Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

Analysis of the influence of defocused laser beam on uneven material surface processing based on mathematical model and simulation approach

https://doi.org/10.17586/2226-1494-2025-25-2-212-221

Abstract

Laser-processing technology has advanced precision surface material processing, but challenges remain in maintaining the laser beam waist position on uneven surfaces. Surface irregularities cause defocus and non-perpendicular alignment leading to distortions in beam spot size and shape, which reduce processing quality. This study develops a mathematical model and simulation framework to analyze beam waist positioning errors during surface processing. Using MATLAB Partial Differential Equation (PDE) and finite element method, the simulation evaluates how variables like laser incidence angle and focal distance affect beam spot characteristics. Results reveal that defocus and misalignment enlarge and distort the laser beam spot, with higher incidence angles causing elliptical deformation. The simulation is critical in advancing the understanding of laser-material interactions under suboptimal conditions such as defocus and misalignment. It provides critical insights into the geometrical of laser beam, enabling the development of precise error detection methods for beam spot irregularities. Furthermore, these findings lay the groundwork for designing adaptive mechanisms that enhance the precision and reliability of laser-based surface material processing, addressing challenges posed by uneven workpiece surfaces. This approach aims to optimize laser processing quality and expand its applicability in high-precision manufacturing.

About the Authors

M. A. Rizki
ITMO University
Russian Federation

Muhamad Albani Rizki — PhD Student, ITMO University.

Saint Petersburg, 197101, sc 58038476200



Yu. V. Fedosov
ITMO University
Russian Federation

Yuri V. Fedosov — PhD, Head of Laboratory, ITMO University.

Saint Petersburg, 197101, sc 57194080548



References

1. Leniart A.A., Pula P., Sitkiewicz A., Majewski P.W. Macroscopic alignment of block copolymers on silicon substrates by laser annealing. ACS Nano, 2020, vol. 14, no. 4, pp. 4805–4815. https://doi.org/10.1021/acsnano.0c00696

2. Téllez H., Vadillo J.M., Chater R.J., Laserna J.J., McPhail D.S. Focused ion beam imaging of laser ablation sub-surface effects on layered materials. Applied Surface Science, 2008, vol. 255, no. 5, part 1, pp. 2265–2269. https://doi.org/10.1016/j.APSUSC.2008.07.082

3. Shaheen M.E., Gagnon J.E., Fryer B.J. Studies on laser ablation of silicon using near IR picosecond and deep UV nanosecond lasers. Optics and Lasers Engineering, 2019, vol. 119, pp. 18–25. https://doi.org/10.1016/j.optlaseng.2019.02.003

4. Žemaitis A., Gaidys M., Brikas M., Gečys P., Račiukaitis G., Gedvilas M. Advanced laser scanning for highly-efficient ablation and ultrafast surface structuring: experiment and model. Scientific Reports, 2018, vol. 8, pp. 17376. https://doi.org/10.1038/s41598-01835604-z

5. Sobotova L., Badida M. Laser marking as environment technology. Open Engineering, 2017, vol. 7, no. 1, pp. 303–316. https://doi.org/10.1515/eng-2017-0030

6. Indrišiūnas S., Gedvilas M. Control of the wetting properties of stainless steel by ultrashort laser texturing using multi-parallel beam processing. Optics & Laser Technology, 2022, vol. 153, pp. 108187. https://doi.org/10.1016/j.optlastec.2022.108187

7. Obilor A.F., Pacella M., Wilson A., Silberschmidt V.V. Microtexturing of polymer surfaces using lasers: a review. The International Journal of Advanced Manufacturing Technology, 2022, vol. 120, no. 1-2, pp. 103–135. https://doi.org/10.1007/s00170-022-08731-1

8. Sugar P., Sugarova J., Frncik M. Laser surface texturing of tool steel: textured surfaces quality evaluation. Open Engineering, 2016, vol. 6, no. 1, pp. 90–97. https://doi.org/10.1515/eng-2016-0012

9. Mao B., Siddaiah A., Liao Y., Menezes P.L. Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: a review. Journal of Manufacturing Processes, 2020, vol. 53, pp. 153–173. https://doi.org/10.1016/j.jmapro.2020.02.009

10. Yang Y., Zhao Y., Wang L., Zhao Y. Application of femtosecond laser etching in the fabrication of bulk SiC accelerometer. Journal of Materials Research and Technology, 2022, vol. 17, pp. 2577–2586. https://doi.org/10.1016/j.jmrt.2022.02.012

11. Ehrhardt M., Lorenz P., Bauer J., Heinke R., Hossain M.A., Han B., Zimmer K. Dry etching of germanium with laser induced reactive micro plasma. Lasers in Manufacturing and Materials Processing, 2021, vol. 8, no. 3, pp. 237–255. https://doi.org/10.1007/s40516-021-00147-1

12. Mulko L., Soldera M., Lasagni A.F. Structuring and functionalization of non-metallic materials using direct laser interference patterning: a review. Nanophotonics, 2022, vol. 11, no. 2, pp. 203–240. https://doi.org/10.1515/nanoph-2021-0591

13. Krishnan A., Fang F. Review on mechanism and process of surface polishing using lasers. Frontiers of Mechanical Engineering, 2019, vol. 14, no. 3, pp. 299–319. https://doi.org/10.1007/s11465-019-0535-0

14. Xiao H., Chen Y., Liu M., Zhou Y., Du C., Zhang W. Influence of laser additive manufacturing and laser polishing on microstructures and mechanical properties of high-strength maraging steel metal materials. Applied Sciences, 2022, vol. 12, no. 20, pp. 10340. https://doi.org/10.3390/app122010340

15. Rizki M.A., Fedosov Yu.V. Development of adaptive laser head for compensating error of beam waist position during processing materials using laser beam spot detection method. Scientific and Technical Journal of Information Technologies, Mechanics and Optics , 2023, vol. 23, no. 5 , pp. 859– 870. https://doi.org/10.17586/2226-1494-2023-23-5-859-870

16. Evdokimov A., Jasiewicz F., Doynov N., Ossenbrink R., Michailov V. Simulation of surface heat treatment with inclined laser beam. Journal of Manufacturing Processes, 2022, vol. 81, pp. 107–114. https://doi.org/10.1016/j.jmapro.2022.06.051

17. Dai K., Shaw L. Distortion minimization of laser-processed components through control of laser scanning patterns. Rapid Prototyping Journal, 2002, vol. 8, no. 5, pp. 270–276. https://doi.org/10.1108/13552540210451732

18. Messaoudi H., Thiemicke F., Falldorf C., Bergmann R.B., Vollertsen F. Distortion-free laser beam shaping for material processing using a digital micromirror device. Production Engineering, 2017, vol. 11, no. 3, pp. 365–371. https://doi.org/10.1007/s11740-017-0722-y

19. Moraitis G.A., Labeas G.N. Residual stress and distortion calculation of laser beam welding for aluminum lap joints. Journal of Materials Processing Technology, 2008, vol. 198, no. 1-3, pp. 260–269. https://doi.org/10.1016/j.jmatprotec.2007.07.013

20. Zahrani E.G., Marasi A. Experimental investigation of edge effect and longitudinal distortion in laser bending process. Optics and Laser Technology, 2013, vol. 45, no. 1. pp. 301–307. https://doi.org/10.1016/j.optlastec.2012.06.031

21. Safdar S., Li N., Sheikh M.A., Liu Z. The effect of nonconventional laser beam geometries on stress distribution and distortions in laser bending of tubes. Journal of Manufacturing Science and Engineering, 2007, vol. 129, no. 3, pp. 592–600. https://doi.org/10.1115/1.2716715

22. Galaktionov I., Sheldakova J., Nikitin A., Toporovsky V., Kudryashov A. A hybrid model for analysis of laser beam distortions using monte carlo and Shack–Hartmann techniques: numerical study and experimental results. Algorithms, 2023, vol. 16, no. 7, pp. 337. https://doi.org/10.3390/a16070337

23. Marom D.M. Optical communications. Comprehensive Microsystems, 2007, vol. 3, pp. 219–265. https://doi.org/10.1016/B978-044452190-3.00035-5

24. Paschotta R. Laser Beams. RP Photonics Encyclopedia, 2005, https://doi.org/10.61835/ggt


Review

For citations:


Rizki M.A., Fedosov Yu.V. Analysis of the influence of defocused laser beam on uneven material surface processing based on mathematical model and simulation approach. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2025;25(2):212-221. https://doi.org/10.17586/2226-1494-2025-25-2-212-221

Views: 37


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)