Automatic recognition of internal structures in translucent objects based on hologram-moire interferometry
https://doi.org/10.17586/2226-1494-2022-22-5-854-858
Abstract
A new principal optical scheme for automatic recognition of the shape and relative position of inclusions in moving translucent objects is presented. A new criterion for automatic identification of structures (their localization) based on the analysis of the interference pattern projected on the surface of a CCD matrix, which is an element of the proposed scheme of an optical correlator based on the confocal laser tomograph, has been introduced. The results of this work may be of interest to the specialists in the field of non-destructive control; it can find application in the relevant fields.
About the Authors
K. A. LyakhovRussian Federation
Konstantin A. Lyakhov — PhD, Senior Researcher
Moscow, 119991
sc 18042561700
V. A. Grigoriev
Russian Federation
Vasiliy A. Grigoriev — General Director
Moscow Region, Solnechnogorsk, 147552
E. G. Tsiplakova
Russian Federation
Elizaveta G. Tsiplakova — Student
Saint Petersburg, 197101,
sc 57348346400
References
1. Ellebrecht D.B., Kuempers Ch., Horn M., Keck T., Kleemann M. Confocal laser microscopy as novel approach for real-time and invivo tissue examination during minimal-invasive surgery in colon cancer // Surgical Endoscopy. 2019. V. 33. N 6. P. 1811–1817. https://doi.org/10.1007/s00464-018-6457-9
2. Hillman C.S., Lührs Ch., Bonin T., Koch P., Hüttmann G. Holoscopy– holographic optical coherence tomography // Optics Letters. 2011. V. 36. N 13. P. 2390–2392. https://doi.org/10.1364/OL.36.002390
3. Ahmad A., Srivastava V., Dubey V., Mehta D.S. Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity // Applied Optics Letters. 2015. V. 106. N 9. P. 093701. https://doi.org/10.1063/1.4913870
4. Stetson K.A., Powel R.L. Hologram interferometry // Journal of the Optical Society of America. 1966. V. 56. N 9. P. 1161–1166. https://doi.org/10.1364/JOSA.56.001161
5. Brandt G.B. Hologram-moiré interferometry for transparent objects // Applied Optics. 1967. V. 6. N 9. P. 1535–1540. https://doi.org/10.1364/AO.6.001535
6. Ryf R., Montemezzani G., Günter P., Grabar A.A., Stoika I.M., Vysochanskii Yu.M. High-frame-rate joint Fourier-transform correlator based on Sn2P2S6 crystal // Optics Letters. 2001. V. 26. N 21. P. 1666–1668. https://doi.org/10.1364/OL.26.001666
7. Vander Lugt A. Signal detection by complex spatial filtering // IEEE Transactions on Information Theory. 1964. V. 10. N 2. P. 139–145. https://doi.org/10.1109/TIT.1964.1053650
8. Weaver C.S., Goodman J.W. A technique for optically convolving two functions // Applied Optics. 1966. V. 5. N 7. P. 1248–1249. https://doi.org/10.1364/AO.5.001248
9. Кульчин Ю.Н., Витрик О.Б., Камшилин А.А., Ромашко Р.В. Адаптивные методы обработки спекл-модулированных оптических полей. М.: Физматлит, 2009. 223 с.
Review
For citations:
Lyakhov K.A., Grigoriev V.A., Tsiplakova E.G. Automatic recognition of internal structures in translucent objects based on hologram-moire interferometry. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2022;22(5):854-858. (In Russ.) https://doi.org/10.17586/2226-1494-2022-22-5-854-858