Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

Modeling and study of FBG interrogator based on a two-dimensional image sensor

https://doi.org/10.17586/2226-1494-2025-25-6-1014-1023

Abstract

   Fiber Bragg Grating (FBG) interrogators contain a movable scattering element that tracks the FBG central wavelength. The movable element of the interrogator limits the interrogation speed. This paper proposes an interrogation method that does not use movable elements. This is achieved by using an Array Waveguide (AWG) to split the FBG reflected spectrum and a Convolutional Neural Network (CNN) for training to determine the central wavelength. Most of the known studies consider the AWG output as a one-dimensional data array for training the neural network. However, CNNs work best with two-dimensional images. This paper proposes to transform the AWG output using a two-dimensional image sensor with a circular configuration. This allows for higher accuracy and improved resolution in predicting the central wavelength. The AWG signal is projected onto a two-dimensional image sensor which has either a grid or a circular configuration. The number of AWG channels used is 32, which corresponds to a distance between channel wavelengths of 0.0625 nm. The circular configuration enables more accurate feature extraction using CNN. A 32-beam passive waveguide array in a circular configuration is used for FBG interrogation. It projects the FBG output signals onto the image sensor, enabling high-resolution Bragg wavelength prediction. Computer simulation of the proposed interrogation device demonstrated a predicted resolution of ±1 pm with 98 % accuracy. It should be noted that the presented values are estimates and are subject to refinement using a hardware prototype. Such devices are relatively easy to manufacture and are readily available to consumers.

About the Authors

S. Venkatesan
Ramakrishna Mission Vivekananda College (Affiliated to University of Madras)
India

Sugumar Venkatesan, M.Sc., (PhD), Researcher

600004; Chennai

sc 58959894800



Subashini S.
Government Arts College
India

Subashini Ponnusamy, MCA, (PhD), Researcher

600035; Chennai



P. Chelliah
Ramakrishna Mission Vivekananda College (Affiliated to University of Madras)
India

Pandian Chelliah, PhD, Associate Professor

600004; Chennai

sc 36439116600



References

1. Zhou Z., Ou J. Development of FBG sensors for structural health monitoring in civil infrastructures. Sensing Issues in Civil Structural Health Monitoring, 2005, pp. 197–207. doi: 10.1007/1-4020-3661-2_20

2. Kahandawa G.C., Epaarachchi J., Wang H., Lau K.T. Use of FBG sensors for SHM in aerospace structures. Photonic Sensors, 2012, vol. 2, no. 3, pp. 203–214. doi: 10.1007/s13320-012-0065-4

3. Lee J.R., Chong S.Y., Yun C.Y., Sohn H. Design of Fiber Bragg Grating acoustic sensor for structural health monitoring of nuclear power plant. Advanced Materials Research, 2010, vol. 123-125, pp. 859–862. doi: 10.4028/www.scientific.net/amr.123-125.859

4. Riza M.A., Go Y.I., Harun S.W., Maier R.R.J. FBG sensors for environmental and biochemical applications review. IEEE Sensors Journal, 2020, vol. 20, no. 14, pp. 7614–7627. doi: 10.1109/jsen.2020.2982446

5. Presti D.L., Massaroni C., Leitao C.S.J., Domingues M.D., Sypabekova M., Barrera D., et al. Fiber Bragg Gratings for medical applications and future challenges : a review. IEEE Access, 2020, vol. 8, pp. 156863–156888. doi: 10.1109/ACCESS.2020.3019138

6. Kashyap R. Fiber Bragg Gratings. Academic press, 2009, 458 p.

7. Sengupta D. Fiber Bragg Grating sensors and interrogation systems. Optical Fiber Sensors Advanced Techniques and Applications, 2015, pp. 207–256.

8. Santos J.L., Ferreira L.A., Araujo F.M. Fiber Bragg Grating interrogation systems. Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation, 2011, pp. 78–98.

9. Cui J., Hu Y., Feng K., Li J., Tan J. FBG interrogation method with high resolution and response speed based on a reflective-matched FBG scheme. Sensors, 2015, vol. 15, no. 7, pp. 16516–16535. doi: 10.3390/s150716516

10. Diaz C.A., Leitão C., Marques C.A., Domingues M., Alberto N., Pontes M., et al. Low-cost interrogation technique for dynamic measurements with FBG-based devices. Sensors, 2017, vol. 17, no. 10, pp. 2414. doi: 10.3390/s17102414

11. Lei M., Zou W., Li X., Chen J. Ultrafast FBG interrogator based on time-stretch method. IEEE Photonics Technology Letters, 2016, vol. 28, no. 7, pp. 778-781. doi: 10.1109/LPT.2015.2513903

12. Marrazzo V.R., Fienga F., Riccio M., Irace A., Breglio G. Multichannel approach for arrayed waveguide grating-based FBG interrogation systems. Sensors, 2021, vol. 21, no. 18, pp. 6214. doi: 10.3390/s21186214

13. Niewczas P., Willshire A.J., Dziuda L., McDonald J.R. Performance analysis of the Fiber Bragg Grating interrogation system based on an arrayed waveguide grating. IEEE Transactions on Instrumentation and Measurement, 2004, vol. 53, no. 4, pp. 1192–1196. doi: 10.1109/tim.2004.830780

14. Marrazzo V.R., Fienga F., Laezza D., Riccio M., Irace A., Buontempo S., Breglio G. Full analog fiber optic monitoring system based on arrayed waveguide grating. Journal of Lightwave Technology, 2021, vol. 39, no. 15, pp. 4990–4996. doi: 10.1109/jlt.2021.3083061

15. Trita A., Vickers G., Mayordomo I., van Thourhout D., Vermeiren J. Design, integration, and testing of a compact FBG interrogator, based on an AWG spectrometer. Proceedings of SPIE, 2014, vol. 9133, pp. 91330D. doi: 10.1117/12.2058107

16. Barino F.O., dos Santos A.B. LPG interrogator based on FBG array and artificial neural network. IEEE Sensors Journal, 2020, vol. 20, no. 23, pp. 14187–14194. doi: 10.1109/JSEN.2020.3007957

17. Chen S., Yao F., Ren S., Wang G., Huang M. Cost-effective improvement of the performance of AWG-based FBG wavelength interrogation via a cascaded neural network. Optics Express, 2022, vol. 30, no. 5, pp. 7647–7663. doi: 10.1364/oe.449004

18. Ren S., Chen S., Yang J., Wang J., Yang Q., Xue C., et al. High-efficiency FBG array sensor interrogation system via a neural network working with sparse data. Optics Express, 2023, vol. 31, no. 5, pp. 8937–8952. doi: 10.1364/oe.479708

19. Tan Z., Ren W., Liu Z, Feng S., Chen Z. Fiber Bragg Grating sensor interrogator based on 2D imaging system. Applied Optics, 2014, vol. 53, no. 23, pp. 5259–5263. doi: 10.1364/ao.53.005259

20. Jiang X., Yang Z., Wu L., Dang Z., Ding Z., Liu Z., et al. Fiber spectrum analyzer based on planar waveguide array aligned to a camera without lens. Optics and Lasers in Engineering, 2022, vol. 159, pp. 107226. doi: 10.1016/j.optlaseng.2022.107226

21. Ding Z., Chang Q., Deng Z., Ke S., Jiang X., Zhang Z. FBG interrogator using a dispersive waveguide chip and a CMOS camera. Micromachines, 2024, vol. 15, no. 10, pp. 1206. doi: 10.3390/mi15101206

22. Phing H.S., Ali J., Rahman R.A., Tahir B.A. Fiber Bragg Grating modeling, simulation and characteristics with different grating lengths. Malaysian Journal of Fundamental and Applied Sciences, 2007, vol. 3, no. 2, pp. 167–175. doi: 10.11113/mjfas.v3n2.26

23. Ikhlef A., Hedara R., Chikh-Bled M. Uniform Fiber Bragg Grating modeling and simulation used matrix transfer method. International Journal of Computer Science Issues, 2012, vol. 9, no. 1, pp. 368–374.

24. Ismail N., Sun F., Sengo G., Wörhoff K., Driessen A., de Ridder R.M., Pollnau M. Improved arrayed-waveguide-grating layout avoiding systematic phase errors. Optics Express, 2011, vol. 19, no. 9, pp. 8781–8794. doi: 10.1364/oe.19.008781


Review

For citations:


Venkatesan S., S. S., Chelliah P. Modeling and study of FBG interrogator based on a two-dimensional image sensor. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2025;25(6):1014-1023. https://doi.org/10.17586/2226-1494-2025-25-6-1014-1023

Views: 62


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)