Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

Deep learning-enhanced contour interpolation techniques for 3D carotid vessel wall segmentation

https://doi.org/10.17586/2226-1494-2025-25-3-457-465

Abstract

When studying human vessels using the contour interpolation method, there is a problem of insufficient data for training neural networks for automatic segmentation of the carotid artery wall. In this paper, automated methods of contour interpolation are proposed to expand the datasets, which allows for improved segmentation of vessel walls and atherosclerotic plaques. In this study, the performance of various interpolation methods is compared with the traditional nearest neighboring technique. A theoretical description and comparative evaluation of Linear, Polar, and Spline interpolation are presented. Quantitative metrics, including the Dice Similarity Coefficient, area and index differences, and normalized Hausdorff distances, are used to evaluate the performance of the methods. Performance evaluations are performed on various vessel morphologies for both the lumen and the outer wall boundaries. The study showed that Linear interpolation achieves better geometric performance (Cohen’s Kappa 0.92) and improved neural network performance (Score 0.86) compared to the State-of-the-Art model. The proposed interpolation methods consistently outperform nearest neighbor interpolation. Polar and spline methods are effective in generating anatomically plausible contours with improved smoothness and continuity, eliminating transition artifacts between slices. Statistical analysis confirmed good agreement and reduced variation of these methods. The results of the study are useful for the development of automated tools for assessing atherosclerotic plaque in carotid arteries, which is important for stroke prevention. Implementation of improved interpolation methods into clinical imaging workflows can significantly improve the reliability, accuracy, and clinical utility of vessel wall segmentation.

About the Authors

N. Ismail
ITMO University
Russian Federation

Nouar Ismail — PhD Student

Saint Petersburg, 197101



A. S. Vatian
ITMO University
Russian Federation

Alexandra S. Vatian — PhD, Dean

Saint Petersburg, 197101

sc 57191870868



T. A. Polevaya
ITMO University
Russian Federation

Tatyana A. Polevaya — Engineer, Software Developer

Saint Petersburg, 197101

sc 57193708570



A. A. Golubev
ITMO University
Russian Federation

Alexander A. Golubev — PhD Student

Saint Petersburg, 197101



D. A. Dobrenko
ITMO University
Russian Federation

Dmitry A. Dobrenko — PhD Student

Saint Petersburg, 197101

sc 58793748800



A. A. Zubanenko
IMV LLC; ITMO University
Russian Federation

Alexey A. Zubanenko — CEO

Saint Petersburg, 191119;

PhD Student

Saint Petersburg, 197101

sc 57215436184



N. F. Gusarova
ITMO University
Russian Federation

Natalia F. Gusarova — PhD, Senior Researcher, Associate Professor

Saint Petersburg, 197101

sc 57162764200



A. G. Vanyurkin
Almazov National Medical Research Centre
Russian Federation

Almaz G. Vanyurkin — Junior Researcher

Saint Petersburg, 197341

sc 57295278200



M. A. Chernyavskiy
Almazov National Medical Research Centre
Russian Federation

Mikhail A. Chernyavskiy — D.Sc. (Medicine), Head of the Department of vascular and endovascular surgery

Saint Petersburg, 197341

sc 55840916800



References

1. David E., Grazhdani H., Aliotta L., Gavazzi L.M., Foti P.V., Palmucci S., Ini C., Tiralongo F., Castiglione D., Renda M., Pacini P., Di Bella C., Solito C., Gigli S., Fazio A., Bella R., Basile A., Cantisani V. Imaging of carotid stenosis: where are we standing? Comparison of multiparametric ultrasound, CT angiography, and MRI angiography, with recent developments. Diagnostics, 2024, vol. 14, no. 16, pp. 1708. https://doi.org/10.3390/diagnostics14161708

2. Wei H., Zhang M., Li Y., Zhao X., Canton G., Sun J., Xu D., Zhou Z., Chen S., Ferguson M., Hatsukami T., Li R., Yuan C. Evaluation of 3D multi-contrast carotid vessel wall MRI: a comparative study. Quantitative Imaging in Medicine and Surgery, 2020, vol. 10, no. 1, pp. 269–282. https://doi.org/10.21037/qims.2019.09.11

3. Deng F, Le L, Sharma R., et al. MR vessel wall imaging. Reference article. Radiopaedia.org. 2019. Available at: https://doi.org/10.53347/rID-72016 (accessed: 24.01.2025)

4. Litjens G., Kooi T., Bejnordi B.E., Setio A.A.A., Ciompi F., Ghafoorian M., van der Laak J.A.W.M., van Ginneken B., Sánchez C.I. A survey on deep learning in medical image analysis. Medical Image Analysis, 2017, vol. 42, pp. 60–88. https://doi.org/10.1016/j.media.2017.07.005

5. Hachaj T., Ogiela M.R. Evaluation of carotid artery segmentation with centerline detection and active contours without edges algorithm. Lecture Notes in Computer Science, 2012, vol. 7465, pp. 468–478. https://doi.org/10.1007/978-3-642-32498-7_35

6. Hemmati H.R., Alizadeh M., Kamali-Asl A., Shirani S. Semiautomated carotid lumen segmentation in computed tomography angiography images. Journal of Biomedical Research, 2017, vol. 31, no. 6, pp. 548–558. https://doi.org/10.7555/JBR.31.20160107

7. Cuisenaire O. Fully automated carotid artery segmentation from CTA. The MIDAS Journal, 2009. https://doi.org/10.54294/6mmv98

8. Saba L., Sanagala S.S., Gupta S.K., Koppula V.K., Laird J.R., Viswanathan V., Sanches M.J., Kitas G.D., Johri A.M., Sharma N., Nicolaides A., Suri J.S. A multicenter study on carotid ultrasound plaque tissue characterization and classification using six deep artificial intelligence models: A stroke application. IEEE Transactions on Instrumentation and Measurement, 2021, vol. 70, pp. 2505312. https://doi.org/10.1109/TIM.2021.3052577

9. Wu J., Xin J., Yang X., Matkovic L., Zhao X., Zheng N., Li R. Segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black blood magnetic resonance imaging with multi-task learning. Medical Physics, 2023, vol. 51, no. 3, pp. 1775–1797. https://doi.org/10.1002/mp.16728

10. Zhou T., Tan T., Pan X., Tang H., Li J. Fully automatic deep learning trained on limited data for carotid artery segmentation from large image volumes. Quantitative Imaging in Medicine and Surgery, 2021, vol. 11, no. 1, pp. 67–83, 2021. https://doi.org/10.21037/qims-20-286

11. Samber D.D., Ramachandran S., Sahota A., Naidu S., Pruzan A., Fayad Z.A., Mani V. Segmentation of carotid arterial walls using neural networks. World Journal of Radiol, 2020, vol. 12, no. 1, pp. 1–9. https://doi.org/10.4329/wjr.v12.i1.1

12. Wang J., Yu F., Zhang M., Lu J., Qian Z. A 3D framework for segmentation of carotid artery vessel wall and identification of plaque compositions in multi-sequence MR images. Computerized Medical Imaging and Graphics, 2024, vol. 116, pp. 102402. https://doi.org/10.1016/j.compmedimag.2024.102402

13. Huang Q., Tian H., Jia L., Li Z., Zhou Z. A review of deep learning segmentation methods for carotid artery ultrasound images. Neurocomputing. 2023. V. 545. P. 126298. https://doi.org/10.1016/j.neucom.2023.126298

14. Yoo SW., Yang S., Kim J., Huh K., Lee S., Heo M., Yi W. CACSNet for automatic robust classification and segmentation of carotid artery calcification on panoramic radiographs using a cascaded deep learning network. Scientific Reports, 2024, vol. 14, no. 1, pp. 13894. https://doi.org/10.1038/s41598-024-64265-4

15. Wang Y., Yao Y. Application of artificial intelligence methods in carotid artery segmentation: a review. IEEE Access, 2023, vol. 11, pp. 13846–13858. https://doi.org/10.1109/ACCESS.2023.3243162

16. Li Y., Wu Y., He J., Jiang W., Wang J., Peng Y., Jia Y., Xiong T., Jia K., Yi Z., Chen M. Automatic coronary artery segmentation and diagnosis of stenosis by deep learning based on computed tomographic coronary angiography. European Radiology, 2022, vol. 32, no. 9, pp. 6037–6045. https://doi.org/10.1007/s00330-022-08761-z

17. Alblas D., Brune C., Wolterink J.M. Deep learning-based carotid artery vessel wall segmentation in black-blood mri using anatomical priors. Proceedings of SPIE, 2022, vol. 12032, pp. 120320Y. https://doi.org/10.1117/12.2611112

18. Huang X., Wang J., Li Z. 3D carotid artery segmentation using shapeconstrained active contours. Computers in Biology and Medicine, 2023, vol. 153, pp. 106530. https://doi.org/10.1016/j.compbiomed.2022.106530

19. Hu S., Liao Z., Xia Y. Label propagation for 3D carotid vessel wall segmentation and atherosclerosis diagnosis. arXiv, 2022, arXiv:2208.13337. https://doi.org/10.48550/arXiv.2208.13337


Review

For citations:


Ismail N., Vatian A.S., Polevaya T.A., Golubev A.A., Dobrenko D.A., Zubanenko A.A., Gusarova N.F., Vanyurkin A.G., Chernyavskiy M.A. Deep learning-enhanced contour interpolation techniques for 3D carotid vessel wall segmentation. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2025;25(3):457-465. https://doi.org/10.17586/2226-1494-2025-25-3-457-465

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)