Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

Optimization of the optical scheme of a photodetector module operating in the spectral range of 1.3–1.6 μm

https://doi.org/10.17586/2226-1494-2022-22-5-873-880

Abstract

Optical system consisting of single-mode optical fiber and p-i-n photodiode semiconductor chip with InGaAs active layer was investigated. Considered photodetector module has responsivity in 1.3–1.6 µm. The problem of optical power loss due to inaccurate matching between the optical fiber and the active medium of photodiode in photodetector modules is investigated; resolving the power loss problem will lead to an increase in the spectral photosensitivity and external quantum efficiency of the photodetector module. Optimization of optical fiber coupling with semiconductor chip was implemented in Zemax® software with built-in Levenberg–Marquardt algorithm. Also, numerical calculations of the influence of the transverse and longitudinal displacement on optical coupling efficiency in the photodetector module were carried out. The optical system of photodetector module based on standard metal can package was built in Zemax® software. Optimal distances between elements of the photodetector module were calculated, and maximum efficiency of 93.1 % optical coupling between single-mode fiber and photodiode aperture was achieved. The necessary sensitivity of linear micro translators used during the assembly of photodetector modules was determined to ensure the alignment of optical elements with coupling efficiency more than 90 %. The results of this work can be used in the design of photodetector modules. The proposed solutions can be relatively easily modified to create photodetector modules of other spectral ranges.

About the Authors

Ya. N. Kovach
ITMO University
Russian Federation

Yakov N. Kovach — Engineer

Saint Petersburg, 197101



V. V. Andryushkin
ITMO University
Russian Federation

Vladislav V. Andryushkin — Junior Researcher

Saint Petersburg, 197101

sc 57209329441

 



E. S. Kolodeznyi
ITMO University
Russian Federation

Evgenii S. Kolodeznyi — PhD (Physics & Mathematics), Senior Researcher

Saint Petersburg, 197101

sc 56520395600



I. I. Novikov
ITMO University
Russian Federation

Innokenty I. Novikov — PhD (Physics & Mathematics), Senior Researcher

Saint Petersburg, 197101

sc 7202658480



A. A. Petrenko
ITMO University
Russian Federation

Artem A. Petrenko — Junior Researcher

Saint Petersburg, 197101

sc 57221166765



A. V. Kamarchuk
ITMO University
Russian Federation

Anna V. Kamarchuk — Junior Researcher

Saint Petersburg, 197101



S. S. Rochas
ITMO University
Russian Federation

Stanislav S. Rochas — Junior Researcher

Saint Petersburg, 197101

sc 57197720739



D. A. Bauman
ITMO University
Russian Federation

Dmitrii A. Bauman — PhD (Physics & Mathematics), Leading Engineer

Saint Petersburg, 197101

sc 57197463747



References

1. Tekin T. Review of packaging of optoelectronic, photonic, and MEMS component. IEEE Journal on Selected Topics in Quantum Electronics, 2011, vol. 17, no. 3, pp. 704–719. https://doi.org/10.1109/JSTQE.2011.2113171

2. Zimmermann L., Preve G.B., Tekin T., Rosin T., Landles K. Packaging and assembly for integrated photonics — a review of the ePIXpack photonics packaging platform. IEEE Journal on Selected Topics in Quantum Electronics, 2011, vol. 17, no. 3, pp. 645–651. https://doi.org/10.1109/JSTQE.2010.2084992

3. Fischer-Hirchert U.H.P. Photonic Packaging Sourcebook. SpringerVerlag Berlin Heidelberg, 2015, 325 p. https://doi.org/10.1007/978-3-642-25376-8

4. Zaboub M., Guessouma A., Demaghab N.-E., Guermata A. Fabrication of polymer microlenses on single mode optical fibers for light coupling. Optics Communications, 2016, vol. 366, pp. 122–126. https://doi.org/10.1016/j.optcom.2015.12.010

5. Latry O., Ketata M., Ketata K., Debrie R. Optimization of the coupling between a tapered fibre and a p-i-n photodiode // Journal of Physics D: Applied Physics, 1995, vol. 28, no. 8, pp. 1562–1572. https://doi.org/10.1088/0022-3727/28/8/004

6. Sakai K., Kawano M., Aruga H., Takagi S.-I., Kaneko S.-I., Suzuki J., Negishi M., Kondoh Y., Fukuda K.-I. Photodiode packaging technique using ball lens and offset parabolic mirror. Journal of Lightwave Technology, 2009, vol. 27, no. 17, pp. 3874–3879. https://doi.org/10.1109/JLT.2009.2020068

7. Mangal N., Missinne J., Van Campenhout J., Snyder B., Van Steenberge G. Ball lens embedded through-package via to enable backside coupling between silicon photonics interposer and boardlevel interconnects. Journal of Lightwave Technology, 2020, vol. 38, no. 8, pp. 2360–2369. https://doi.org/10.1109/JLT.2020.2966446

8. Ori T., Masuko K. Bi-directional optical module. Patent US7917036B2, 2011, pp. 20.

9. Wang K.-W., Lin C.-C., Li C.-J., Chang C., Shih T.-T., Chuang Y.-C. Wavelength division multiplexing and demultiplexing transistor outline (TO)-can assemblies for use in optical communications, and methods. Patent US9784919B2, 2017, pp. 15.

10. Baek J.-M., Park J.-W. Bidirectional optical transceiver. Patent US7281865B2, 2007, pp. 13.

11. Ball lans unit for transmitter/receiver optical sub assembly of transceiver, and apparatus and method for manufacturing the same. Patent KR100746260B1, 2007, pp. 12. (in Korean)

12. Blasingame R.W., Chen B.S., Lee J.C., Orenstein J.D., Guenter J.K. Pluggable optical optic system having a lens fiber stop. Patent US7298942B2, 2007, pp. 14.

13. Optical sub-module structure for optical fibre transceiver. Patent CN2607584Y, 2003, pp. 20. (in Chinese)

14. Lu S., Zhang F., Xu C., Duan J. Coupling efficiency of a laser diode to a single-mode fiber via a microlens on the fiber tip. Optical Fiber Technology, 2022, vol. 68, pp. 102766. https://doi.org/10.1016/j.yofte.2021.102766

15. Junhong Y., Linhui G., Hualing W., Huicheneng M., Hao T., Songxin G., Deyong W. Analysis influence of fiber alignment error on laser–diode fiber coupling efficiency. Optik, 2016, vol. 127, no. 6, pp. 3276–3280. https://doi.org/10.1016/j.ijleo.2015.11.219

16. Ramesh R., Tiwari N., Joshi P. Design of a coupling lens assembly and study on the impact of optical misalignments and variations of lens assembly on BER of a system. Proc. of the 2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2), 2017, pp. 10–13. https://doi.org/10.1109/ICNETS2.2017.8067886

17. Yang C.-C., Huang Y.-H., Peng T.-C., Wu M.-C., Ho C.-L., Hong C.-C., Liu I.-M., Tsai Y.-T. Monte Carlo ray trace simulation for micro-ball-lens-integrated high-speed InGaAs p-i-n photodiodes. Journal of Applied Physics, 2007, vol. 101, no. 3, pp. 033107. https://doi.org/10.1063/1.2432484

18. Engelbrecht J.A.A. An assessment of some theoretical models used for the calculation of the refractive index of InXGa1−xAs. Physica B: Condensed Matter, 2018, vol. 535, pp. 8–12. https://doi.org/10.1016/j.physb.2017.05.047

19. Dinges H.W., Burkhard H., Lösch R., Nickel H., Schlapp W. Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry. Applied Surface Science, 1992, vol. 54, pp. 477–481. https://doi.org/10.1016/0169-4332(92)90090-K

20. Dinges H.W., Burkhard H., Lösch R., Nickel H., Schlapp W. Determination of refractive indexes of In0.52Al0.48As on InP in the wavelength range from 250 to 1900 nm by spectroscopic ellipsometry. Materials Science and Engineering: B, 1993, vol. 20, no. 1–2, pp. 180–182. https://doi.org/10.1016/0921-5107(93)90423-K

21. Pettit G.D., Turner W.J. Refractive index of InP. Journal of Applied Physics, 1965, vol. 36, no. 6, pp. 2081. https://doi.org/10.1063/1.1714410

22. Luke K., Okawachi Y., Lamont M.R.E., Gaeta A.L., Lipson M. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Proc. of the Conference on Lasers and Electro-Optics (CLEO), 2015, pp. 7184257. https://doi.org/10.1364/CLEO_SI.2015. STu4I.8

23. Kolodeznyi E.S., Novikov I.I., Gladyshev A.G., Rochas S.S., Sharipo K.D., Karachinsky L.Ya., Egorov A.Yu., Bougrov V.E. Study of antireflection coatings for high-speed 1.3–1.55 µm InGaAs/InP PIN photodetector. Materials Physics and Mechanics, 2017, vol. 32, no. 2, pp. 194–197. https://doi.org/10.18720/MPM.3222017-11

24. Blistanov A.A. Crystals of Quantum and Nonlinear Optics. Moscow, MISIS Publ., 2000, 432 p. (in Russian)

25. Korte S., Farrer I., Beere H.E., Clegg W.J. Discontinuous yield in InGaAs thin films // Surface and Coatings Technology. 2008. V. 203. N 5–7. P. 713–716. https://doi.org/10.1016/j.surfcoat.2008.08.052

26. Kelly R.L. Program of the 1972 Annual Meeting of the Optical Society of America // Journal of the Optical Society of America. 1972. V. 62. N 11. P. 1336. https://doi.org/10.1364/JOSA.62.001336

27. Курташ В.А., Егоренков А.А. Исследование оптических свойств структур фотокатода InP/InGaAs/InP // Материалы XI Ежегодной научно-технической конференции молодых специалистов «Техника и технология современной фотоэлектроники» 14–15 апреля 2020 г. Базовый научный центр АО ЦНИИ «Электрон» [Электронный ресурс]. URL: http://www.niielectron.ru/ issledovanie-opticheskih-svojstv-struktur-fotokatoda-inp-ingaas-inp/, свободный (дата обращения: 01.09.2022).

28. Zemax User’s Manual. 2014. 879 p.

29. Chen S., Chen J. Optimization of absorption layer in InGaAs/InP uni-traveling carrier photodiode // Proceedings of SPIE. 2021. V. 11781. P. 117811E. https://doi.org/10.1117/12.2591305

30. Wang X.D., Hu W.D., Chen X.S., Xu J.T., Li X.Y., Lu W. Photoresponse study of visible blind GaN/AlGaN p-i-n ultraviolet photodetector // Optical and Quantum Electronics. 2011. V. 42. N 11. P. 755–764. https://doi.org/10.1007/s11082-011-9473-8

31. Rochas S.S., Kolodeznyi E.S., Kozyreva O.A., Voropaev K.O., Sudas D.P., Novikov I.I., Egorov A.Yu. A heterostructure for resonantcavity GaAs p-i-n photodiode with 840-860 nm wavelength // Journal of Physics: Conference Series. 2019. V. 1236. N 1. P. 012071. https://doi.org/10.1088/1742-6596/1236/1/012071


Review

For citations:


Kovach Ya.N., Andryushkin V.V., Kolodeznyi E.S., Novikov I.I., Petrenko A.A., Kamarchuk A.V., Rochas S.S., Bauman D.A. Optimization of the optical scheme of a photodetector module operating in the spectral range of 1.3–1.6 μm. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2022;22(5):873-880. (In Russ.) https://doi.org/10.17586/2226-1494-2022-22-5-873-880

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)