Optical spin currents in chiral optical fibers
https://doi.org/10.17586/2226-1494-2025-25-5-807-816
Abstract
This paper is devoted to the study of optical chiral cylindrical waveguides from the point of view of their application in optical spintronics. In the paper, it is proposed to use a chiral optical cylindrical waveguide as an optical spin diode. The mode structure of the waveguide under consideration is calculated and the dispersion equation for fundamental modes of the waveguide with an azimuthal number m = ±1 is numerically solved for various values of the chirality parameter of the waveguide material. Expressions for the energy flux and the optical spin current inside the waveguide are derived. It is shown that in the single-mode regime, the direction of the optical spin currents in the waveguide is determined exclusively by the sign of the chirality parameter of the waveguide material, regardless of the azimuthal number and the direction of mode propagation. Due to this, the superposition of m = 1 and m = –1 modes propagating in opposite directions will have a zero energy flux, but a nonzero optical spin current. Our results expand the element base of optical spintronics and open up new ways for creating energy-efficient optical computing systems.
Keywords
About the Authors
I. A. DeriyChina
Ilya A. Deriy — Junior Researcher; Junior Reseacher
sc 57221052856
Qingdao, 266000
Saint Petersburg, 197101
D. F. Kornovan
Russian Federation
Danil F. Kornovan — PhD (Physics & Mathematics), Engineer
sc 56644703300
Saint Petersburg, 197101
M. I. Petrov
Russian Federation
Mihail I. Petrov — PhD (Physics & Mathematics), Associate Professor, Senior Researcher
Researcher ID K-5924-2012
Saint Petersburg, 197101
A. A. Bogdanov
China
Andrey A. Bogdanov — PhD (Physics & Mathematics), Senior Researcher, Harbin Engineering University, Qingdao, 266000, China; Senior Researcher, Associate Professor of Practice
sc 56393877900
Qingdao, 266000
Saint Petersburg, 197101
References
1. Li Y., Monticone F. Exploring the role of metamaterials in achieving advantage in optical computing // Nature Computational Science. 2024. V. 4. N 8. P. 545–548. https://doi.org/10.1038/s43588-024-00657-w
2. McMahon P.L. The physics of optical computing // Nature Reviews Physics. 2023. V. 5. N 12. P. 717–734. https://doi.org/10.1038/s42254-023-00645-5
3. Chanana A., Larocque H., Moreira R., Carolan J., Guha B., Melo E.G., et al. Ultra-low loss quantum photonic circuits integrated with single quantum emitters // Nature Communications. 2022. V. 13. N 1. P. 7693. https://doi.org/10.1038/s41467-022-35332-z
4. Dong T., Liang J.J., Camayd-Muñoz S., Liu Y., Tang H., Kita S., et al. Ultra-low-loss on-chip zero-index materials // Light: Science & Applications. 2021. V. 10. N 1. P. 10. https://doi.org/10.1038/s41377-020-00436-y
5. Blundell S., Radford T.W., Ajia I.A., Lawson D., Yan X.Z., Banakar M., et al. Ultracompact programmable silicon photonics using layers of low-loss phase-change material Sb2Se3 of increasing thickness // ACS Photonics. 2025. V. 12. N 3. P. 1382–1391. https://doi.org/10.1021/acsphotonics.4c01789
6. Bader S.D., Parkin S.S.P. Spintronics. Annual Review of Condensed Matter Physics, 2010, vol. 1, pp. 71–88. https://doi.org/10.1146/annurev-conmatphys-070909-104123
7. Pulizzi F. Spintronics. Nature Materials, 2012, vol. 11, no. 5, pp. 367. https://doi.org/10.1038/nmat3327
8. Žutić I., Fabian J., Sarma S.D. Spintronics: Fundamentals and applications. Reviews of Modern Physics, 2004, vol. 76, no. 2, pp. 323–410. https://doi.org/10.1103/RevModPhys.76.323
9. Qin J., Sun B., Zhou G., Guo T., Chen Y., Ke C., et al. From spintronic memristors to quantum computing. ACS Materials Letters, 2023, vol. 5, no. 8. pp. 2197–2215. https://doi.org/10.1021/acsmaterialslett.3c00088
10. Yang H., Valenzuela S.O., Chshiev M., Couet S., Dieny B., Dlubak B., et al. Two-dimensional materials prospects for non-volatile spintronic memories. Nature, 2022, vol. 606, no. 7915, pp. 663–673. https://doi.org/10.1038/s41586-022-04768-0
11. Bliokh K.Y., Bekshaev A.Y., Nori F. Dual electromagnetism: helicity, spin, momentum and angular momentum. New Journal of Physics, 2013, vol. 15, pp. 033026. https://doi.org/10.1088/1367-2630/15/3/033026
12. Bliokh K.Y., Rodríguez-Fortuño F.J., Nori F., Zayats A.V. Spin–orbit interactions of light. Nature Photonics, 2015, vol. 9, no. 12, pp. 796–808. https://doi.org/10.1038/nphoton.2015.201
13. Bliokh K.Y., Nori F. Transverse and longitudinal angular momenta of light. Physics Reports, 2015, vol. 592, pp. 1–38. https://doi.org/10.1016/j.physrep.2015.06.003
14. Marrucci L., Manzo C., Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters, 2006, vol. 96, no. 16, pp. 163905. https://doi.org/10.1103/PhysRevLett.96.163905
15. Erhard M., Fickler R., Krenn M., Zeilinger A. Twisted photons: new quantum perspectives in high dimensions. Light: Science & Applications, 2018, vol. 7, pp. 17146. https://doi.org/10.1038/lsa.2017.146
16. Nagali E., Giovannini D., Marrucci L., Slussarenko S., Santamato E., Sciarrino F. Experimental optimal cloning of four-dimensional quantum states of photons. Physical Review Letters, 2010, vol. 105, no. 7, pp. 073602. https://doi.org/10.1103/PhysRevLett.105.073602
17. Deriy I., Kornovan D., Petrov M., Bogdanov A. Optical spintronics: towards optical communication without energy transfer. arXiv, 2025, arXiv:2505.10489. https://doi.org/10.48550/arXiv.2505.10489
18. Wu X., Tong L. Optical microfibers and nanofibers. Nanophotonics, 2013, vol. 2, no. 5-6, pp. 407–428. https://doi.org/10.1515/nanoph-2013-0033
19. Nayak K.P., Kien F.L., Nakajima K., Miyazaki H.T., Sugimoto Y., Hakuta K. Nano-structured optical nanofibers for cavity-QED. Proc. of the Conference on Lasers and Electro-Optics (CLEO), 2011, pp. QFC2. https://doi.org/10.1364/qels.2011.qfc2
20. Le Kien F., Rauschenbeutel A. Nanofiber-based all-optical switches. Physical Review A, 2016, vol. 93, no. 1, pp. 013849. https://doi.org/10.1103/PhysRevA.93.013849
21. Guo J., Liu X., Jiang N., Yetisen A., Yuk H., Yang C., et al. Highly stretchable, strain sensing hydrogel optical fibers. Advanced Materials, 2016, vol. 28, no. 46, pp. 10244–10249. https://doi.org/10.1002/adma.201603160
22. Russell P.S.J., Beravat R., Wong G.K.L. Helically twisted photonic crystal fibres. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, vol. 375, no. 2087, pp. 20150440. https://doi.org/10.1098/rsta.2015.0440
23. Machnev A.A., Pushkarev A.P., Tonkaev P., Noskov R.E., Rusimova K.R., Mosley P.J., et al. Modifying light–matter interactions with perovskite nanocrystals inside antiresonant photonic crystal fiber. Photonics Research, 2021, vol. 9, no. 8, pp. 1462–1469. https://doi.org/10.1364/PRJ.422640
24. Kolchanov D.S., Machnev A., Blank A., Barhom H., Zhu L., Lin Q., et al. Thermo-optics of gilded hollow-core fibers. Nanoscale, 2024, vol. 16, no. 29, pp. 13945–13952. https://doi.org/10.1039/D3NR05310E
25. Bialynicki-Birula I., Bialynicka-Birula Z. The role of the Riemann– Silberstein vector in classical and quantum theories of electromagnetism. Journal of Physics A: Mathematical and Theoretical, 2013, vol. 46, no. 5, pp. 053001. https://doi.org/10.1088/1751-8113/46/5/053001
26. Belkovich I.V., Kogan B.L. Utilization of Riemann-Silberstein vectors in electromagnetics. Progress in Electromagnetics Research B, 2016, vol. 69, no. 1, pp. 103–116. https://doi.org/10.2528/pierb16051809
27. Snyder A.W., Love J. Optical Waveguide Theory. Chapman and Hall, 1983, 746 p.
28. Seaborn J.B. Hypergeometric Functions and Their Applications. Springer, 2013, 268 p.
Review
For citations:
Deriy I.A., Kornovan D.F., Petrov M.I., Bogdanov A.A. Optical spin currents in chiral optical fibers. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2025;25(5):807-816. https://doi.org/10.17586/2226-1494-2025-25-5-807-816































