Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

DeFs-CBDE: Clustering-guided binary mutation in multi-objective differential evolution for microarray gene selection

https://doi.org/10.17586/2226-1494-2025-25-6-1185-1196

Abstract

   DNA microarray technology produces high-dimensional gene expression data, where many genes are irrelevant to disease. Effective feature selection is thus essential to mitigate the curse of dimensionality and enhance classification performance. This study introduces a multi-objective feature selection approach employing a Clustering-Based Binary Differential Evolution (CBDE) mutation to identify a compact set of disease-relevant genes. The proposed DeFs-CBDE algorithm was assessed on four gene expression datasets, i.e. brain, breast, lung, and central nervos system cancer by selecting informative feature subsets and evaluating them using five state-of-the-art classifiers, i.e., Support Vector Machine (SVM), Naive Bayes, K-Nearest Neighbors, Decision Tree (DT), and Random Forest. The DeFs-CBDE method achieved of 100 % accuracy on the brain dataset with three classifiers. On the lung dataset, DeFs-CBDE reached 97.56 % accuracy with SVM and DT. For the breast dataset, DeFs-CBDE attained 93.33 % accuracy very close to the highest score of 93.81 % accuracy. The CNS dataset proved the most challenging, where it achieved 91.67 % accuracy with SVM. Across all datasets, DeFs-CBDE consistently achieved high classification performance.

About the Authors

M. Djellal Serandi
University Mustapha Stambouli
Algeria

Mohamed Djellal Serandi, PhD Student

LISYS laboratory

29000; Mascara



F. Boufera
University Mustapha Stambouli
Algeria

Fatma Boufera, PhD, Full Professor

LISYS laboratory

29000; Mascara



A. Houari
University Mustapha Stambouli
Algeria

Amina Houari, PhD, Associate Professor

LISYS laboratory

29000; Mascara

sc 57021480300



F. Flitti
Higher Colleges of Technology in Dubai
United Arab Emirates

Farid Flitti, PhD, Associate Professor

500001; Dubai

sc 24821958500



References

1. Trunk G.V. A problem of dimensionality: A simple example. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, vol. PAMI-1, no. 3, pp. 306–307. doi: 10.1109/tpami.1979.4766926

2. Saberi-Movahed F., Rostami M., Berahmand K., Karami S., Tiwari P., Oussalah M., Band S.S. Dual regularized unsupervised feature selection based on matrix factorization and minimum redundancy with application in gene selection. Knowledge-Based Systems, 2022, vol. 256 pp. 109884. doi: 10.1016/j.knosys.2022.109884

3. Deb K. Multi-objective optimisation using evolutionary algorithms: an introduction. Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, 2011, pp. 3–34.

4. Cheng Y., Church G.M. Biclustering of expression data. Proc. of the 8<sup>th</sup> International Conference on Intelligent Systems for Molecular Biology, 2000, pp. 93–103.

5. Zhang Y., Gong D., Gao X., Tian T., Sun X. Binary differential evolution with self-learning for multi-objective feature selection. Information Sciences, 2020, vol. 507, pp. 67–85. doi: 10.1016/j.ins.2019.08.040

6. Ali W., Saeed F. Hybrid filter and genetic algorithm-based feature selection for improving cancer classification in high-dimensional microarray data. Processes, 2023, vol. 11, no. 2, p. 562. doi: 10.3390/pr11020562

7. Ahadzadeh B., Abdar M., Safara F., Khosravi A., Menhaj M.B., Suganthan P.N. SFE: A simple, fast, and efficient feature selection algorithm for high-dimensional data. IEEE Transactions on Evolutionary Computation, 2023, vol. 27, no. 6, pp. 1896–1911. doi: 10.1109/tevc.2023.3238420

8. Prajapati S., Das H., Gourisaria M.K. Feature selection using differential evolution for microarray data classification. Discover Internet of Things, 2023. vol. 3, no. 1, p. 12. doi: 10.1007/s43926-023-00042-5

9. Hamla H., Ghanem K. A hybrid feature selection based on fisher score and svm-rfe for microarray data. Informatica, 2024, vol. 48, no. 1, pp. 57–68. doi: 10.31449/inf.v48i1.4759

10. Paul D., Jain A., Saha S., Mathew J. Multi-objective pso based online feature selection for multi-label classification. Knowledge-Based Systems, 2021, vol. 222, pp. 106966, doi: 10.1016/j.knosys.2021.106966

11. Han F., Chen W.-T., Ling Q.-H., Han H. Multi-objective particle swarm optimization with adaptive strategies for feature selection. Swarm and Evolutionary Computation, 2021, vol. 62, pp. 100847. doi: 10.1016/j.swevo.2021.100847

12. Dashtban M., Balafar M., Suravajhala P. Gene selection for tumor classification using a novel bio-inspired multi-objective approach. Genomics, 2018, vol. 110, no. 1, pp. 10–17. doi: 10.1016/j.ygeno.2017.07.010

13. Ghosh M., Adhikary S., Ghosh K.K., Sardar A., Begum S., Sarkar R. Genetic algorithm based cancerous gene identification from microarray data using ensemble of filter methods. Medical and Biological Engineering and Computing, 2019, vol. 57, no. 1, pp. 159–176. doi: 10.1007/s11517-018-1874-4

14. Storn R., Price K. Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. International Computer Science Institute, 1995, vol. 95, no. 12, pp. 1–12.

15. Charfaoui Y., Houari A., Boufera F. AMoDeBic: An adaptive multi-objective differential evolution biclustering algorithm of microarray data using a biclustering binary mutation operator. Expert Systems with Applications, 2024, vol. 238, part B, pp. 121863, doi: 10.1016/j.eswa.2023.121863

16. Goldberg D.E. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, 1989, 412 p.

17. Deb K., Pratap A., Agarwal S., Meyarivan T. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, vol. 6, no. 2, pp. 182–197. doi: 10.1109/4235.996017

18. Noronha M.D., Henriques R., Madeira S.C., Zárate L.E. Impact of metrics on biclustering solution and quality : a review. Pattern Recognition, 2022, vol. 127, pp. 108612. doi: 10.1016/j.patcog.2022.108612

19. Pomeroy S.L., Tamayo P., Gaasenbeek M., Sturla L.M., Angelo M., McLaughlin M.E., et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 2002, vol. 415, no. 6870, pp. 436–442. doi: 10.1038/415436a

20. van’t Veer L.J., Dai H., van de Vijver M.J., He Y.D., Hart A.A.M., Mao M., et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002, vol. 415, no. 6871, pp. 530–536. doi: 10.1038/415530a

21. Zhao G., Wu Y. Feature subset selection for cancer classification using weight local modularity. Scientific Reports, 2016, vol. 6, pp. 34759. doi: 10.1038/srep34759

22. Kolberg L., Raudvere U., Kuzmin I., Adler P., Vilo J., Peterson H. g: Profiler—interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Research, 2023, vol. 51, no. W1, pp. W207–W212. doi: 10.1093/nar/gkad347

23. Herbst R.S., Morgensztern D., Boshoff C. The biology and management of non-small cell lung cancer. Nature, 2018, vol. 553, no. 7689, pp. 446–454. doi: 10.1038/nature25183

24. Skoulidis F., Heymach J.V. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nature Reviews Cancer, 2019, vol. 19, no. 9, pp. 495–509. doi: 10.1038/s41568-019-0179-8

25. Nath S., Mukherjee P. Muc1: a multifaceted oncoprotein with a key role in cancer progression. Trends in Molecular Medicine, 2014, vol. 20, no. 6, pp. 332–342. doi: 10.1016/j.molmed.2014.02.007


Review

For citations:


Djellal Serandi M., Boufera F., Houari A., Flitti F. DeFs-CBDE: Clustering-guided binary mutation in multi-objective differential evolution for microarray gene selection. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2025;25(6):1185-1196. https://doi.org/10.17586/2226-1494-2025-25-6-1185-1196

Views: 63


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)