Nonlinear transmission of fluorophosphate glass with quantum dots of cadmium and lead sulfides and selenides under near-IR of femtosecond laser irradiation
https://doi.org/10.17586/2226-1494-2025-25-4-602-608
Abstract
Nonlinear optical properties of fluorophosphate glass with quantum dots of cadmium sulfides and selenides (CdS and CdSe) and lead (PbS and PbSe) were studied using a pulsed femtosecond near-IR laser. Fluorophosphate glasses with CdS, CdSe, PbS and PbSe quantum dots were obtained by high-temperature synthesis with additional heat treatment. Nonlinear absorption was studied under the action of a pulsed laser at a wavelength of 1050 nm and a duration of 100 fs. It is shown that the transmission at 1050 nm in fluorophosphate glasses with CdS and CdSe quantum dots is 0.78 and 0.88, respectively. In addition, increasing the average power of femtosecond laser radiation from 30 to 2000 mW does not lead to a change in their transmission. For this wavelength, the transmission was 0.1 for the sample with PbS nanocrystals and 0.65 for the sample with PbSe quantum dots. A decrease in transmission with increasing laser radiation power was shown for glass samples with PbS and PbSe quantum dots, i. e., nonlinear transmission (limiting) was observed. The threshold for limiting the power of laser radiation passing through the sample, i.e., the power at which the transmission decreases by more than 20 %, for the sample with PbS quantum dots was 1265 mW, and for an input power of about 1530 mW, this sample had a transmission of less than 0.1 %. The laser power limitation threshold for the PbSe quantum dot sample was 600 mW, and for an input power of about 750 mW it had a transmittance of less than 0.1 %. Fluorophosphate glasses with lead sulfide and selenide quantum dots can be used as limiting filters to protect photodetectors from pulsed laser radiation in the near IR range.
Keywords
About the Authors
N. V. NikonorovRussian Federation
Nikolay V. Nikonorov, D.Sc. (Physics & Mathematics), Full Professor
197101; Saint Petersburg
sc 7003772604
E. V. Kolobkova
Russian Federation
Elena V. Kolobkova, D.Sc. (Chemistry), Full Professor, Professor of Practice
197101; 190013; Saint Petersburg
sc 57604636700
A. N. Tsypkin
Russian Federation
Anton N. Tsypkin, D.Sc. (Physics & Mathematics), Associate Professor, Associate Professor at the Department
197101; Saint Petersburg
sc 56366230300
A. O. Ismagilov
Russian Federation
Azat O. Ismagilov, PhD (Physics & Mathematics), Scientific Researcher
197101; Saint Petersburg
sc 57195673891
Е. N. Oparin
Russian Federation
Еgor N. Oparin, PhD Student, Scientific Researcher
197101; Saint Petersburg
sc 57209803630
V. A. Aseev
Russian Federation
Vladimir A. Aseev, PhD (Physics & Mathematics), Associate Professor
197101; Saint Petersburg
sc 7004254881
References
1. Shirk J.S., Pong R.G.S., Flom S.R., Boyle M.E., Snow A.W. Materials for reverse saturable absorption optical limiters. Materials Research Society Symposium Proceedings, 1994, vol. 374, pp. 201–209. doi: 10.1557/PROC-374-201
2. Hollins R.C. Materials for optical limiters. Current Opinion in Solid State and Materials Science, 1999, vol. 4, no. 2, pp. 189–196. doi: 10.1016/S1359-0286(99)00009-1
3. Wang J., Blau W.J. Inorganic and hybrid nanostructures for optical limiting. Journal of Optics A: Pure and Applied Optics, 2009, vol. 11, no. 2, pp. 024001. doi: 10.1088/1464-4258/11/2/024001
4. Kost A., Jensen J.E., Klein M.B., McCahon S.W., Haeri M.B., Ehritz M.E. Optical limiting with C60 solutions. Proceedings of SPIE, 1994, vol. 2229, pp. 78–90.
5. Kost A., Jensen J.E., Klein M.B., Withers J.C., Loufty R.O., Haeri M.B., Ehritz M.E. Fullerene-based large-area passive broadband laser filters. Proceedings of SPIE, 1994, vol. 2284, pp. 208–219. doi: 10.1117/12.196131
6. Vincent D., Petit S., Chin S.L. Optical limiting studies in a carbon-black suspension for subnanosecond and subpicosecond laser pulses. Applied Optics, 2002, vol. 41, no. 15, pp. 2944–2946. doi: 10.1364/AO.41.002944
7. Wang J., Chen Y., Blau W.J. Carbon nanotubes and nanotube composites for nonlinear optical devices. Journal of Materials Chemistry, 2009, vol. 19, no. 40, pp. 7425–7443. doi: 10.1039/b906294g
8. Koudoumas E., Kokkinaki O., Konstantaki M., Couris S., Korovin S., Detkov P., Kuznetsov V., Pimenov S., Pustovoi V. Onion-like carbon and diamond nanoparticles for optical limiting. Chemical Physics Letters, 2002, vol. 357, no. 5–6, pp. 336–340. doi: 10.1016/s0009-2614(02)00557-2
9. Wang J., Früchtl D., Blau W.J. The importance of solvent properties for optical limiting of carbon nanotube dispersions. Optics Communications, 2010, vol. 283, no. 3, pp. 464–468. doi: 10.1016/j.optcom.2009.10.020
10. Venediktova A.V., Vlasov A.Y., Obraztsova E.D., Videnichev D.A., Kislyakov I.M., Sokolova E.P. Stability and optical limiting properties of a single wall carbon nanotubes dispersion in a binary water-glycerol solvent. Applied Physics Letters, 2012, vol. 100, no. 25, pp. 251903. doi: 10.1063/1.4729790
11. Shirshnev P.S., Nikonorov N.V., Sobolev D.I., Kim A.A., Kislyakov I.M., Povarov S.S., Belousova I.M. Nonlinear optical limiter of pulsed laser radiation based on potassium–aluminum–borate glass with copper chloride nanocrystals. Journal of Optical Technology. 2017, vol. 84, no. 10, pp. 705–709. doi: 10.1364/JOT.84.000705
12. Lipovskii A.A., Yakovlev I.E., Kolobkova E.V., Petrikov V.D. Formation and growth of semiconductor nanocrystals in phosphate glass matrix. Journal of the European Ceramic Society, 1999, vol. 19, no. 6-7, pp. 865–869. doi: 10.1016/S0955-2219(98)00333-1
13. Kolobkova E.V., Lipovskii A.A., Petrikov V.D., Melekhin V.G. Fluorophosphate glasses with quantum dots based on lead sulfide. Glass Physics and Chemistry, 2002, vol. 28, no. 4, pp. 251–255. doi: 10.1023/A:1019918530283
14. Kolobkova E.V., Polyakova A.V., Abdrshin A.N., Nikonorov N.V., Aseev V.A. Nanostructured glass ceramic based on fluorophosphate glass with PbSe quantum dots. Glass Physics and Chemistry, 2015, vol. 41, no. 1, pp. 127–131. doi: 10.1134/S1087659615010137
15. Melekhin V.G., Kolobkova E.V., Lipovskii A.A., Petrikov V.D., Malyarevich A.M., Savitsky V.G. Fluorophosphate glasses doped with PbSe quantum dots and their nonlinear optical characteristics. Glass Physics and Chemistry, 2008, vol. 34, no. 4, pp. 351–355. doi: 10.1134/s1087659608040020
16. Vaynberg B., Matusovsky M., Rosenbluh M., Kolobkova E., Lipovskii A. High optical nonlinearity of CdSxSe1-X microcrystals in fluorine-phosphate glass. Optics Communications, 1996, vol. 132, no. 3-4, pp. 307–310. doi: 10.1016/0030-4018(96)00373-2
17. William Yu W., Lianhua Qu, Wenzhuo Guo, and Xiaogang Peng. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials, 2003, vol. 15, no. 14, pp. 2854–2860. doi: 10.1021/cm034081k
18. Allan G., Delerue C. Confinement effects in PbSe quantum wells and nanocrystals. Physical Review B, 2004, vol. 70, no. 24, pp. 245321. doi: 10.1103/PhysRevB.70.245321
19. Kolobkova E., Lipatova Z., Abdrshin A., Nikonorov N. Luminescent properties of fluorine phosphate glasses doped with PbSe and PbS quantum dots. Optical Materials, 2017, vol. 65, pp. 124–128. doi: 10.1016/j.optmat.2016.09.033
20. Boyd R.W., Gaeta A.L., Giese E. Nonlinear optics. Springer Handbook of Atomic, Molecular, and Optical Physics, 2023, pp. 1097–1110. doi: 10.1007/978-3-030-73893-8_76
21. Yu J., Durmusoglu E.G., Ren Y., Fang W., Zhou Y., Chu L., Liu B., Demir H.V. Dual type-II colloidal quantum wells for efficient nonlinear optical limiting. ACS Nano, 2025, vol. 19, no. 9, pp. 9273–9281. doi: 10.1021/acsnano.5c00391
22. Dvornikov D.P., Ivchenko E.L., Pershin V.V., Yaroshetskii I.D. The influence of transitions through deep impurity centers on the process of nonlinear absorption in semiconductors. Fizika i tehnika poluprovodnikov, 1976, vol. 10, no. 12, pp. 2316–2320. (in Russian)
23. Grasyuk A.Z., Zubarev I.G., Mironov A.B., Poluéktov I.A. The spectrum of a two-photon interband impurity absorption of laser radiation in GaAs. Fizika i tehnika poluprovodnikov, 1976, vol. 10, no. 2, pp. 262–270. (in Russian)
24. Areshev I.I. Two-photon interband absorption of laser radiation in semiconductors with the participation of impurity levels. Fizika i tehnika poluprovodnikov, 1977, vol. 11, no. 5, pp. 962–964. (in Russian)
25. Baltraneyunas R.A., Vaitkus Yu.Yu., Gavryushin V.I. Light absorption by nonequilibrium, two-photon-generated, free and localized carriers in ZnTe. Soviet Physics — JETP, 1984. vol. 60, no. 1, pp. 43–48.
26. Kolobkova E., Alkhlef A., Mironov L.Y., Bogdanov O. Effect of the phosphate content on the spectroscopic and lasing properties of Er<sup>3+</sup>/Yb<sup>3+</sup>-doped fluorophosphate glasses. Ceramics International, 2020, vol. 46, no. 16, part B, pp. 26396–26402. doi: 10.1016/j.ceramint.2020.04.221
27. Bogdanov O.A., Kolobkova E.V., Perevislov S.N. Thermomechanical properties and structure of fluorophosphate glasses activated with Nd<sup>3+</sup> at different concentrations of Ba(PO<sub>3</sub>)<sub>2</sub>. Glass Physics and Chemistry, 2021, vol. 47, no. 4, pp. 334–339. doi: 10.1134/S1087659621040052
Review
For citations:
Nikonorov N.V., Kolobkova E.V., Tsypkin A.N., Ismagilov A.O., Oparin Е.N., Aseev V.A. Nonlinear transmission of fluorophosphate glass with quantum dots of cadmium and lead sulfides and selenides under near-IR of femtosecond laser irradiation. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2025;25(4):602-608. (In Russ.) https://doi.org/10.17586/2226-1494-2025-25-4-602-608