39. Ghosh D., Dutta U., Haque A., Mordvinova N.E., Lebedev O.I., Pal K., Gayen A., Seikh M.M., Mahata P. Ultra-high sensitivity of luminescent ZnCr2O4 nanoparticles toward nitroaromatic explosives sensing. Dalton Transactions, 2018, vol. 47, no. 14, pp. 5011–5018. https://doi.org/10.1039/C8DT00047F

40. Nosaka Y., Daimon T., Nosaka A.Y., Murakami Y. Singlet oxygen formation in photocatalytic TiO2 aqueous suspension. Physical Chemistry Chemical Physics, 2004, vol. 6, no. 11, pp. 2917–2918. https://doi.org/10.1039/b405084c

41. Abbasi A., Hamadanian M., Salavati-Niasari M., Mortazavi-Derazkola S. Facile size-controlled preparation of highly photocatalytically active ZnCr2O4 and ZnCr2O4/Ag nanostructures for removal of organic contaminants. Journal of Colloid and Interface Science, 2017, vol. 500, pp. 276–284. https://doi.org/10.1016/j.jcis.2017.04.003

42. Dumitru R., Manea F., Păcurariu C., Lupa L., Pop A., Cioabla A., Surdu A., Ianculescu A. Synthesis, characterization of nanosized ZnCr2O4 and its photocatalytic performance in the degradation of humic acid from drinking water. Catalysts, 2018, vol. 8, no. 5, pp. 210. https://doi.org/10.3390/catal8050210

43. Khomutinnikova L., Evstropiev S., Meshkovskii I., Bagrov I., Kiselev V. Ceramic ZnO-SnO2-Fe2O3 powders and coatings -effective photogenerators of reactive oxygen species. Ceramics, 2023, vol. 6, no. 2, pp. 886–897. https://doi.org/10.3390/ceramics6020051

44. Schweitzer C., Schmidt R. Physical Mechanisms of Generation and Deactivation of Singlet Oxygen // Chemical Reviews. 2003. V. 103. N 5. P. 1685–1758. https://doi.org/10.1021/cr010371d

45. Konstantinou I.K., Albanis T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review // Applied Catalysis B: Environmental. 2004. V. 49. N 1. P. 1–14. https://doi.org/10.1016/j.apcatb.2003.11.010


Review

For citations:


Evstropyev S.K., Shelemanov A.A., Nikonorov N.V., Karavaeva A.V., Dukelskii K.V., Polischuk G.S., Gavrilova M.A., Portnova K.A., Bagrov I.V. Synthesis and study of the structure and properties of photocatalytic nanocomposites of the Cu/ZnO-ZnCr2O4 system. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2025;25(2):199-211. (In Russ.) https://doi.org/10.17586/2226-1494-2025-25-2-199-211

Views: 44


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)