Preview

Scientific and Technical Journal of Information Technologies, Mechanics and Optics

Advanced search

Fractal micro- and nanodendrites of silver, copper and their compounds for photocatalytic water splitting

https://doi.org/10.17586/2226-1494-2023-23-3-465-472

Abstract

The results of investigation of morphology and photocatalytic properties of thin films in a form of dendrites of silver and copper, and their compounds synthesized by the reaction of substitution, are presented. The morphology and the composition of the synthesized layers were performed by scanning electron microscope. It was shown that already through 2–3 s after the reaction beginning metal nanoporous layers up to 1 μm thick are formed on the substrates. Silver layers consist of micro-crystalline hexagonal plates and micro- and nano-dendrites. As the duration of the reaction increases the layers become more compacted, and the minimum of the pores size becomes 20 nm. In the case of the reaction with the copper salt the formation of copper microdendrites takes place immediately. The internal quantum yield of photocatalysis of water for silver and copper layers as well as for metal-semiconductor layers is 0.4–0.45 %. The obtained results can be used for the creation of photocathodes with large surface for photocathalytic water splitting in order to obtain hydrogen fuel.

About the Authors

A. I. Sidorov
ITMO University
Russian Federation

Alexander I. Sidorov — D.Sc. (Physics & Mathematics), Associate Professor, Leading Researcher

sc 57193232588 

Saint Petersburg, 197101 



P. A. Bezrukov
ITMO University
Russian Federation

Pavel A. Bezrukov — PhD Student 

sc 57219516957 

Saint Petersburg, 197101 



A. V. Nashchekin
Ioffe Institute
Russian Federation

Alexey V. Nashchekin — PhD (Physics & Mathematics), Senior Researcher 

sc 6603372975 

Saint Petersburg, 194021 



N. V. Nikonorov
ITMO University
Russian Federation

Nikolay V. Nikonorov — D.Sc. (Physics & Mathematics), Full Professor 

sc 7003772604 

Saint Petersburg, 197101 



References

1. Hoffmann M.R., Martin S.T., Choi W., Bahnemann D.W. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, vol. 95, no. 1, pp. 69–96. https://doi.org/10.1021/cr00033a004

2. Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, vol. 238, no. 5358, pp. 37–38. https://doi.org/10.1038/238037a0

3. Morales-Guio C.G., Stern L.-A., Hu X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 2014, vol. 43, no. 18, pp. 6555. https://doi.org/10.1039/c3cs60468c

4. Warren S.C., Thimsen E. Plasmonic solar water splitting. Energy & Environmental Science, 2012, vol. 5, no. 1, pp. 6446. https://doi.org/10.1039/c1ee02875h

5. Gan J., Lu X., Tong Y. Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation. Nanoscale, 2014, vol. 6, no. 13, pp. 7142. https://doi.org/10.1039/c4nr01181c

6. Koya A.N., Zhu X., Ohannesian N., Yanik A.A., Alabastri A., Zaccaria R.P., Krahne R., Shih W.-C., Garoli D. Nanoporous metals: From plasmonic properties to applications in enhanced spectroscopy and photocatalysis. ACS Nano, 2021, vol. 15, no. 4, pp. 6038. https://doi.org/10.1021/acsnano.0c10945

7. Peerakiatkhajohn P., Butburee T., Yun J.-H., Chen H., Richards R.M., Wang L. A hybrid photoelectrode with plasmonic Au@TiO2 nanoparticles for enhanced photoelectrochemical water splitting. Journal of Materials Chemistry A, 2015, vol. 3, no. 40, pp. 20127. https://doi.org/10.1039/c5ta04137f

8. Siripala W., Ivanovskaya A., Jaramillo T.F., Baeck S.H., McFarland E.W. A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Solar Energy Materials and Solar Cells, 2003, vol. 77, no. 3, pp. 229–237. https://doi.org/10.1016/S0927-0248(02)00343-4

9. Cao J., Luo B., Lin H., Chen S. Synthesis, characterization and photocatalytic activity of AgBr/H2WO4 composite photocatalyst. Journal of Molecular Catalysis A: Chemical, 2011, vol. 344, no. 1-2, pp. 138–144. https://doi.org/10.1016/j.molcata.2011.05.012

10. Wang P., Huang B.B., Qin X.Y., Zhang X.Y., Dai Y., Wei J.Y., Whangbo M.H. Ag@AgCl: A Highly efficient and stable photocatalyst active under visible light. Angewandte Chemie International Edition, 2008, vol. 47, no. 41, pp. 7931–7933. https://doi.org/10.1002/anie.200802483

11. Wang P., Huang B.B., Zhang X.Y., Qin X.Y., Jin H., Dai Y., Wang Z.Y., Wei J.Y., Zhan J., Wang S.Y., Wang J.P., Whangbo M.H. Highly efficient visible-light plasmonic photocatalyst Ag@AgBr. Chemistry — A European Journal, 2009, vol. 15, no. 8, pp. 1821– 1824. https://doi.org/10.1002/chem.200802327

12. Wang P., Huang B.B., Zhang Q.Q., Zhang X., Qin X.Y., Dai Y., Zhan J., Yu J.G., Liu H.X., Lou Z.Z. Highly efficient visible light plasmonic photocatalyst Ag@Ag(Br,I). Chemistry — A European Journal, 2010, vol. 16, no. 33, pp. 10042. https://doi.org/10.1002/chem.200903361

13. Jia H., Wong Y.L., Wang B., Xing G., Tsoi C.C., Wang M., Zhang W., Jian A., Sang S., Lei D., Zhang X. Enhanced solar water splitting using plasmon-induced resonance energy transfer and unidirectional charge carrier transport. Optics Express, 2021, vol. 29, no. 21, pp. 34810. https://doi.org/10.1364/OE.440777

14. Xiang Q.J., Yu J.G., Cheng B., Ong H.C. Microwave-hydrothermal preparation and visible-light photoactivity of plasmonic photocatalyst Ag-TiO2 nanocomposite hollow spheres. Chemistry — An Asian Journal, 2010, vol. 5, no. 6, pp. 1466–1474. https://doi.org/10.1002/asia.200900695

15. Zhou H., Sheng X., Xiao J., Ding Zh. Increasing the efficiency of photocatalytic reactions via surface microenvironment engineering. Journal of the American Chemical Society, 2020, vol. 142, no. 6, pp. 2738–2743. https://doi.org/10.1021/jacs.9b12247

16. Klimov V.V. Nanoplasmonics. Pan Stanford Publ., 2014, 460 p.

17. Kreibig U., Vollmer M. Optical Properties of Metal Clusters. Berlin, Springer-Verlag, 1995, 532 p. https://doi.org/10.1007/978-3-662-09109-8

18. Stockman M.I. Electromagnetic Theory of SERS. Surface-enhanced Raman scattering. New York, Springer, 2006, pp. 47–65. https://doi.org/10.1007/3-540-33567-6_3

19. Yakimchuk D.V., Kaniukov E.Y., Lepeshov S., Bundyukova V.D., Demyanov S.E., Arzumanyan G.M., Doroshkevich N.V., Mamatkulov K.Z., Bochmann A., Presselt M., Stranik O., Khubezhov S.A., Krasnok A.E., Alù A., Sivakov A. Self-organized spatially separated silver 3D dendrites as efficient plasmonic nanostructures for surface-enhanced Raman spectroscopy applications. Journal of Applied Physics, 2019, vol. 126, no. 23, pp. 233105. https://doi.org/10.1063/1.5129207

20. Ding Y., Zhang Z. Nanoporous Metals for Advanced Energy Technologies. Springer Cham, 2016, 223 p. https://doi.org/10.1007/978-3-319-29749-1

21. Koya A.N., Cunha J., Guo T.-L., Toma A., Garoli D., Wang T., Juodkazis S., Cojoc D., Zaccaria R.P. Novel plasmonic nanocavities for optical trapping-assisted biosensing applications. Advanced Optical Materials, 2020, vol. 8, no. 7, pp. 1901481. https://doi.org/10.1002/adom.201901481

22. Fujita T. Hierarchical nanoporous metals as a path toward the ultimate three-dimensional functionality. Science and Technology of Advanced Materials, 2017, vol. 18, no. 1, pp. 724–740. https://doi.org/10.1080/14686996.2017.1377047

23. Pshenova A.S., Sidorov A.I., Antropova T.V., Nashchekin A.V. Luminescence enhancement and SERS by self-assembled plasmonic silver nanostructures in nanoporous glasses. Plasmonics, 2019, vol. 14, no. 1, pp. 125–131. https://doi.org/10.1007/s11468-018-0784-5

24. Komissarenko F.E., Mukhin I.S., Golubok A.O., Nikonorov N.V., Prosnikov M.A., Sidorov A.I. Effect of electron beam irradiation on thin metal films on glass surfaces in a submicrometer scale. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2016, vol. 15, no. 1, pp. 013502. https://doi.org/10.1117/1.JMM.15.1.013502

25. Choi S., Dickson R.M., Yu J. Developing luminescent silver nanodots for biological applications. Chemical Society Reviews, 2012, vol. 41, no. 5, pp. 1867–1891. https://doi.org/10.1039/c1cs15226b

26. Arnob M.M.P., Artur C., Misbah I., Mubeen S., Shih W.-C. 10×-enhanced heterogeneous nanocatalysis on a nanoporous gold disk array with high-density hot spots. ACS Applied Materials & Interfaces, 2019, vol. 11, no. 4, pp. 13499–13506. https://doi.org/10.1021/acsami.8b19914

27. Shen Z., O’Carroll D.M. Nanoporous silver thin films: Multifunctional platforms for influencing chain morphology and optical properties of conjugated polymers. Advanced Functional Materials, 2015, vol. 25, no. 22, pp. 3302–3313. https://doi.org/10.1002/adfm.201500456

28. Ron R., Haleva E., Salomon A. Nanoporous metallic networks: fabrication, optical properties, and applications. Advanced Materials, 2018, vol. 30, no. 41, pp. 1706755. https://doi.org/10.1002/adma.201706755

29. Jiao Y., Chen M., Ren Y., Mai H. Synthesis of three-dimensional honeycomb-like Au nanoporous films by laser induced modification and its application for surface enhanced Raman spectroscopy. Optical Materials Express, 2017, vol. 7, no. 5, pp. 1557. https://doi.org/10.1364/OME.7.001557

30. Samsonov V.M., Kuznetsova Yu.V., D’yakova E.V. Fractal properties of aggregates of metal nanoclusters on solid surface. Technical Physics, 2016, vol. 61, no. 2, pp. 227–232. https://doi.org/10.1134/S1063784216020201

31. Tamm I., Schubin S. Zur theorie des photoeffektes an metallen. Zeitschrift für Physik, 1931, vol. 68, no. 1-2, pp. 97–113. https://doi.org/10.1007/BF01392730

32. Dobretsov L.N., Gomoyunova V.V. Emission Electronics. Moscow, Nauka Publ., 1966. 564 p. (in Russian)


Review

For citations:


Sidorov A.I., Bezrukov P.A., Nashchekin A.V., Nikonorov N.V. Fractal micro- and nanodendrites of silver, copper and their compounds for photocatalytic water splitting. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2023;23(3):465-472. (In Russ.) https://doi.org/10.17586/2226-1494-2023-23-3-465-472

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-1494 (Print)
ISSN 2500-0373 (Online)