Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

Characterization of Ar:N2 plasma mixture with optical emission spectroscopy during deposition of NbN coating

https://doi.org/10.17586/2226-1494-2025-25-4-617-625

Abstract

   The combination of optical emission spectroscopy with models of plasma light emission represents a non-intrusive and adaptable approach for determining plasma characteristics.

   This study aimed to investigate the plasma electron temperature, electron density, and other parameters of plasma within context DC magnetron sputtering, under a various experimental condition, in the existence of a Niobium target and an Argon:Nitrogen gas mixture.

   To evaluate electron temperature and electron density, optical emission spectroscopy was employed at a range of discharge voltages (400–800 V) and gas pressures (0.04–3.3 mbar). The measurements were taken during the deposition of a Niobium nitride coating with in magnetron sputtering setup, maintaining a gap distance of 0.06 m and a total flow rate of 40 Standard Cubic Centimeters per Minute. The temperature of electron was assessed using Boltzmann plot strategy with several ion lines Ar+ lines, while density of electron was determined from the intensity ratio of atomic to ionic lines using Saha-Boltzmann equation. The results demonstrate that, for the plasma under investigation, an increase in the applied voltage lead to an elevation of temperature of electron, while an increase in the working pressure results in a reduction in the temperature of electron. Conversely, the density of electron decreases with the increasing applied voltage and increases with rising working pressure. Additionally, the findings indicate that the introduction of a modest quantity of nitrogen gas into the discharge source resulted in improved electrical characterization of the glowing discharge plasma during the Niobium nitride coating deposition process.

About the Authors

H. Mohsin Roomy
Ministry of Education
Iraq

Harakat Mohsin Roomy, PhD, Full Professor

10011; Baghdad



M. K. Khalaf
Ministry of Science and Technology
Iraq

Mohammed K. Khalaf, PhD, Full Professor

10011; Baghdad



M. G. Hammed
University of Anbar
Iraq

Mohammed G. Hammed, PhD, Full Professor

31011; Ramadi

sc 59162014200



References

1. Laroussi M. Low temperature plasma jets: characterization and biomedical. Plasma, 2020, vol. 3, no. 2, pp. 54–58. doi: 10.3390/plasma3020006

2. Hankins O.E., Bourham M.A., Mann D. Observations of visible light emission from interactions between an electrothermal plasma and a propellant. IEEE Transactions on Magnetics, 1997, vol. 33, no. 1, pp. 295–298. doi: 10.1109/20.559972

3. Pereira S., Pinto E., Ribeiro P.A., Sério S. Study of a Cold Atmospheric Pressure Plasma jet device for indirect treatment of squamous cell carcinoma. Clinical Plasma Medicine, 2019, vol. 13, pp. 9–14. doi: 10.1016/j.cpme.2018.09.001

4. Roomy H., Yasoob N., Murbat H. Evaluate the argon plasma jet parameters by optical emission spectroscopy. Kuwait Journal of Science, 2023, vol. 50, no. 2, pp. 163–167. doi: 10.1016/j.kjs.2023.03.001

5. Lars Z. Overview of electric field applications in energy and process engineering. Energies, 2018, vol. 11, no. 6, pp. 1361. doi: 10.3390/en11061361

6. Jabur Y.K., Hammed M.G., Khalaf M.K. DC glow discharge plasma characteristics in Ar/O<sub>2</sub> gas mixture. Iraqi Journal of Science, 2021, vol. 62, no. 2, pp. 475–482. doi: 10.24996/ijs.2021.62.2.13

7. Jabur Y.K., Khalaf M.K., Hammed M.G. A comparative study of the electrical characteristics of generating argon plasma in different inter-electrode spacing discharges. International Journal of Nanoelectronics and Materials, 2020, vol. 13, no. 3, pp. 493–500.

8. Zaplotnik Z., Primc G., Vesel A. Optical emission spectroscopy as a diagnostic tool for characterization of atmospheric plasma jets. Applied Sciences, 2021, vol. 11, no. 5, pp. 2275. doi: 10.3390/app11052275

9. Hameed T.A., Kadhem S.J. Plasma diagnostic of gliding arc discharge at atmospheric pressure. Iraqi Journal of Science, 2019, vol. 60, no. 12, pp. 2649–2655. doi: 10.24996/ijs.2019.60.12.14

10. Wybranowski T., Ziomkowska B., Cyrankiewicz M., Bosek M., Pyskir J., Napiórkowska M., Kruszewski S. A study of the oxidative processes in human plasma by time-resolved fluorescence spectroscopy. Scientific Reports, 2022, vol. 12, no. 1, pp. 9012. doi: 10.1038/s41598-022-13109-0

11. Stryczewska H.D., Boiko O. Applications of plasma produced with electrical discharges in gases for agriculture and biomedicine. Applied Sciences, 2022, vol. 12, no. 9, pp. 4405. doi: 10.3390/app12094405

12. Dyatko N.A., Ionikh Y.Z., Napartovich A.P. Influence of nitrogen admixture on plasma characteristics in a DC argon glow discharge and in afterglow. Atoms, 2019, vol. 7, no. 1, pp. 13. doi: 10.3390/atoms7010013

13. Wu Y., Cheng J.-H., Sun D.-W. Blocking and degradation of aflatoxins by cold plasma treatments: Applications and mechanisms. Trends in Food Science & Technology, 2021, vol. 109, pp. 647–661. doi: 10.1016/j.tifs.2021.01.053

14. Ananthanarasimhan J., Gangwar R.K., Leelesh P., Srikar P.S.N.S.R., Shivapuji A.M., Roa L. Estimation of electron density and temperature in an argon rotating gliding arc using optical and electrical measurements. Journal of Applied Physics, 2021, vol. 129, no. 22, pp. 223301. doi: 10.1063/5.0044014

15. Carter J.A., Barros A.I., Nóbrega J.A., Donati G.L. Traditional calibration methods in atomic spectrometry and new calibration strategies for inductively coupled plasma mass spectrometry. Frontiers in Chemistry, 2018, vol. 6, pp. 504. doi: 10.3389/fchem.2018.00504

16. Higuchi T., Noma M., Yamashita M., Urabe K., Hasegawa S., Eriguchi. K. Characterization of surface modification mechanisms for boron nitride films under plasma exposure. Surface and Coatings Technology, 2019, vol. 377, pp. 124854. doi: 10.1016/j.surfcoat.2019.07.071

17. Nasakina E.O., Sevostyanov M.A., Baikin A.S., Konushkin S.V., Sergienko K.V., Kaplan M.A., Fedyuk I.M., Leonov A.V., Kolmakov A.G. Using of magnetron sputtering for biocompatible composites creating. Advances in Composite Materials Development, 2018, pp. 3–23. doi: 10.5772/intechopen.79609

18. Doyle S.J. A study of optical and physical probe diagnostic techniques for atmospheric-pressure plasmas. A thesis degree of Master of Science in Engineering. Huntsville, University of Alabama, 2017. 109 p.

19. Adams S.F., Murray C.S., Pohl N.A. Electron temperature measurement from neutral atomic tungsten emission line ratio. Review of Scientific Instruments, 2025, vol. 96, no. 1, pp. 013502. doi: 10.1063/5.0238579

20. Khalaf M.K., Al-Gaffer A.N.A., Mohsin R.H. Estimation of plasma parameters in vanadium magnetron sputtering using optical emission spectroscopy at different experimental formation conditions. AIP Conference Proceedings, 2020, vol. 2290, pp. 050040. doi: 10.1063/5.0027435

21. Devia D.M., Rodriguez-Restrepo L.V., Restrepo-Parra E. Methods employed in optical Emission Spectroscopy Analysis : a review. Ingeniería y Ciencia, 2015, vol. 11, no. 21, pp. 239–267. doi: 10.17230/ingciencia.11.21.12

22. Ley H. Analytical methods in plasma diagnostic by optical emission spectroscopy : a tutorial review. Journal of Science and Technology, 2014, vol. 6, no. 1, pp. 49–66.

23. Bittencourt J.A. Fundamentals of Plasma Physics. Springer, 2004, 679 p. doi: 10.1007/978-1-4757-4030-1

24. Dobbyn K. Design and application of a plasma impedance monitor for RF plasma diagnostics. A thesis for the degree of Master of Science. Dublin City University, 2000. 84 p.

25. Akatsuka H., Tanaka Y. Discussion on electron temperature of gas-discharge plasma with non-Maxwellian electron energy distribution function based on entropy and statistical physics. Entropy, 2023, vol. 25, no. 2, pp. 276. doi: 10.3390/e25020276

26. Chen H., Yuan D., Wu A., Lin X., Li X. Review of low-temperature plasma nitrogen fixation technology. Waste Disposal & Sustainable Energy, 2021, vol. 3, no. 3, pp. 201–217. doi: 10.1007/s42768-021-00074-z

27. Goldston R.J., Rutherford P.H. Introduction to Plasma Physics. CRC Press, 1995, 510 p. doi: 10.1201/9780367806958


Review

For citations:


Roomy H.M., Khalaf M.K., Hammed M.G. Characterization of Ar:N2 plasma mixture with optical emission spectroscopy during deposition of NbN coating. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2025;25(4):617-625. https://doi.org/10.17586/2226-1494-2025-25-4-617-625

Views: 140

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)