Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

Ablation of bulk chalcogenide glass As2Se3 by high-repetition-rate femtosecond laser pulses

https://doi.org/10.17586/2226-1494-2025-25-6-1003-1013

Abstract

   Femtosecond laser processing of chalcogenide glasses is a promising method for high-precision modification of their structure and properties for the development of optical elements for infrared photonics. One of the key challenges is to increase the processing speed while maintaining high spatial accuracy and minimal thermal damage. When using laser irradiation modes with a high pulse repetition rate, which ensures increased productivity of technologies, the mechanisms of phase-chemical transformations change and the contribution of accumulative heating increases. However, the dynamics of these processes in bulk material remains insufficiently studied. This paper studies the mechanism of phase and chemical composition transformation of As2Se3 bulk chalcogenide glass under the action of femtosecond laser pulses in the intense ablation modes.

   The objects of study are plates of chalcogenide glass As2Se3 irradiated by femtosecond laser pulses with a wavelength of 515 nm at repetition rates up to 1 MHz.

   The irradiated samples are analyzed using digital optical microscopy and Raman spectroscopy. Theoretical analysis includes both calculations of photoexcitation and heating of the semiconductor by a single laser pulse as well as calculations of accumulative heating of the sample surface, taking into account three-dimensional heat removal. The single-pulse laser ablation threshold was established at a laser pulse repetition rate of 1 kHz and the parameters of the power-law dependence of the ablation threshold on the number of pulses (incubation effect) were determined. A detailed analysis of the morphology of the irradiated samples and the chemical composition of the laser ablation products was carried out revealing the formation of amorphous selenium (a-Se) and arsenolite crystals (As2O3). Theoretical analysis allowed us to estimate the degree of heating and photoexcitation of As2Se3 chalcogenide glass by a single laser pulse and revealed a significant contribution of the heat accumulation effect to the surface temperature rise at a pulse repetition rate of 1 MHz. Based on the combined experimental and theoretical results obtained, a vapor-phase mechanism of phase and chemical transformation in As2Sebulk glass has been established during femtosecond laser ablation with a pulse repetition rate of 1 MHz. These findings open up prospects for the development of high-performance technologies for femtosecond laser microstructuring of chalcogenide materials in photonics and sensing applications.

About the Authors

A. A. Shamova
ITMO University
Russian Federation

Alexandra A. Shamova, PhD (Physics & Mathematics), Assistant, Junior Researcher

197101; Saint Petersburg

sc 57103706700



D. S. Polyakov
ITMO University
Russian Federation

Dmitry S. Polyakov, PhD (Physics & Mathematics), Assistant, Scientific Researcher

197101; Saint Petersburg

sc 57212832118



A. D. Dolgopolov
ITMO University
Russian Federation

Arthur D. Dolgopolov, Assistant, Engineer-Researcher

197101; Saint Petersburg

sc 58637797100



D. V. Pankin
St. Petersburg State University
Russian Federation

Dmitrii V. Pankin, PhD (Physics & Mathematics), Specialist

Center for Optical and Laser Materials Research; Research Park

198504; Saint Petersburg; Peterhof

sc 57190487236



G. D. Shandybina
ITMO University
Russian Federation

Galina D. Shandybina, PhD (Physics & Mathematics), Associate Professor, Assistant

197101; Saint Petersburg

sc 6602435275



References

1. Shirshnev P.S., Kang M., Divliansky I., Richardson K.A., Glebov L.B. Engineered refractive and diffractive optical composites via photothermal processes. Optical Materials Express, 2022, vol. 12, no. 9, pp. 3429–3448. doi: 10.1364/ome.465711

2. Kang M., Swisher A.M., Pogrebnyanov A.V., Liu L., Kirk A., Aiken S., et al. Ultralow dispersion multicomponent thin-film chalcogenide glass for broadband gradient-index optics. Advanced Materials, 2018, vol. 30, no. 39, pp. 1803628. doi: 10.1002/adma.201803628

3. Kang M., Triplett B.M., Shalaginov M.Y., Deckoff-Jones S., Blanco C., Truman M., et al. Photochemically engineered large-area arsenic sulfide micro-gratings for hybrid diffractive–refractive infrared platforms. Advanced Photonics Research, 2024, vol. 5, no. 1, pp. 2300241. doi: 10.1002/adpr.202300241

4. Li Z., Shangguan S., Shi W., Wang W., Qi D., Chen F., Zheng H. Femtosecond laser induced periodic subwavelength nanohole arrays structure on As<sub>2</sub>Se<sub>3</sub> glass surface. Ceramics International, 2024, vol. 51, no. 7, pp. 8211–8218. doi: 10.1016/j.ceramint.2024.12.302

5. Guk I.V., Kuzmin E.V., Shandybina G.D., Yakovlev E.B., Dyukin R.V., Kulagin V.S. Influence of multi-pulse action on the evolution of silicon microrelief under femtosecond laser irradiation. Journal of Optical Technology, 2017, vol. 84, no. 7, pp. 462–466. doi: 10.1364/JOT.84.000462

6. Fraggelakis F., Mincuzzi G., Lopez J., Manek-Honninger I., Kling R. Texturing metal surface with MHz ultra-short laser pulses. Optics Express, 2017, vol. 25, no. 15, pp. 18131–18139. doi: 10.1364/OE.25.018131

7. Liu J.M. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Optics Letters, 1982, vol. 7, no. 5, pp. 196–198. doi: 10.1364/OL.7.000196

8. Struleva E.V., Komarov P.S., Ashitkov S.I. Thermomechanical ablation of titanium by femtosecond laser irradiation. High Temperature, 2019, vol. 57, no. 4, pp. 486–489. doi: 10.1134/s0018151x19040217

9. Jee Y., Becker M.F., Walser R.M. Laser-induced damage on single-crystal metal surfaces. Journal of the Optical Society of America B, 1988, vol. 5, no. 3, pp. 648–659. doi: 10.1364/JOSAB.5.000648

10. Li Q., Qi D., Wang X., Shen X., Wang R., Tanaka K. Femto- and nano-second laser-induced damages in chalcogenide glasses. Japanese Journal of Applied Physics, 2019, vol. 58, no. 8, pp. 080911. doi: 10.7567/1347-4065/ab3368

11. Kovanda V., Vlček M., Jain H. Structure of As–Se and As–P–Se glasses studied by Raman spectroscopy. Journal of Non-Crystalline Solids, 2003, vol. 326-327, pp. 88–92. doi: 10.1016/S0022-3093(03)00383-1

12. Shamova A., Polyakov D., Golubkov V., Pankin D., Shimko A., Shandybina G. Processes accompanying ablation in thin-film and bulk chalcogenide glass As<sub>2</sub>Se<sub>3</sub> under multipulse femtosecond laser irradiation. Optical Materials, 2025, vol. 167, pp. 117232. doi: 10.1016/j.optmat.2025.117232

13. Zakery A., Elliott S.R. Optical properties and applications of chalcogenide glasses : a review. Journal of Non-Crystalline Solids, 2003, vol. 330, no. 1-3, pp. 1–12. doi: 10.1016/j.jnoncrysol.2003.08.064

14. Joseph S., Sarkar S., Joseph J. Grating-coupled surface plasmon-polariton sensing at a flat metal–analyte interface in a hybrid-configuration. ACS Applied Materials & Interfaces, 2020, vol. 12, no. 41, pp. 46519–46529. doi: 10.1021/acsami.0c12525

15. Polyakov D., Shandybina G., Shamova A. Analytical 3D modeling of accumulative heating under multipulse laser irradiation of inorganic materials and biological tissues. Thermal Science and Engineering Progress, 2022, vol. 31, pp. 101284. doi: 10.1016/j.tsep.2022.101284

16. Sobolev V.V. Optical spectra of arsenic chalcogenide glasses over a wide energy range of fundamental absorption. Glass Physics and Chemistry, 2002, vol. 28, no. 6, pp. 399–416. doi: 10.1023/A:1021719017568

17. Easteal A.J., Wilder J.A., Mohr R.K., Moynihan C.T. Heat capacity and structural relaxation of enthalpy in As<sub>2</sub>Se<sub>3</sub> glass. Journal of the American Ceramic Society, 1977, vol. 60, no. 3-4, pp. 134–138. doi: 10.1111/j.1151-2916.1977.tb15488.x

18. Knotek P., Kutálek P., Černošková E., Vlček M., Tichý L. The density, nanohardness and some optical properties of As–S and As–Se chalcogenide bulk glasses and thin films. RSC Advances, 2020, vol. 10, no. 70, pp. 42744–42753. doi: 10.1039/D0RA08939G

19. Flasck R., Rockstad H.K. The thermal conductivity of some chalcogenide glasses. Journal of Non-Crystalline Solids, 1973, vol. 12, no. 3, pp. 353–356. doi: 10.1016/0022-3093(73)90007-0

20. Baker E.H. Arsenic triselenide: boiling-point relation at elevated pressures. Journal of the Chemical Society, Dalton Transactions, 1975, no. 15, pp. 1589–1591. doi: 10.1039/DT9750001589

21. Shugaev M.V., He M., Levy Y., Mazzi A., Miotello A., Bulgakova N.M., Zhigilei L.V. Laser-induced thermal processes: heat transfer, generation of stresses, melting and solidification, vaporization, and phase explosion. Handbook of Laser Micro- and Nano-Engineering, 2021, pp. 83–163. doi: 10.1007/978-3-030-63647-0_11

22. Berkes J.S., Ing S.W., Hillegas W.J. Photodecomposition of amorphous As<sub>2</sub>Se<sub>3</sub> and As<sub>2</sub>S<sub>3</sub>. Journal of Applied Physics, 1971, vol. 42, no. 12, pp. 4908–4916. doi: 10.1063/1.1659873

23. Paula K.T., Dutta N.S., Almeida J.M., Nolasco L.K., Andrade M.B., Arnold C.B., Mendonça C.R. Femtosecond laser induced damage threshold incubation and oxidation in As<sub>2</sub>S<sub>3</sub> and As<sub>2</sub>Se<sub>3</sub> thin films. Applied Surface Science, 2024, vol. 654, pp. 159449. doi: 10.1016/j.apsusc.2024.159449

24. Libenson M.N., Shandybina G.D., Shakhmin A.L. Chemical analysis of products obtained by nanosecond laser ablation. Technical Physics, 2000, vol. 45, no. 9, pp. 1219–1222. doi: 10.1134/1.1318114

25. Gornushkin I.B., Veiko V.P., Karlagina Yu.Yu., Samokhvalov A.A., Polyakov D.S. Equilibrium model of titanium laser induced plasma in air with reverse deposition of titanium oxides. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, vol. 193, pp. 106449. doi: 10.1016/j.sab.2022.106449


Review

For citations:


Shamova A.A., Polyakov D.S., Dolgopolov A.D., Pankin D.V., Shandybina G.D. Ablation of bulk chalcogenide glass As2Se3 by high-repetition-rate femtosecond laser pulses. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2025;25(6):1003-1013. (In Russ.) https://doi.org/10.17586/2226-1494-2025-25-6-1003-1013

Views: 41


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)