Plasmon resonance and anomalous dispersion of the dielectric permittivity and refractive index of the porous laser-structured surface of anodized titanium
https://doi.org/10.17586/2226-1494-2025-25-6-1033-1046
Abstract
In recent years, laser-structured titanium dioxide (TiO2) surfaces have attracted considerable attention due to their combination of high specific surface area, biocompatibility, and unique optical properties, offering promising opportunities for photonics, sensing, and energy applications. Of particular interest is the study of the optical manifestations of porous Ti/TiO2 films fabricated via laser structuring, with potential evidence of plasmonic resonances and anomalous dispersion. The samples were prepared from titanium foil subjected to anodization in potassium hydroxide solution, followed by nanosecond laser structuring at the wavelength of 1064 nm and an energy density of (3.2 ± 0.2)∙103 J/cm2. Surface morphology was analyzed using scanning electron microscopy and optical profilometry, while optical characteristics were investigated by spectrophotometry and ellipsometry. To interpret the spectral data, a modified Adachi-Forouhi model within the dipole approximation was applied, enabling quantitative description of the contributions of interband transitions and plasmonic modes. The surfaces produced by laser structuring exhibited pronounced porosity (pore sizes of 300–1100 nm, depth ~200 nm), submicron cracks, and nanoparticles of the laser-structured material. Reflection spectra revealed minima corresponding to the excitation of surface plasmons and interference modes. Dielectric permittivity spectra displayed a region of anomalous dispersion and field localization at a wavelength of 625 nm. Calculated parameters included the skin layer thickness, Purcell factor for a nanopore, damping length of plasmon oscillations on the surface, propagation length of surface plasmons, and the critical value of polarizability enhancement in the plasmon resonance localization region. Modeling indicated a narrowing of the bandgap to 1.016 eV. Contributions to the dielectric permittivity of the semiconductor component from interband absorption saturation, changes in band structure, and free carriers were determined. While the bandgap narrowing played a decisive role, the dominant contribution to the experimentally observed dielectric behavior arose from the generation of resonant plasmonic modes. It was established that the key mechanism of the optical response is the resonant localization of the electromagnetic field within the nanopores, confirming the manifestation of hyperbolic metamaterial behavior. The material obtained exhibited significant bandgap narrowing due to the nanosecond laser treatment. The results highlight the potential of porous laser-structured anodized titanium surfaces for photonic and sensing devices, as well as for use in waveguiding structures.
Keywords
About the Authors
A. A. KostrinaRussian Federation
Alena A. Kostrina, Technician
236041; Kaliningrad
sc 59762280900
A. V. Tcibulnikova
Russian Federation
Anna V. Tcibulnikova, PhD (Physics & Mathematics), Senior Researcher
236041; Kaliningrad
sc 57193169565
V. A. Slezhkin
Russian Federation
Vasily A. Slezhkin, PhD (Chemistry), Senior Researcher
236041; Kaliningrad
sc 6506061436
I. I. Lyatun
Russian Federation
Ivan I. Lyatun, Senior Researcher
236041; Kaliningrad
sc 56600612300
M. V. Tsarkov
Russian Federation
Maksim V. Tsarkov, Technical Director of the Society, Engineer
Astronomical Society; Astrophysics Laboratory
236041; Kaliningrad
D. A. Artamonov
Russian Federation
Dmitry A. Artamonov, Technician
236041; Kaliningrad
M. S. Kuritskij
Russian Federation
Michael S. Kuritskij, Laboratory Researcher
236041; Kaliningrad
I. G. Samusev
Russian Federation
Ilia G. Samusev, PhD (Physics & Mathematics), Associate Professor, Head of the Center
Research & Educational Center “Fundamental and Applied Photonics. Nanophotonics”
236041; Kaliningrad
sc 12779220200
V. V. Bryukhanov
Russian Federation
Valery V. Bryukhanov, D.Sc. (Psysics & Mathematics), Professor, Leading Researcher
236041; Kaliningrad
sc 7003848491
References
1. Macak J.M., Zlamal M., Krysa J., Schmuki P. Self-organized TiO<sub>2</sub> nanotube layers as highly efficient photocatalysts. Small, 2007, vol. 3, no. 2, pp. 300–304. doi: 10.1002/smll.200600426
2. Arafat M.M., Dinan B., Akbar S.A., Haseeb A.S.M.A. Gas sensors based on one dimensional nanostructured metal-oxides : a review. Sensors, 2012, vol. 12, no. 6, pp. 7207–7258. doi: 10.3390/s120607207
3. Ma D., Li K., Pan J.H. Ultraviolet-induced interfacial crystallization of uniform nanoporous biphasic TiO<sub>2</sub> spheres for durable lithium-ion battery. ACS Applied Energy Materials, 2020, vol. 3, no. 5, pp. 4186–4192. doi: 10.1021/acsaem.0c00816
4. Ji Y., Zhang M., Cui J., Lin K., Zheng H., Zhu J., Samia A.C.S. Highly-ordered TiO<sub>2</sub> nanotube arrays with double-walled and bamboo-type structures in dye-sensitized solar cells. Nano Energy, 2012, vol. 1, no. 6, pp. 796–804. doi: 10.1016/j.nanoen.2012.08.006
5. Yeung K.L., Yau S.T., Maira A.J., Coronado J.M., Soria J., Yue P.L. The influence of surface properties on the photocatalytic activity of nanostructured TiO<sub>2</sub>. Journal of Catalysis, 2003, vol. 219, no. 1, pp. 107–116. doi: 10.1016/s0021-9517(03)00187-8
6. Jafari S., Mahyad B., Hashemzadeh H., Janfaza S., Gholikhani T., Tayebi L. Biomedical applications of TiO<sub>2</sub> nanostructures: recent advances. International Journal of Nanomedicine, 2020, vol. 15, pp. 3447–3470. doi: 10.2147/ijn.s249441
7. Hoshian S., Jokinen V., Hjort K., Ras R.H.A., Franssila S. Amplified and localized photoswitching of TiO<sub>2</sub> by micro- and nanostructuring. ACS Applied Materials & Interfaces, 2015, vol. 7, no. 28, pp. 15593–15599. doi: 10.1021/acsami.5b04309
8. Yavari S.A., van der Stok J., Chai Y.C., Wauthle R., Birgani T.Z., Habibovic P., et al. Bone regeneration performance of surface-treated porous titanium. Biomaterials, 2014, vol. 35, no. 24, pp. 6172–6181. doi: 10.1016/j.biomaterials.2014.04.054
9. Yavari S.A., Wauthle R., Böttger A.J., Schrooten J., Weinans H., Zadpoor A.A. Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting. Applied Surface Science, 2014, vol. 290, pp. 287–294. doi: 10.1016/j.apsusc.2013.11.069
10. Reghunath S., Pinheiro D., Devi K.R.S. A review of hierarchical nanostructures of TiO<sub>2</sub>: Advances and applications. Applied Surface Science Advances, 2021, vol. 3, pp. 100063. doi: 10.1016/j.apsadv.2021.100063
11. Kaushik V. Negative Index Materials: Metamaterials. Research Review International Journal of Multidisciplinary. 2019. V. 4. Issue 4. Available at: http://www.rrjournals.com. (accessed: 25. 12. 2024)
12. Wang G., Li D., Liao W., Liu T., Li X., An Q., Qu Z. Multifunctional metamaterial with reconfigurable electromagnetic scattering properties for advanced stealth and adaptive applications. Advanced Materials, 2024, vol. 36, no. 40, pp. 2408216. doi: 10.1002/adma.202408216
13. Huang T., Lu J., Zhang X., Xiao R., Yang W., Wu Q. Femtosecond laser fabrication of anatase TiO<sub>2</sub> micro-nanostructures with chemical oxidation and annealing. Scientific Reports, 2017, vol. 7, pp. 2089. doi: 10.1038/s41598-017-02369-w
14. Varlamov P.V., Mikhailova J.V., Andreeva Ya.M., Sergeev M.M. Effect of laser processing parameters on spectral characteristics of silver-impregnated titanium dioxide thin films. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2020, vol. 20, no. 5, pp. 634–641. (in Russian). doi: 10.17586/2226-1494-2020-20-5-634-641
15. Veiko V.P., Karlagina YU.YU., Romanov V.V., Yacuk R.M., Egorova E.E., Zernickaya E.A., et al. Laser technology for structuring the surface of dental titanium implants. Part 1. Photonics Russia, 2020, vol. 14, no. 5, pp. 462–472. (in Russian). doi: 10.22184/1993-7296.FRos.2020.14.5.462.472
16. Samusev I., Tcibulnikova A., Slezhkin V., Matveeva K., Demin M., Khankaev A., Lyatun I., Bryukhanov V. Transformation of refractive index spectra for titanium rough surfaces. Proceedings of SPIE, 2020, vol. 11344, pp. 1134422. doi: 10.1117/12.2556727
17. Zavestovskaya I.N. Laser nanostructuring of materials surfaces. Quantum Electronics, 2010, vol. 40, no. 11, pp. 942–954. doi: 10.1070/qe2010v040n11abeh014447
18. Veiko V.P., Libenson M.N. Laser Processing. Leningrad, Lenizdat, 1973, 190 p (in Russian)
19. Akhmanov S.A., Emel’Yanov V.I., Koroteev N.I., Seminogov V.N. Interaction of powerful laser radiation with the surfaces of semiconductors and metals: Nonlinear optical effects and nonlinear optical diagnostics. Soviet Physics Uspekhi, 1985, vol. 28, no. 12, pp. 1084-1124. doi: 10.1070/PU1985v028n12ABEH003986
20. Kolmychek I.A., Malysheva I.V., Novikov V.B., Maidykovskii A.I., Leontev A.P., Napolskii K.S., Murzina T.V. Optical Properties of Hyperbolic Metamaterials (Brief Review). JETP Letters, 2021, vol. 114, no. 11, pp. 653–664. doi: 10.1134/S0021364021230089
21. Purcell E.M. Spontaneous emission probabilities at radio frequencies. Physical Review, 1946, vol. 69, pp. 681.
22. Klimov V.V. Nanoplasmonics. Physics-Uspekhi, 2008, vol. 51, no. 8, pp. 839–844. doi: 10.1070/PU2008v051n08ABEH006794
23. Maier S.A. Plasmonics: Fundamentals and Applications. Springer, 2007. 250 p.
24. Barnes W.L., Dereux A., Ebbesen T.W. Surface plasmon subwavelength optics. Nature, 2003, vol. 424, no. 6950, pp. 824–830. doi: 10.1038/nature01937
25. Kiasat Y., Donato M.G., Hinczewski M., ElKabbash M., Letsou T., Saijaet R., et al. Epsilon-near-zero (ENZ)-based optomechanics. Communications Physics, 2023, vol. 6, no. 1, pp. 69. doi: 10.1038/s42005-023-01186-0
26. Reshef O., De Leon I., Alam M.Z., Boyd R.W. Nonlinear optical effects in epsilon-near-zero media. Nature Reviews Materials, 2019, vol. 4, no. 8, pp. 535–551. doi: 10.1038/s41578-019-0120-5
27. Seetharamdoo D. Resonant negative refractive index metamaterials. Metamaterial, 2012, pp. 171–194. doi: 10.5772/35153
28. Padilla W.J., Basov D.N., Smith D.R. Negative refractive index metamaterials. Materials Today, 2006, vol. 9, no. 7-8, pp. 28–35. doi: 10.1016/s1369-7021(06)71573-5
29. Francs G.C.D., Barthes J., Bouhelier A., Weeber J.C., Dereux A., Cuche A., Girard C. Plasmonic Purcell factor and coupling efficiency to surface plasmons. Implications for addressing and controlling optical nanosources. Journal of Optics, 2016, vol. 18, no. 9, pp. 094005. doi: 10.1088/2040-8978/18/9/094005
30. Wang W., Yang X., Gao J. Scaling law of Purcell factor in hyperbolic metamaterial cavities with dipole excitation. Optics Letters, 2019, vol. 44, no. 3, pp. 471–474. doi: 10.1364/ol.44.000471
31. Tan Z.-Q., Lin Q., Du W.-J., Wang L.-L., Liu G.-D. Simultaneously enhance electric and magnetic Purcell factor by strong coupling between toroidal dipole quasi-BIC and electric dipole. Journal of Applied Physics, 2025, vol. 137, no. 3, pp. 033103. doi: 10.1063/5.0251015
32. Davidovich M.V. Dyakonov plasmon-polaritones along a hyperbolic metamaterial surface. Computer Optics, 2021, vol. 45, no. 1, pp. 48–57. (in Russian). doi: 10.18287/2412-6179-CO-673
33. Wu S., Luo X., Long Y., Xu B. Exploring the phase transformation mechanism of titanium dioxide by high temperature in situ method. IOP Conference Series: Materials Science and Engineering, 2019, vol. 493, no. 1, pp. 012010. doi: 10.1088/1757-899x/493/1/012010
34. Mett R.R., Sidabras J.W., Hyde J.S. Radio frequency skin depth concepts in magnetic resonance. Current Topics in Biophysics, 2005, vol. 29, no. 1-2, pp. 83–88.
35. Brodskiiand A.M., Urbakh M.I. Optics of rough surfaces of metals. Soviet Physics — JETP, 1985, vol. 62, no. 2, pp. 391–399.
36. Ordal M.A., Bell R.J., Alexander R.W., Long L.L., Querry M.R. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Applied Optics, 1985, vol. 24, no. 24, pp. 4493–4499. doi: 10.1364/ao.24.004493
37. Forouhi A.R., Bloomer I. Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. Physical Review B, 1986, vol. 34, no. 10, pp. 7018–7026. doi: 10.1103/physrevb.34.7018
38. Mohamad M., Haq B.U., Ahmed R., Shaari A., Ali N., Hussain R. A density functional study of structural, electronic and optical properties of titanium dioxide: Characterization of rutile, anatase and brookite polymorphs. Materials Science in Semiconductor Processing, 2015, vol. 31, pp. 405–414. doi: 10.1016/j.mssp.2014.12.027
39. Al-Mudhaffer M.F. Optical properties, interband transition strength and the surface, volume energy loss function of titanium dioxide film. Journal of Basrah Researches (Sciences), 2010, vol. 36, no. 6, pp. 31–38.
40. Li A.Y., Yang Y., Shu X., Wan D., Wei N., Yu X., et al. From titanium sesquioxide to titanium dioxide: oxidation-induced structural, phase, and property evolution. Chemistry of Materials, 2018, vol. 30, no. 13, pp. 4383–4392. doi: 10.1021/acs.chemmater.8b01739
41. Sokolowski-Tinten K., von der Linde D. Generation of dense electron-hole plasmas in silicon. Physical Review B, 2000, vol. 61, no. 4, pp. 2643–2650. doi: 10.1103/physrevb.61.2643
42. Sun J., Yang Y., Khan J.I., Alarousu E., Guo Z., Zhang X., et al. Ultrafast carrier trapping of a metal-doped titanium dioxide semiconductor revealed by femtosecond transient absorption spectroscopy. ACS Applied Materials & Interfaces, 2014, vol. 6, no. 13, pp. 10022–10027. doi: 10.1021/am5026159
43. Highfield J.G., Graetzel M. Discovery of reversible photochromism in titanium dioxide using photoacoustic spectroscopy: implications for the investigation of light-induced charge-separation and surface redox processes in titanium dioxide. The Journal of Physical Chemistry, 1988, vol. 92, no. 2, pp. 332–333. doi: 10.1021/j100313a043
44. Huy A.H., Aradi B., Frauenheim T., Deák P. Calculation of carrier-concentration-dependent effective mass in Nb-doped anatase crystals of TiO<sub>2</sub>. Physical Review B, 2011, vol. 83, no. 15, pp. 155201. doi: 10.1103/physrevb.83.155201
Review
For citations:
Kostrina A.A., Tcibulnikova A.V., Slezhkin V.A., Lyatun I.I., Tsarkov M.V., Artamonov D.A., Kuritskij M.S., Samusev I.G., Bryukhanov V.V. Plasmon resonance and anomalous dispersion of the dielectric permittivity and refractive index of the porous laser-structured surface of anodized titanium. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2025;25(6):1033-1046. (In Russ.) https://doi.org/10.17586/2226-1494-2025-25-6-1033-1046































