Optimization of the optical scheme of a photodetector module operating in the spectral range of 1.3–1.6 μm
https://doi.org/10.17586/2226-1494-2022-22-5-873-880
Abstract
Optical system consisting of single-mode optical fiber and p-i-n photodiode semiconductor chip with InGaAs active layer was investigated. Considered photodetector module has responsivity in 1.3–1.6 µm. The problem of optical power loss due to inaccurate matching between the optical fiber and the active medium of photodiode in photodetector modules is investigated; resolving the power loss problem will lead to an increase in the spectral photosensitivity and external quantum efficiency of the photodetector module. Optimization of optical fiber coupling with semiconductor chip was implemented in Zemax® software with built-in Levenberg–Marquardt algorithm. Also, numerical calculations of the influence of the transverse and longitudinal displacement on optical coupling efficiency in the photodetector module were carried out. The optical system of photodetector module based on standard metal can package was built in Zemax® software. Optimal distances between elements of the photodetector module were calculated, and maximum efficiency of 93.1 % optical coupling between single-mode fiber and photodiode aperture was achieved. The necessary sensitivity of linear micro translators used during the assembly of photodetector modules was determined to ensure the alignment of optical elements with coupling efficiency more than 90 %. The results of this work can be used in the design of photodetector modules. The proposed solutions can be relatively easily modified to create photodetector modules of other spectral ranges.
About the Authors
Ya. N. KovachRussian Federation
Yakov N. Kovach — Engineer
Saint Petersburg, 197101
V. V. Andryushkin
Russian Federation
Vladislav V. Andryushkin — Junior Researcher
Saint Petersburg, 197101
sc 57209329441
E. S. Kolodeznyi
Russian Federation
Evgenii S. Kolodeznyi — PhD (Physics & Mathematics), Senior Researcher
Saint Petersburg, 197101
sc 56520395600
I. I. Novikov
Russian Federation
Innokenty I. Novikov — PhD (Physics & Mathematics), Senior Researcher
Saint Petersburg, 197101
sc 7202658480
A. A. Petrenko
Russian Federation
Artem A. Petrenko — Junior Researcher
Saint Petersburg, 197101
sc 57221166765
A. V. Kamarchuk
Russian Federation
Anna V. Kamarchuk — Junior Researcher
Saint Petersburg, 197101
S. S. Rochas
Russian Federation
Stanislav S. Rochas — Junior Researcher
Saint Petersburg, 197101
sc 57197720739
D. A. Bauman
Russian Federation
Dmitrii A. Bauman — PhD (Physics & Mathematics), Leading Engineer
Saint Petersburg, 197101
sc 57197463747
References
1. Tekin T. Review of packaging of optoelectronic, photonic, and MEMS component. IEEE Journal on Selected Topics in Quantum Electronics, 2011, vol. 17, no. 3, pp. 704–719. https://doi.org/10.1109/JSTQE.2011.2113171
2. Zimmermann L., Preve G.B., Tekin T., Rosin T., Landles K. Packaging and assembly for integrated photonics — a review of the ePIXpack photonics packaging platform. IEEE Journal on Selected Topics in Quantum Electronics, 2011, vol. 17, no. 3, pp. 645–651. https://doi.org/10.1109/JSTQE.2010.2084992
3. Fischer-Hirchert U.H.P. Photonic Packaging Sourcebook. SpringerVerlag Berlin Heidelberg, 2015, 325 p. https://doi.org/10.1007/978-3-642-25376-8
4. Zaboub M., Guessouma A., Demaghab N.-E., Guermata A. Fabrication of polymer microlenses on single mode optical fibers for light coupling. Optics Communications, 2016, vol. 366, pp. 122–126. https://doi.org/10.1016/j.optcom.2015.12.010
5. Latry O., Ketata M., Ketata K., Debrie R. Optimization of the coupling between a tapered fibre and a p-i-n photodiode // Journal of Physics D: Applied Physics, 1995, vol. 28, no. 8, pp. 1562–1572. https://doi.org/10.1088/0022-3727/28/8/004
6. Sakai K., Kawano M., Aruga H., Takagi S.-I., Kaneko S.-I., Suzuki J., Negishi M., Kondoh Y., Fukuda K.-I. Photodiode packaging technique using ball lens and offset parabolic mirror. Journal of Lightwave Technology, 2009, vol. 27, no. 17, pp. 3874–3879. https://doi.org/10.1109/JLT.2009.2020068
7. Mangal N., Missinne J., Van Campenhout J., Snyder B., Van Steenberge G. Ball lens embedded through-package via to enable backside coupling between silicon photonics interposer and boardlevel interconnects. Journal of Lightwave Technology, 2020, vol. 38, no. 8, pp. 2360–2369. https://doi.org/10.1109/JLT.2020.2966446
8. Ori T., Masuko K. Bi-directional optical module. Patent US7917036B2, 2011, pp. 20.
9. Wang K.-W., Lin C.-C., Li C.-J., Chang C., Shih T.-T., Chuang Y.-C. Wavelength division multiplexing and demultiplexing transistor outline (TO)-can assemblies for use in optical communications, and methods. Patent US9784919B2, 2017, pp. 15.
10. Baek J.-M., Park J.-W. Bidirectional optical transceiver. Patent US7281865B2, 2007, pp. 13.
11. Ball lans unit for transmitter/receiver optical sub assembly of transceiver, and apparatus and method for manufacturing the same. Patent KR100746260B1, 2007, pp. 12. (in Korean)
12. Blasingame R.W., Chen B.S., Lee J.C., Orenstein J.D., Guenter J.K. Pluggable optical optic system having a lens fiber stop. Patent US7298942B2, 2007, pp. 14.
13. Optical sub-module structure for optical fibre transceiver. Patent CN2607584Y, 2003, pp. 20. (in Chinese)
14. Lu S., Zhang F., Xu C., Duan J. Coupling efficiency of a laser diode to a single-mode fiber via a microlens on the fiber tip. Optical Fiber Technology, 2022, vol. 68, pp. 102766. https://doi.org/10.1016/j.yofte.2021.102766
15. Junhong Y., Linhui G., Hualing W., Huicheneng M., Hao T., Songxin G., Deyong W. Analysis influence of fiber alignment error on laser–diode fiber coupling efficiency. Optik, 2016, vol. 127, no. 6, pp. 3276–3280. https://doi.org/10.1016/j.ijleo.2015.11.219
16. Ramesh R., Tiwari N., Joshi P. Design of a coupling lens assembly and study on the impact of optical misalignments and variations of lens assembly on BER of a system. Proc. of the 2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2), 2017, pp. 10–13. https://doi.org/10.1109/ICNETS2.2017.8067886
17. Yang C.-C., Huang Y.-H., Peng T.-C., Wu M.-C., Ho C.-L., Hong C.-C., Liu I.-M., Tsai Y.-T. Monte Carlo ray trace simulation for micro-ball-lens-integrated high-speed InGaAs p-i-n photodiodes. Journal of Applied Physics, 2007, vol. 101, no. 3, pp. 033107. https://doi.org/10.1063/1.2432484
18. Engelbrecht J.A.A. An assessment of some theoretical models used for the calculation of the refractive index of InXGa1−xAs. Physica B: Condensed Matter, 2018, vol. 535, pp. 8–12. https://doi.org/10.1016/j.physb.2017.05.047
19. Dinges H.W., Burkhard H., Lösch R., Nickel H., Schlapp W. Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry. Applied Surface Science, 1992, vol. 54, pp. 477–481. https://doi.org/10.1016/0169-4332(92)90090-K
20. Dinges H.W., Burkhard H., Lösch R., Nickel H., Schlapp W. Determination of refractive indexes of In0.52Al0.48As on InP in the wavelength range from 250 to 1900 nm by spectroscopic ellipsometry. Materials Science and Engineering: B, 1993, vol. 20, no. 1–2, pp. 180–182. https://doi.org/10.1016/0921-5107(93)90423-K
21. Pettit G.D., Turner W.J. Refractive index of InP. Journal of Applied Physics, 1965, vol. 36, no. 6, pp. 2081. https://doi.org/10.1063/1.1714410
22. Luke K., Okawachi Y., Lamont M.R.E., Gaeta A.L., Lipson M. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Proc. of the Conference on Lasers and Electro-Optics (CLEO), 2015, pp. 7184257. https://doi.org/10.1364/CLEO_SI.2015. STu4I.8
23. Kolodeznyi E.S., Novikov I.I., Gladyshev A.G., Rochas S.S., Sharipo K.D., Karachinsky L.Ya., Egorov A.Yu., Bougrov V.E. Study of antireflection coatings for high-speed 1.3–1.55 µm InGaAs/InP PIN photodetector. Materials Physics and Mechanics, 2017, vol. 32, no. 2, pp. 194–197. https://doi.org/10.18720/MPM.3222017-11
24. Blistanov A.A. Crystals of Quantum and Nonlinear Optics. Moscow, MISIS Publ., 2000, 432 p. (in Russian)
25. Korte S., Farrer I., Beere H.E., Clegg W.J. Discontinuous yield in InGaAs thin films // Surface and Coatings Technology. 2008. V. 203. N 5–7. P. 713–716. https://doi.org/10.1016/j.surfcoat.2008.08.052
26. Kelly R.L. Program of the 1972 Annual Meeting of the Optical Society of America // Journal of the Optical Society of America. 1972. V. 62. N 11. P. 1336. https://doi.org/10.1364/JOSA.62.001336
27. Курташ В.А., Егоренков А.А. Исследование оптических свойств структур фотокатода InP/InGaAs/InP // Материалы XI Ежегодной научно-технической конференции молодых специалистов «Техника и технология современной фотоэлектроники» 14–15 апреля 2020 г. Базовый научный центр АО ЦНИИ «Электрон» [Электронный ресурс]. URL: http://www.niielectron.ru/ issledovanie-opticheskih-svojstv-struktur-fotokatoda-inp-ingaas-inp/, свободный (дата обращения: 01.09.2022).
28. Zemax User’s Manual. 2014. 879 p.
29. Chen S., Chen J. Optimization of absorption layer in InGaAs/InP uni-traveling carrier photodiode // Proceedings of SPIE. 2021. V. 11781. P. 117811E. https://doi.org/10.1117/12.2591305
30. Wang X.D., Hu W.D., Chen X.S., Xu J.T., Li X.Y., Lu W. Photoresponse study of visible blind GaN/AlGaN p-i-n ultraviolet photodetector // Optical and Quantum Electronics. 2011. V. 42. N 11. P. 755–764. https://doi.org/10.1007/s11082-011-9473-8
31. Rochas S.S., Kolodeznyi E.S., Kozyreva O.A., Voropaev K.O., Sudas D.P., Novikov I.I., Egorov A.Yu. A heterostructure for resonantcavity GaAs p-i-n photodiode with 840-860 nm wavelength // Journal of Physics: Conference Series. 2019. V. 1236. N 1. P. 012071. https://doi.org/10.1088/1742-6596/1236/1/012071
Review
For citations:
Kovach Ya.N., Andryushkin V.V., Kolodeznyi E.S., Novikov I.I., Petrenko A.A., Kamarchuk A.V., Rochas S.S., Bauman D.A. Optimization of the optical scheme of a photodetector module operating in the spectral range of 1.3–1.6 μm. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2022;22(5):873-880. (In Russ.) https://doi.org/10.17586/2226-1494-2022-22-5-873-880